UA MATH567 高维统计I 概率不等式9 亚高斯性的推广:Orlicz空间

这一讲讨论亚高斯范数与亚指数范数的推广,用一个更广义的框架理解这两种范数,它们其实是Orlicz空间中的随机变量的Orlicz范数。

称ψ:[0,∞)→[0,∞)\psi:[0,\infty)\to[0,\infty)ψ:[0,∞)→[0,∞)为Orlicz函数,如果

  1. ψ(0)=0\psi(0)=0ψ(0)=0
  2. ψ(+∞)=+∞\psi(+\infty)=+\inftyψ(+∞)=+∞
  3. ψ\psiψ是单调递增的凸函数

假设随机变量XXX定义在概率空间(Ω,F,P)(\Omega,\mathcal{F},P)(Ω,F,P)上,定义随机变量的Orlicz范数为
∥X∥ψ=inf⁡{t>0:Eψ(∣X∣/t)≤1}\left\| X \right\|_{\psi}=\inf\{t>0:E\psi(|X|/t) \le 1\}∥X∥ψ​=inf{t>0:Eψ(∣X∣/t)≤1}

记Lψ(Ω,F,P)L_{\psi}(\Omega,\mathcal{F},P)Lψ​(Ω,F,P)是概率空间(Ω,F,P)(\Omega,\mathcal{F},P)(Ω,F,P)上Orlicz范数有限的随机变量的集合,简记为LψL_{\psi}Lψ​,称它是Orlicz空间。Orlicz空间实际上比我们常用的LpL^pLp空间更具有一般性,比如取ψ(x)=xp,p≥1\psi(x)=x^p,p \ge 1ψ(x)=xp,p≥1,则Lψ=LpL_{\psi}=L^pLψ​=Lp,也就是说LpL^pLp空间实际上是Orlicz空间的一种特例。另外,如果取ψ(x)=ex2−1\psi(x)=e^{x^2}-1ψ(x)=ex2−1,则Orlicz范数就是亚高斯范数;如果取ψ(x)=ex−1\psi(x)=e^{x}-1ψ(x)=ex−1,则Orlicz范数就是亚指数范数

接下来我们验证下面两个事实:

  1. Orlicz范数的确是Orlicz空间LψL_{\psi}Lψ​上的范数;
  2. Orlicz空间LψL_{\psi}Lψ​是一个Banach空间;

证明
先说明Orlicz范数真的是一个范数。
(i) ∥X∥ψ=0\left\| X \right\|_{\psi}=0∥X∥ψ​=0等价于X=0,a.s.X=0,a.s.X=0,a.s.,因为∀ϵ>0\forall \epsilon>0∀ϵ>0,根据Markov不等式
P(∣X∣≥ϵ)=P(ψ(∣X∣/t)≥ψ(ϵ/t))≤1ψ(ϵ/t)E[ψ(∣X∣/t)]P(|X| \ge \epsilon)=P(\psi(|X|/t) \ge \psi(\epsilon/t)) \le \frac{1}{\psi(\epsilon/t)}E[\psi(|X|/t)]P(∣X∣≥ϵ)=P(ψ(∣X∣/t)≥ψ(ϵ/t))≤ψ(ϵ/t)1​E[ψ(∣X∣/t)]

如果∥X∥ψ=0\left\| X \right\|_{\psi}=0∥X∥ψ​=0,根据Orlicz范数的定义
E[ψ(∣X∣/t)]≤1,∀t>0E[\psi(|X|/t)] \le 1,\forall t>0E[ψ(∣X∣/t)]≤1,∀t>0

因此
1ψ(ϵ/t)E[ψ(∣X∣/t)]≤1ψ(ϵ/t)\frac{1}{\psi(\epsilon/t)}E[\psi(|X|/t)] \le \frac{1}{\psi(\epsilon/t)}ψ(ϵ/t)1​E[ψ(∣X∣/t)]≤ψ(ϵ/t)1​

因为ttt的任意性,我们可以选取t=o(ϵ)t=o(\epsilon)t=o(ϵ),使得ψ(ϵ/t)→∞\psi(\epsilon/t) \to \inftyψ(ϵ/t)→∞,从而P(∣X∣≥ϵ)→0P(|X| \ge \epsilon) \to 0P(∣X∣≥ϵ)→0,于是X=0,a.s.X=0,a.s.X=0,a.s.。反过来,如果X=0,a.s.X=0,a.s.X=0,a.s.,显然∥X∥ψ=0\left\| X \right\|_{\psi}=0∥X∥ψ​=0。

