这里写目录标题

  • 5.1 Smith圆图
    • 归一化电阻
    • 归一化电抗
    • 归一化阻抗rx
    • 等驻波比圆
    • 导纳gb
    • 对比
  • 5.2 分立元件匹配网络
    • L形匹配网络
    • 最佳功率传输
    • 例题8.1 教材274页 PDF290页 ★
    • 例题8.2 教材276页 PDF292页 ★
    • 8.1.2 匹配禁区 教材280页 PDF296页
  • 5.3 LC串并联谐振回路
    • (1)串并联支路阻抗变换
  • L型阻抗匹配网络计算分析
    • 例题
  • 8.1.3 T形匹配网络和π形匹配网络
    • T形匹配网络 教材285页 PDF301页 例8.5
    • π形匹配网络 教材286页 PDF302页 例8.6
  • 5.4 微带线匹配网络
    • 5.4.1 从分立元件到微带线
    • 教材288页 PDF304页 例8.7
  • 8.2.2
    • 实部匹配
      • 实部匹配方法一
      • 实部匹配方法二
    • 虚部匹配
    • 短截线长度
    • 例匹配网络的拓扑结构如图
  • 单节短截线图解法
  • 作业

5.1 Smith圆图

Γ=Γr+jΓi=∣Γ∣ejθL=∣Γ∣∠θL\Gamma = {\Gamma _r} + j{\Gamma _i} = \left| \Gamma \right|{e^{j{\theta _L}}} = \left| \Gamma \right|\angle {\theta _L}Γ=Γr​+jΓi​=∣Γ∣ejθL​=∣Γ∣∠θL​★
0≤∣Γ∣≤10 \le \left| \Gamma \right| \le 10≤∣Γ∣≤1

无耗传输线
Γ(d)=Γ0e−j2βd=Γ0ej2βz\Gamma \left( d \right) = {\Gamma _0}{e^{ - j2\beta d}} = {\Gamma _0}{e^{j2\beta z}}Γ(d)=Γ0​e−j2βd=Γ0​ej2βz

归一化电阻


圆心(r1+r,0)\left( {\frac{r}{{1 + r}},0} \right)(1+rr​,0)
半径(11+r)\left( {\frac{1}{{1 + r}}} \right)(1+r1​)
半径越小,电阻r越大
单位圆内,−1<11+r<1-1<{\frac{1}{{1 + r}}}<1−1<1+r1​<1,电阻0≤r<∞0≤r<∞0≤r<∞

归一化电抗


圆心(1,1x)\left( {1,\frac{1}{x}} \right)(1,x1​)
半径(1x)\left( {\frac{1}{x}} \right)(x1​)
半径越小,电抗x越大

归一化阻抗rx

等驻波比圆

SWR=1+∣Γ∣1−∣Γ∣⇒∣Γ∣=SWR−1SWR+1SWR = \frac{{1 + \left| \Gamma \right|}}{{1 - \left| \Gamma \right|}}{\rm{ }} \Rightarrow \left| \Gamma \right| = \frac{{SWR - 1}}{{SWR + 1}}SWR=1−∣Γ∣1+∣Γ∣​⇒∣Γ∣=SWR+1SWR−1​★
圆心原点,代表匹配点:
终端匹配ZL=Z0⇒Γ0=0{Z_L} = {Z_0} \Rightarrow {\Gamma _0} = 0ZL​=Z0​⇒Γ0​=0
半径∣Γ∣\left| \Gamma \right|∣Γ∣
圆与实轴的交点处的对应归一化阻抗r值=SWR值

