SLAM导航机器人零基础实战系列:(五)树莓派3开发环境搭建——5.Android手机端与robot端ROS网络通信

摘要

通过前面一系列的铺垫,相信大家对整个miiboo机器人的DIY有了一个清晰整体的认识。接下来就正式进入机器人大脑(嵌入式主板:树莓派3)的开发。本章将从树莓派3的开发环境搭建入手,为后续ros开发、slam导航及语音交互算法做准备。本章内容:

1.安装系统ubuntu_mate_16.04

2.安装ros-kinetic

3.装机后一些实用软件安装和系统设置

4.PC端与robot端ROS网络通信

5.Android手机端与robot端ROS网络通信

6.树莓派USB与tty串口号绑定

7.开机自启动ROS节点


温馨提示:

本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:

点这里购买:《机器人SLAM导航核心技术与实战》购买链接


5.Android手机端与robot端ROS网络通信

刚刚介绍了PC端与robot端ROS网络通信,在有些情况下,使用Android手机端来调试监控机器人会更方便。于是,参考ROS官网给的开发demo,我用ros-java库也做了一个能跟robot端进行ROS网络通信的APP,我给这个APP取名叫Android_for_miiboo_robot.apk。如果大家对这个APP感兴趣,可以持续关注我,我会把这个APP共享给大家。这里就来介绍一下Android手机端与robot端ROS网络通信的配置。

首先,是配置机器人端的ROS网络参数,和前面一样,需要在机器人端~/.bashrc中指定master与host,由于前面配置PC端与robot端ROS网络通信时已经配好了,所以就无需重复配置了。为了便于在局域网下的Android手机通过网络能迅速找到机器人,需要在机器人上开启专门广播自己IP的节点,这样Android手机就能自动搜索并完成Android手机端与robot端ROS网络通信的连接。机器人IP广播节点我已经写好了,只需要通过命令启动:

roslaunch broadcast_ip broadcast_udp.launch

然后,是配置Android手机端的ROS网络参数,其实将Android手机连接到同一个wifi后,打开miiboo机器人的APP,APP会自动扫描到master(也就是机器人)的IP地址,只需要点击CONNECT就可完成连接。连接完成后,Android手机端与robot端ROS网络通信就打通了,接下来APP就可以用ROS网络通信来操控机器人了。如图27。

(图27)配置Android手机端的ROS网络参数

这里顺便介绍一下,miiboo机器人APP的功能,功能清单如下。

功能1:手动遥控miiboo机器人移动

功能2:建图/导航模式切换

功能3:显示地图

功能4:点击地图点指定导航

功能5:视频监控

后记

如果大家对博文的相关类容感兴趣,或有什么技术疑问,欢迎加QQ技术交流群(117698356)