(ii) 根据定义∥cX∥ψ=∣c∣∥X∥ψ\left\| cX \right\|_{\psi}=|c|\left\| X \right\|_{\psi}∥cX∥ψ​=∣c∣∥X∥ψ​显然成立;

(iii) 记t=∥X∥ψ,s=∥Y∥ψt=\left\| X \right\|_{\psi},s =\left\| Y \right\|_{\psi}t=∥X∥ψ​,s=∥Y∥ψ​,要说明∥X∥ψ+∥Y∥ψ≥∥X+Y∥ψ\left\| X \right\|_{\psi}+\left\|Y \right\|_{\psi} \ge \left\|X+Y \right\|_{\psi}∥X∥ψ​+∥Y∥ψ​≥∥X+Y∥ψ​,需要说明
ψ(∣X+Y∣s+t)≤1,a.s.\psi(\frac{|X+Y|}{s+t}) \le 1,a.s.ψ(s+t∣X+Y∣​)≤1,a.s.

因为ψ\psiψ是凸函数,根据Jensen不等式,
ψ(∣X+Y∣s+t)≤ψ(∣X∣+∣Y∣s+t)≤ts+tψ(∣X∣t)+ss+tψ(∣Y∣s)\psi(\frac{|X+Y|}{s+t}) \le \psi(\frac{|X|+|Y|}{s+t}) \le \frac{t}{s+t}\psi(\frac{|X|}{t})+ \frac{s}{s+t}\psi(\frac{|Y|}{s})ψ(s+t∣X+Y∣​)≤ψ(s+t∣X∣+∣Y∣​)≤s+tt​ψ(t∣X∣​)+s+ts​ψ(s∣Y∣​)

其中
ψ(∣X∣t)≤1,a.s.,ψ(∣Y∣s)≤1,a.s.\psi(\frac{|X|}{t}) \le 1,a.s., \ \ \psi(\frac{|Y|}{s}) \le 1,a.s.ψ(t∣X∣​)≤1,a.s.,  ψ(s∣Y∣​)≤1,a.s.

于是
ψ(∣X+Y∣s+t)≤1,a.s.\psi(\frac{|X+Y|}{s+t}) \le 1,a.s.ψ(s+t∣X+Y∣​)≤1,a.s.

综上,Orlicz范数符合范数的定义。

评注
1)为了说明Orlicz空间是一个Banach空间,需要说明Orlicz空间中的Cauchy序列收敛,这个操作与说明LpL^pLp空间的完备性类似,读者可以自行尝试,也就是假设{Xn}⊂Lψ\{X_n\} \subset L_{\psi}{Xn​}⊂Lψ​,满足
∥Xn−Xm∥ψ→0,asn,m→∞\left\| X_n-X_m \right\|_{\psi} \to 0, as\ n,m \to \infty∥Xn​−Xm​∥ψ​→0,as n,m→∞

需要说明{Xn}\{X_n\}{Xn​}收敛到LψL_{\psi}Lψ​中的某个随机变量。

2)Orlicz空间与LpL^pLp空间有包含关系:
L∞⊂Lψ⊂LpL^{\infty} \subset L_{\psi} \subset L^pL∞⊂Lψ​⊂Lp

其中L∞L^{\infty}L∞中的随机变量是有界的,LpL^pLp中的随机变量的前ppp阶矩是有界的,LψL_{\psi}Lψ​中的随机变量的尾部概率满足一定的限制。

UA MATH567 高维统计I 概率不等式9 亚高斯性的推广:Orlicz空间与Orlicz范数相关推荐

  1. UA MATH567 高维统计I 概率不等式3 亚高斯性与亚高斯范数

    UA MATH567 高维统计I 概率不等式3 亚高斯性与亚高斯范数 亚高斯性 亚高斯范数 概率不等式1中介绍了Hoeffding不等式与Chernoff不等式,这两个不等式的共性是它们的上界关于tt ...

  2. UA MATH567 高维统计I 概率不等式8 亚指数范数

    UA MATH567 高维统计I 概率不等式8 亚指数范数 类似亚高斯范数,我们也可以定义随机变量的亚指数范数(sub-exponential norm): ∥X∥ψ1=inf⁡{t>0:Ee∣ ...