导纳gb

y=1z=Z0Z=1/1ZZ1/1Z0Z0=YY0=yr+jyi=1−Γ1+Γ=1+ejπΓ1−ejπΓy = \frac{1}{z} = \frac{{{Z_0}}}{Z} = \frac{{{1 \mathord{\left/ {\vphantom {1 Z}} \right.} Z}}}{{{1 \mathord{\left/ {\vphantom {1 {{Z_0}}}} \right.} {{Z_0}}}}} = \frac{Y}{{{Y_0}}} = {y_r} + j{y_i} = \frac{{1 - \Gamma }}{{1 + \Gamma }} = \frac{{1 + {e^{j\pi }}\Gamma }}{{1 - {e^{j\pi }}\Gamma }}y=z1​=ZZ0​​=1/1Z0​Z0​1/1ZZ​=Y0​Y​=yr​+jyi​=1+Γ1−Γ​=1−ejπΓ1+ejπΓ​★
ejπ=−1{e^{j\pi }} = - 1ejπ=−1
可以看出,这相当于将Γ\GammaΓ旋转180度
z对应的点旋转180度,再读出的z值就是导纳值
坐标系旋转180度读出的值就是对应的导纳值

对比

★★★ 阻抗圆图 导纳圆图
圆心在上半平面1/x>0 电感性 电抗x>0 电纳b<0
圆心在下半平面1/x<0 电容性 电抗x<0 电纳b>0
最左边 短路点 阻抗z=0z=0z=0 导纳y→∞y→∞y→∞
最右边 开路点 阻抗z→∞z→∞z→∞ 导纳y=0y=0y=0


顺时针 向信号源方向
逆时针 向负载方向

5.2 分立元件匹配网络

内阻为ZS的电压源连接阻抗为ZL的负载,要使负载上要获得大的实功功率,需满足ZS=ZL∗{Z_S} = Z_L^ *ZS​=ZL∗​
实际电路中,这种条件往往得不到满足
要得到最大的功率传输需要在电源和负载之间插入一个网络
插入网络不能消耗能量,因此只能是LC网络

常用的匹配网络有L(Γ)\left( \Gamma \right)(Γ)形,T形和π形网络。
设计方法有解析法、Smith圆图法等
解析法计算结果准确,但不够直观
Smith圆图则较为直观,容易
实际上Smith圆图也以解析式为基础,利用计算机辅助设计,也可以方便、精确的做到阻抗匹配。
Smith圆图做阻抗匹配的基本思想是用特定的线段代表加入的匹配元件,当源阻抗点通过特定的线段目标阻抗点连接时,就完成了阻抗匹配
假设有一个负载,阻抗为ZL ,在Smith圆图上表示为一个点。即归一化阻抗点
由于Smith圆图是阻抗图导纳图合为一体的,因此同一个点可以表示为阻抗形式或导纳形式
z=ZLZ0=r+jxy=YLY0=g+jb{z = \frac{{{Z_L}}}{{{Z_0}}}{\rm{ = }}r + jx}\\ {y = \frac{{{Y_L}}}{{{Y_0}}} = g + jb}z=Z0​ZL​​=r+jxy=Y0​YL​​=g+jb
YL=1ZLY0=1Z0{{Y_L} = \frac{1}{{{Z_L}}}}\\ {{Y_0} = \frac{1}{{{Z_0}}}}YL​=ZL​1​Y0​=Z0​1​

★★★ 源阻抗
串联电感 沿着等电阻圆(单位圆内,圆心靠右的) 顺时针移动
串联电容 沿着等电阻圆(单位圆内,圆心靠右的) 逆时针移动
并联电感 沿着等电导圆(单位圆内,圆心靠左的) 逆时针移动
并联电容 沿着等电导圆(单位圆内,圆心靠左的) 顺时针移动

移动距离可以从坐标增量中读出。

L形匹配网络

双元件匹配网络的8种电路结构

最佳功率传输

实现最佳功率传输的常规设计程序一般包括以下几个步骤
1、求出归一化源阻抗目标阻抗负载共轭
在Smith圆图中标记两个阻抗点
2、在Smith圆图中分别过这两个点画出等电阻圆等电导圆
3、找出第1步和第2步所画出圆的交点
交点的个数=可能存在的L形匹配网络的数目
4、先沿着相应的圆将源阻抗点移动到上述交点,然后再沿相应的圆移动到目标阻抗点,根据这两次移动过程就可以求出电感和电容的归一化值
5、根据给定的工作频率确定电感和电容的实际值