参考文献

[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

购书链接:https://item.jd.com/13041503.html

下载更多资料:www.xiihoo.com

QQ技术讨论群: 117698356

B站视频教程:https://space.bilibili.com/66815220

Github源码:https://github.com/xiihoo/Books_Robot_SLAM_Navigation

Gitee源码(国内访问速度快):https://gitee.com/xiihoo-robot/Books_Robot_SLAM_Navigation

前言

编程基础篇

第1章 ROS入门必备知识

1.1 ROS简介 2

1.1.1 ROS的性能特色 2

1.1.2 ROS的发行版本 3

1.1.3 ROS的学习方法 3

1.2 ROS开发环境的搭建 3

1.2.1 ROS的安装 4

1.2.2 ROS文件的组织方式 4

1.2.3 ROS网络通信配置 5

1.2.4 集成开发工具 5

1.3 ROS系统架构 5

1.3.1 从计算图视角理解ROS架构 6

1.3.2 从文件系统视角理解ROS架构 7

1.3.3 从开源社区视角理解ROS架构 8

1.4 ROS调试工具 8

1.4.1 命令行工具 9

1.4.2 可视化工具 9

1.5 ROS节点通信 10

1.5.1 话题通信方式 12

1.5.2 服务通信方式 15

1.5.3 动作通信方式 19

1.6 ROS的其他重要概念 25

1.7 ROS 2.0展望 28

1.8 本章小结 28

第2章 C++编程范式

2.1 C++工程的组织结构 29

2.1.1 C++工程的一般组织结构 29

2.1.2 C++工程在机器人中的组织结构 29

2.2 C++代码的编译方法 30

2.2.1 使用g++编译代码 31

2.2.2 使用make编译代码 32

2.2.3 使用CMake编译代码 32

2.3 C++编程风格指南 33

2.4 本章小结 34

第3章 OpenCV图像处理

3.1 认识图像数据 35

3.1.1 获取图像数据 35

3.1.2 访问图像数据 36

3.2 图像滤波 37

3.2.1 线性滤波 37

3.2.2 非线性滤波 38

3.2.3 形态学滤波 39

3.3 图像变换 40

3.3.1 射影变换 40

3.3.2 霍夫变换 42

3.3.3 边缘检测 42

3.3.4 直方图均衡 43

3.4 图像特征点提取 44

3.4.1 SIFT特征点 44

3.4.2 SURF特征点 50

3.4.3 ORB特征点 52

3.5 本章小结 54

硬件基础篇

第4章 机器人传感器

4.1 惯性测量单元 56

4.1.1 工作原理 56

4.1.2 原始数据采集 60

4.1.3 参数标定 65

4.1.4 数据滤波 73

4.1.5 姿态融合 75

4.2 激光雷达 91

4.2.1 工作原理 92

4.2.2 性能参数 94

4.2.3 数据处理 96

4.3 相机 100

4.3.1 单目相机 101

4.3.2 双目相机 107

4.3.3 RGB-D相机 109

4.4 带编码器的减速电机 111

4.4.1 电机 111

4.4.2 电机驱动电路 112

4.4.3 电机控制主板 113

4.4.4 轮式里程计 117

4.5 本章小结 118

第5章 机器人主机

5.1 X86与ARM主机对比 119

5.2 ARM主机树莓派3B+ 120

5.2.1 安装Ubuntu MATE 18.04 120

5.2.2 安装ROS melodic 122

5.2.3 装机软件与系统设置 122

5.3 ARM主机RK3399 127

5.4 ARM主机Jetson-tx2 128

5.5 分布式架构主机 129

5.5.1 ROS网络通信 130

5.5.2 机器人程序的远程开发 130

5.6 本章小结 131

第6章 机器人底盘

6.1 底盘运动学模型 132

6.1.1 两轮差速模型 132

6.1.2 四轮差速模型 136

6.1.3 阿克曼模型 140

6.1.4 全向模型 144

6.1.5 其他模型 148

6.2 底盘性能指标 148

6.2.1 载重能力 148

6.2.2 动力性能 148

6.2.3 控制精度 150

6.2.4 里程计精度 150

6.3 典型机器人底盘搭建 151

6.3.1 底盘运动学模型选择 152

6.3.2 传感器选择 152

6.3.3 主机选择 153

6.4 本章小结 155

SLAM篇

第7章 SLAM中的数学基础

7.1 SLAM发展简史 158

7.1.1 数据关联、收敛和一致性 160

7.1.2 SLAM的基本理论 161

7.2 SLAM中的概率理论 163

7.2.1 状态估计问题 164

7.2.2 概率运动模型 166

7.2.3 概率观测模型 171

7.2.4 概率图模型 173

7.3 估计理论 182

7.3.1 估计量的性质 182

7.3.2 估计量的构建 183

7.3.3 各估计量对比 190

7.4 基于贝叶斯网络的状态估计 193

7.4.1 贝叶斯估计 194