  3. UA MATH567 高维统计I 概率不等式7 亚指数性与亚指数分布

    UA MATH567 高维统计I 概率不等式7 亚指数分布与亚指数范数 第三讲到第六讲讨论了亚高斯分布,这类分布的尾部概率满足 P(∣X∣≥t)≲e−t2/2P(|X| \ge t) \lesssim ...

  4. UA MATH567 高维统计I 概率不等式4 亚高斯分布

    UA MATH567 高维统计I 概率不等式4 亚高斯分布 上一讲我们介绍了Hoeffding不等式与Chernoff不等式,这两个不等式的共性是它们的上界关于ttt的递减阶数都是e−ct2e^{-c ...

  5. UA MATH567 高维统计I 概率不等式12 McDiarmid不等式

    UA MATH567 高维统计I 概率不等式12 McDiarmid不等式 这一讲我们介绍基于Lipschitz性导出概率不等式的思路,这个思路在下一讲正式进入随机向量之后应用非常广泛.但这一讲我们先 ...

  6. UA MATH567 高维统计I 概率不等式11 Azuma不等式

    UA MATH567 高维统计I 概率不等式11 Azuma不等式 前十一讲介绍的不等式的理论基础都是Markov不等式,根据Markov不等式我们导出了Chebyshev不等式.Hoeffding不 ...

  7. UA MATH567 高维统计I 概率不等式10 Bernstein不等式

    UA MATH567 高维统计I 概率不等式10 Bernstein不等式 我们在介绍亚高斯分布后介绍了适用于亚高斯分布的推广的Hoeffding不等式,对于亚指数分布,我们可以得到类似的不等式.因为 ...

  8. UA MATH567 高维统计I 概率不等式5 推广Hoeffding不等式与Khintchine不等式

    UA MATH567 高维统计I 概率不等式5 推广Hoeffding不等式 我们在第一讲时讨论了Hoeffding不等式,但那个版本时针对有界的随机变量的,我们希望通过亚高斯性推广Hoeffding ...

  9. UA MATH567 高维统计I 概率不等式1 Hoeffding不等式与Chernoff不等式

    UA MATH567 高维统计I 概率不等式1 Hoeffding不等式与Chernoff不等式 Hoeffding不等式 Chernoff不等式 MATH 564系列我们已经介绍了几个基本的概率不等 ...

最新文章

  1. web-view里面的网页能请求未配置的request域名吗
  2. python中文读音ndarray-numpy中的ndarray方法和属性详解
  3. golang中的strings.Join
  4. STM32 基础系列教程 42 - SDMMC+Fatfs
  5. OC开发笔记之第二篇
  6. 面向.NET开发人员的Dapr- actors 构建块
  7. .NET Core开发实战(第25课:路由与终结点:如何规划好你的Web API)--学习笔记(下)...
  8. Flask Jinja2模板
  9. 递归总结 By greenhand
  10. JUnit学习摘要+入门实例
  11. bc547可以用8050代换吗_s8050三极管_s8050三极管可以用什么管代替?
  12. 小波变换(matlab)-常见脚本函数
  13. 零基础学前端难吗?前端好学吗?
  14. 512G MLC颗粒 固态U盘 DIY
  15. 迅雷显示服务器超时,迅雷登录不了出现登录超时怎么办_迅雷登录超时的解决步骤...
  16. 网络打印机提示的“功能地址0x造成了一个保护错误”问题解决方案
  17. odrive搭建差速小车+轮毂电机+RC航模控制器
  18. 对空间中6个点两两连线,用红黄两种颜色对这些边染色,则同色的三角形至少有几个?
  19. C++循环语句之在0-1000之间找出水仙花数。
  20. 程序员需要了解的.NET Framework 编程的好与坏

热门文章

  1. Java导入导出CSV文件
  2. 机器学习知识点(三十一)LDA数学八卦
  3. 基本数据类型转换 || 自动类型转换与强制类型转换
  4. lua require dofile loadfile区别
  5. Jyputer 项目工程设置Github同步,本地代码上传Github实例演示
  6. BAT 批处理命令 - 文件批量复制、克隆功能实例演示
  7. [YTU]_2424 C语言习题 字符串比较
  8. KMeans++算法理论和实现
  9. 区块链实现代码详细分析(Python)
  10. pytorch nn.Conv2d