1、在上述步骤中,并不是一定要必需从源阻抗点负载的共轭复数点移动
也可以将负载阻抗点变换到源阻抗共轭复数点
2、由于插入网络总是串并联相间,因此过一个点画等电阻(电导)圆,过另一个点就画等电导(电阻)圆
一般说来
电阻较大的点画等电导圆
电阻较小的点画等电阻圆

例题8.1 教材274页 PDF290页 ★

已知发射机在2GHz频率点的输出阻抗是ZT=(150+j75)ΩZ_{T}=(150+\mathrm{j} 75) \OmegaZT​=(150+j75)Ω
设计一个图8.2所示的L形匹配网络,使输入阻抗为ZA=(75+j15)ΩZ_{A}=(75+j 15) \OmegaZA​=(75+j15)Ω的天线能够得到最大的信号功率

信号源与负载之间实现最大功率传输的条件是信号源阻抗负载阻抗共轭相等
在这个问题中,即匹配网络的输出阻抗ZMZ_{M}ZM​必须 = 输入阻抗ZA=(75+j15)ΩZ_{A}=(75+j 15) \OmegaZA​=(75+j15)Ω的复数共轭ZM=ZA∗Z_{M}=Z_{A}^{*}ZM​=ZA∗​★
阻抗ZMZ_{M}ZM​的值 = ZTZ_{T}ZT​与电容C并联后再与电感L串联
ZM=1ZT−1+jBC+jXL=ZA∗=(75−j15)ΩZ_{M}=\frac{1}{Z_{T}^{-1}+j B_{C}}+j X_{L}=Z_{A}^{*}=(75-\mathrm{j} 15) \OmegaZM​=ZT−1​+jBC​1​+jXL​=ZA∗​=(75−j15)Ω★

电容C的电纳BC=ωCB_{C}=\omega CBC​=ωC★
电感L的电抗XL=ωLX_{L}=\omega LXL​=ωL★
发射机在2GHz频率点的输出阻抗ZT=RT+jXTZ_{T}=R_{T}+\mathrm{j} X_{T}ZT​=RT​+jXT​
天线的输入阻抗ZA=RA+jXAZ_{A}=R_{A}+\mathrm{j} X_{A}ZA​=RA​+jXA​
发射机阻抗天线阻抗展开成实部和虚部的形式
RT+jXT1+jBC(RT+jXT)+jXL=RA−jXA\frac{R_{T}+\mathrm{j} X_{T}}{1+\mathrm{j} B_{C}\left(R_{T}+\mathrm{j} X_{T}\right)}+\mathrm{j} X_{L}=R_{A}-\mathrm{j} X_{A}1+jBC​(RT​+jXT​)RT​+jXT​​+jXL​=RA​−jXA​

分离上式的实部和虚部,分别写成一个方程,可得
发射极输出阻抗的实部即电阻
RT=RA(1−BCXT)+(XA+XL)BCRTR_{T}=R_{A}\left(1-B_{C} X_{T}\right)+\left(X_{A}+X_{L}\right) B_{C} R_{T}RT​=RA​(1−BC​XT​)+(XA​+XL​)BC​RT​
发射极输出阻抗的虚部即电抗
XT=RTRABC−(1−BCXT)(XA+XL)X_{T}=R_{T} R_{A} B_{C}-\left(1-B_{C} X_{T}\right)\left(X_{A}+X_{L}\right)XT​=RT​RA​BC​−(1−BC​XT​)(XA​+XL​)