7.4.2 参数化实现 196

7.4.3 非参数化实现 202

7.5 基于因子图的状态估计 206

7.5.1 非线性最小二乘估计 206

7.5.2 直接求解方法 206

7.5.3 优化方法 208

7.5.4 各优化方法对比 218

7.5.5 常用优化工具 219

7.6 典型SLAM算法 221

7.7 本章小结 221

第8章 激光SLAM系统

8.1 Gmapping算法 223

8.1.1 原理分析 223

8.1.2 源码解读 228

8.1.3 安装与运行 233

8.2 Cartographer算法 240

8.2.1 原理分析 240

8.2.2 源码解读 247

8.2.3 安装与运行 258

8.3 LOAM算法 266

8.3.1 原理分析 266

8.3.2 源码解读 267

8.3.3 安装与运行 270

8.4 本章小结 270

第9章 视觉SLAM系统

9.1 ORB-SLAM2算法 274

9.1.1 原理分析 274

9.1.2 源码解读 310

9.1.3 安装与运行 319

9.1.4 拓展 327

9.2 LSD-SLAM算法 329

9.2.1 原理分析 329

9.2.2 源码解读 334

9.2.3 安装与运行 337

9.3 SVO算法 338

9.3.1 原理分析 338

9.3.2 源码解读 341

9.4 本章小结 341

第10章 其他SLAM系统

10.1 RTABMAP算法 344

10.1.1 原理分析 344

10.1.2 源码解读 351

10.1.3 安装与运行 357

10.2 VINS算法 362

10.2.1 原理分析 364

10.2.2 源码解读 373

10.2.3 安装与运行 376

10.3 机器学习与SLAM 379

10.3.1 机器学习 379

10.3.2 CNN-SLAM算法 411

10.3.3 DeepVO算法 413

10.4 本章小结 414

自主导航篇

第11章 自主导航中的数学基础

11.1 自主导航 418

11.2 环境感知 420

11.2.1 实时定位 420

11.2.2 环境建模 421

11.2.3 语义理解 422

11.3 路径规划 422

11.3.1 常见的路径规划算法 423

11.3.2 带约束的路径规划算法 430

11.3.3 覆盖的路径规划算法 434

11.4 运动控制 435

11.4.1 基于PID的运动控制 437

11.4.2 基于MPC的运动控制 438

11.4.3 基于强化学习的运动控制 441

11.5 强化学习与自主导航 442

11.5.1 强化学习 443

11.5.2 基于强化学习的自主导航 465

11.6 本章小结 467

第12章 典型自主导航系统

12.1 ros-navigation导航系统 470

12.1.1 原理分析 470

12.1.2 源码解读 475

12.1.3 安装与运行 479

12.1.4 路径规划改进 492

12.1.5 环境探索 496

12.2 riskrrt导航系统 498

12.3 autoware导航系统 499

12.4 导航系统面临的一些挑战 500

12.5 本章小结 500

第13章 机器人SLAM导航综合实战

13.1 运行机器人上的传感器 502

13.1.1 运行底盘的ROS驱动 503

13.1.2 运行激光雷达的ROS驱动 503

13.1.3 运行IMU的ROS驱动 504

13.1.4 运行相机的ROS驱动 504

13.1.5 运行底盘的urdf模型 505

13.1.6 传感器一键启动 506

13.2 运行SLAM建图功能 506

13.2.1 运行激光SLAM建图功能 507

13.2.2 运行视觉SLAM建图功能 508

13.2.3 运行激光与视觉联合建图功能 508

13.3 运行自主导航 509

13.4 基于自主导航的应用 510

13.5 本章小结 511

附录A Linux与SLAM性能优化的探讨

附录B 习题

SLAM导航机器人零基础实战系列:(五)树莓派3开发环境搭建——5.Android手机端与robot端ROS网络通信...相关推荐

  1. SLAM导航机器人零基础实战系列:(五)树莓派3开发环境搭建——2.安装ros-kinetic

    SLAM导航机器人零基础实战系列:(五)树莓派3开发环境搭建--2.安装ros-kinetic 摘要 通过前面一系列的铺垫,相信大家对整个miiboo机器人的DIY有了一个清晰整体的认识.接下来就正式 ...

  2. SLAM导航机器人零基础实战系列:(五)树莓派3开发环境搭建——1.安装系统ubuntu_mate_16.04...

    SLAM导航机器人零基础实战系列:(五)树莓派3开发环境搭建--1.安装系统ubuntu_mate_16.04 摘要 通过前面一系列的铺垫,相信大家对整个miiboo机器人的DIY有了一个清晰整体的认 ...

  3. SLAM导航机器人零基础实战系列:(三)感知与大脑——5.机器人大脑嵌入式主板性能对比...

    SLAM导航机器人零基础实战系列:(三)感知与大脑--5.机器人大脑嵌入式主板性能对比 摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由 ...