解出电容C的电纳BC=ωCB_{C}=\omega CBC​=ωC
BC=XT±RTRA(RT2+XT2)−RT2RT2+XT2B_{C}=\frac{X_{T} \pm \sqrt{\frac{R_{T}}{R_{A}}\left(R_{T}^{2}+X_{T}^{2}\right)-R_{T}^{2}}}{R_{T}^{2}+X_{T}^{2}}BC​=RT2​+XT2​XT​±RA​RT​​(RT2​+XT2​)−RT2​​​★
由于RT>RAR_{T}>R_{A}RT​>RA​,所以根号内的值为正值而且>XT2>X_{T}^{2}>XT2​
为了确保电容C的电纳BC>0B_{C}>0BC​>0,必须选取式(8.4)中的“正”号
BC=XT+RTRA(RT2+XT2)−RT2RT2+XT2B_{C}=\frac{X_{T} + \sqrt{\frac{R_{T}}{R_{A}}\left(R_{T}^{2}+X_{T}^{2}\right)-R_{T}^{2}}}{R_{T}^{2}+X_{T}^{2}}BC​=RT2​+XT2​XT​+RA​RT​​(RT2​+XT2​)−RT2​​​
将式(8.4)代入式(8.3a)可得电感L的电抗XL=ωLX_{L}=\omega LXL​=ωL
XL=1BC−RA(1−BCXT)BCRT−XAX_{L}=\frac{1}{B_{C}}-\frac{R_{A}\left(1-B_{C} X_{T}\right)}{B_{C} R_{T}}-X_{A}XL​=BC​1​−BC​RT​RA​(1−BC​XT​)​−XA​★

代入已知数据,可求得
电容C的电纳BC=9.2mS⇒C=BC/ω=0.73pFB_{C}=9.2 \mathrm{mS} \Rightarrow C=B_{C} / \omega=0.73 \mathrm{pF}BC​=9.2mS⇒C=BC​/ω=0.73pF
电感L的电抗XL=76.9Ω⇒L=XL/ω=6.1nHX_{L}=76.9 \Omega \Rightarrow L=X_{L} / \omega=6.1 \mathrm{nH}XL​=76.9Ω⇒L=XL​/ω=6.1nH

例题8.2 教材276页 PDF292页 ★


已知晶体管在1.5GHz频率点输出阻抗是ZT=(100+j50)Ω{Z_{\rm{T}}} = (100 + {\rm{j}}50)\OmegaZT​=(100+j50)Ω
请设计一个如图所示的L形匹配网络,使输入阻抗为ZA=(50+j10)Ω{Z_{\rm{A}}} = (50 + {\rm{j}}10)\OmegaZA​=(50+j10)Ω的天线能够得到最大功率

解:首先计算归一化阻抗,假设特征阻抗=50欧姆
特征阻抗可以任意设定,计算方便就行
Z0=50Ω{Z_0} = 50\OmegaZ0​=50Ω,Y0=0.02Ω−1{Y_0} = 0.02{\Omega ^{ - 1}}Y0​=0.02Ω−1
归一化输出阻抗zT=ZT/Z0=(100+j50)/50=2+j{z_{\rm{T}}} = {Z_{\rm{T}}}/{Z_0} =(100 + {\rm{j}}50)/50 = 2 + {\rm{j}}zT​=ZT​/Z0​=(100+j50)/50=2+j
归一化输出导纳yT=1/zT=0.4−j0.2{y_T} = 1/{z_{\rm{T}}}=0.4 - j0.2yT​=1/zT​=0.4−j0.2
归一化输入阻抗的共轭zM=zA∗=ZA∗/Z0=(50−j10)/50=1−j0.2{z_{\rm{M}}} = z_{\rm{A}}^ * ={{Z_A^ * }}/{{{Z_0}}} = (50 - {\rm{j}}10)/50 = 1 - {\rm{j}}0.2zM​=zA∗​=ZA∗​/Z0​=(50−j10)/50=1−j0.2
归一化输入导纳的共轭yM=1/zM=0.92+j0.19{y_M} = 1/{z_{\rm{M}}} = 0.92 + j0.19yM​=1/zM​=0.92+j0.19
归一化交点阻抗zTC=1−j1.22{z_{{\rm{TC}}}} = 1 - {\rm{j}}1.22zTC​=1−j1.22
和归一化输入阻抗的共轭zM{z_{\rm{M}}}zM​等电阻
归一化交点导纳yTC=0.4+j0.49{y_{{\rm{TC}}}} = 0.4 + {\rm{j}}0.49yTC​=0.4+j0.49
和归一化输出阻抗zT{z_{\rm{T}}}zT​等电导

由图可知,归一化输出阻抗zT=2+j{z_T} = 2 + jzT​=2+j→
归一化交点阻抗zTC=1−j1.22{z_{{\rm{TC}}}} = 1 - {\rm{j}}1.22zTC​=1−j1.22→
归一化输入阻抗的共轭zM=1−j0.2{z_M} = 1 - j0.2zM​=1−j0.2
先沿着等电导圆向顺时针移动,所以先并联电容
再沿着等电阻圆向顺时针移动,所以再串联电感
归一化电容→归一化交点导纳 - 归一化输出导纳 末-初
归一化电容jbC=yTC−yT=j0.69=jωC/Y0{\rm{j}}{b_{\rm{C}}} = {y_{{\rm{TC}}}} - {y_{\rm{T}}} = {\rm{j}}0.69= {{j\omega C}}/{{{Y_0}}}jbC​=yTC​−yT​=j0.69=jωC/Y0​★
归一化电感→归一化输入阻抗的共轭 - 归一化交点阻抗 末-初
归一化电感jxL=zA−zTC=j1.02=jωL/Z0{\rm{j}}{x_{\rm{L}}} = {z_{\rm{A}}} - {z_{{\rm{TC}}}} = {\rm{j}}1.02= {{j\omega L}}/{{{Z_0}}}jxL​=zA​−zTC​=j1.02=jωL/Z0​★
实际电容C=Y0bCω=0.02×0.692π×1.5×109=1.5×10−12=1.5pFC = \frac{{{Y_0}{b_{\rm{C}}}}}{\omega } = \frac{{0.02 \times 0.69}}{{2\pi \times 1.5 \times {{10}^9}}} = 1.5 \times {10^{ - 12}} = 1.5pFC=ωY0​bC​​=2π×1.5×1090.02×0.69​=1.5×10−12=1.5pF
实际电感L=Z0xLω=50×1.022π×1.5×109=5.4×10−9=5.4nHL = \frac{{{Z_0}{x_{\rm{L}}}}}{\omega } = \frac{{50 \times 1.02}}{{2\pi \times 1.5 \times {{10}^9}}} = 5.4 \times {10^{ - 9}} = 5.4nHL=ωZ0​xL​​=2π×1.5×10950×1.02​=5.4×10−9=5.4nH

从Smith图上可以看到,两圆之间还有一个交点
通过这个交点也可以进行阻抗匹配
具体选用哪种网络,可根据其它条件而定
如高低通特性,元件值的合理性等等

8.1.2 匹配禁区 教材280页 PDF296页

Smith圆图的匹配禁区:网络拓扑无法在任何负载阻抗源阻抗之间实现预期的匹配。
由于ZS=50Z_S=50ZS​=50,匹配从圆图的中心点开始,到达ZL∗Z_L^*ZL∗​
可以看出,如果ZLZ_LZL​在阴影区中,那么ZL∗Z_L^*ZL∗​和ZLZ_LZL​关于Γ\GammaΓ平面的实轴对称,从从圆图的中心点开始,无法到达ZL∗Z_L^*ZL∗​,该匹配网络不能匹配该负载★★

★★★ 源阻抗
串联电感 沿着等电阻圆(单位圆内,圆心靠右的) 顺时针移动
串联电容 沿着等电阻圆(单位圆内,圆心靠右的) 逆时针移动
并联电感 沿着等电导圆(单位圆内,圆心靠左的) 逆时针移动
并联电容 沿着等电导圆(单位圆内,圆心靠左的) 顺时针移动