  4. SLAM导航机器人零基础实战系列:(六)SLAM建图与自主避障导航——2.google-cartographer机器人SLAM建图...

    SLAM导航机器人零基础实战系列:(六)SLAM建图与自主避障导航--2.google-cartographer机器人SLAM建图 摘要 通过前面的基础学习,本章进入最为激动的机器人自主导航的学习.在 ...

  5. SLAM导航机器人零基础实战系列:(一)Linux基础——2.安装Linux发行版ubuntu系统

    SLAM导航机器人零基础实战系列:(一)Linux基础--2.安装Linux发行版ubuntu系统 摘要 由于机器人SLAM.自动导航.语音交互这一系列算法都在机器人操作系统ROS中有很好的支持,所以 ...

  6. SLAM导航机器人零基础实战系列:(四)差分底盘设计——2.stm32主控软件设计

    SLAM导航机器人零基础实战系列:(四)差分底盘设计--2.stm32主控软件设计 摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买 ...

  7. SLAM导航机器人零基础实战系列:(四)差分底盘设计——5.底盘PID控制参数整定

    SLAM导航机器人零基础实战系列:(四)差分底盘设计--5.底盘PID控制参数整定 摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买 ...

  8. SLAM导航机器人零基础实战系列:(六)SLAM建图与自主避障导航——1.在机器人上使用传感器...

    SLAM导航机器人零基础实战系列:(六)SLAM建图与自主避障导航--1.在机器人上使用传感器 摘要 通过前面的基础学习,本章进入最为激动的机器人自主导航的学习.在前面的学习铺垫后,终于迎来了最大乐趣 ...

  9. SLAM导航机器人零基础实战系列:(六)SLAM建图与自主避障导航——4.多目标点导航及任务调度...

    SLAM导航机器人零基础实战系列:(六)SLAM建图与自主避障导航--4.多目标点导航及任务调度 摘要 通过前面的基础学习,本章进入最为激动的机器人自主导航的学习.在前面的学习铺垫后,终于迎来了最大乐 ...

最新文章

  1. gpt最大分区容量_[电脑知识]GUID(GPT)磁盘全局唯一分区表详解
  2. 6 频率_六级连续6年出现频率最高的200个词组【pdf版本】
  3. JSESSIONID的简单说明
  4. youcans 的 OpenCV 学习课—5.图像的几何变换
  5. 国产性能车天花板?145万买极星1,认真的么?
  6. mysql 从服务器同步数据_MySQL 同一台服务器同步数据
  7. 张亚勤退休百度,技术客回归学术
  8. 网页上的播放器相关参数说明
  9. php curl exec ch,PHP curl_exec函数
  10. innodb redo buffer的认识
  11. 网页版excel数据批量导入数据库
  12. golang web接口压力测试,性能测试(1)
  13. 【半年总结】蓦然回首
  14. 华为力推自研AI芯片,还记得大明湖畔的寒武纪吗?
  15. 一元三次方程求解matlab_浅谈三次函数的性质及其在高考中的应用
  16. 微软认证考试全国各地考点名录
  17. 波数与波长 matlab,波长与波数的关系为.PPT
  18. 揭秘家用路由器0day漏洞挖掘技术读书笔记 D-Link DIR-645 authentication.cgi溢出漏洞分析
  19. 点云处理需要多大的计算机,一种点云数据处理方法、装置、计算机设备和存储介质与流程...
  20. 刷脸支付有效的风险监控和预防措施

热门文章

  1. Intellij IDEA入门到精通(二)
  2. java电脑类_计算机类在Java中的设计于实现码
  3. 抽象语法树在 JavaScript 中的应用
  4. 阿里云企业邮箱发送邮件失败,在本地测试可行,在云服务器上失败
  5. 淘宝api接口大全(参数返回值说明)
  6. 计算机专业英语词组,[计算机专业英语词组.doc
  7. 深度之眼Paper带读笔记1:Deep learning
  8. 对于给定的一个字符串,统计其中数字字符出现的次数
  9. python爬虫获取网络图片
  10. HNOI2016D1T3 树 题解