5.3 LC串并联谐振回路

节点品质因数

有载品质因数 Q

(1)串并联支路阻抗变换


1RP+1jXP=1rS+jXS=rS−jXSrS2+XS2\frac{1}{{{R_P}}} + \frac{1}{{j{X_P}}} = \frac{1}{{{r_S} + j{X_S}}} = \frac{{{r_S} - j{X_S}}}{{r_S^2 + X_S^2}}RP​1​+jXP​1​=rS​+jXS​1​=rS2​+XS2​rS​−jXS​​
实部相等:
RP=rs2+xs2rs=rs(1+(xsrs)2)=rs(1+Q2){R_P} = \frac{{r_s^2 + x_s^2}}{{{r_s}}} = {r_s}(1 + {(\frac{{{x_s}}}{{{r_s}}})^2}) = {r_s}(1 + {Q^2})RP​=rs​rs2​+xs2​​=rs​(1+(rs​xs​​)2)=rs​(1+Q2)
串联支路
Q=xsrsQ = \frac{{{x_s}}}{{{r_s}}}Q=rs​xs​​
虚部相等:
XP=rs2+xs2xs=xs(1+(rsxs)2)=xs(1+1Q2){X_P} = \frac{{r_s^2 + x_s^2}}{{{x_s}}} = {x_s}(1 + {(\frac{{{r_s}}}{{{x_s}}})^2}) = {x_s}(1 + \frac{1}{{{Q^2}}})XP​=xs​rs2​+xs2​​=xs​(1+(xs​rs​​)2)=xs​(1+Q21​)
并联支路
Q=RPXPQ = \frac{{{R_P}}}{{{X_P}}}Q=XP​RP​​
两者相等
Q=xsrs=RPXPQ = \frac{{{x_s}}}{{{r_s}}} = \frac{{{R_P}}}{{{X_P}}}Q=rs​xs​​=XP​RP​​

L型阻抗匹配网络计算分析

特征:① 两电抗元件组成:结构形式同 L
② 窄带网络:两电抗元件不同性质,有选频滤波性能
讨论问题:1. 已知工作频率ω0{\omega _0}ω0​,欲将RL{R_L}RL​变换为RS{R_S}RS​
求:电路结构和XS{X_S}XS​、XP{X_P}XP​
2. L 网络的带宽

当RS>RL{R_S}>{R_L}RS​>RL​时,Q=RS/RL−1Q = \sqrt {{R_S}/{R_L} - 1}Q=RS​/RL​−1​★
L网络串联支路电抗XS=QRL{X_S} = Q{R_L}XS​=QRL​★
L网络并联支路电抗XP=RS/Q{X_P} = {R_S}/{Q}XP​=RS​/Q★
串联支路电抗XS{X_S}XS​ = 附近的RS{R_S}RS​或RL{R_L}RL​×\times×Q ★
并联支路电抗XP{X_P}XP​ = 附近的RS{R_S}RS​或RL{R_L}RL​ / Q ★
已知工作频率ω0{\omega _0}ω0​
可得电感L、电容C

Q=R(大值)/R(小值)−1Q = \sqrt {{R_{(大值)}}/{R_{(小值)}} - 1}Q=R(大值)​/R(小值)​−1​★
L 网络缺点: 当两个要阻抗变换的源和负载电阻值确定后,L网络的 Q 值也确定了,是不能选择的,因此该窄带网络滤波性能不能选择

例题

已知信号源内阻RS{R_S}RS​=12 ,并串有寄生电感L = 1.2
负载电阻RL{R_L}RL​=58 并带有并联的寄生电容 = 1.8PF,工作频率为f
设计 L 匹配网络,使信号源与负载达匹配

先将信号源端寄生电感负载端寄生电容归并到 L 网络中
当RL>RS{R_L}>{R_S}RL​>RS​时,Q=RL/RS−1Q = \sqrt {{R_L}/{R_S} - 1}Q=RL​/RS​−1​★
L网络串联支路电抗XS=QRS=1.96×12=23.5Ω{X_S} = Q{R_S} = 1.96 \times 12 = 23.5\OmegaXS​=QRS​=1.96×12=23.5Ω★
LS′=LS+L1{L'_S} = {L_S} + {L_1}LS′​=LS​+L1​★
L网络并联支路电抗XP=RL/Q=581.96=29.6Ω{X_P} = {R_L}/{Q} = \frac{{58}}{{1.96}} = 29.6\OmegaXP​=RL​/Q=1.9658​=29.6Ω★
CP=C1+CL{C_P} = {C_1} + {C_L}CP​=C1​+CL​★

8.1.3 T形匹配网络和π形匹配网络

L形匹配网络元件较少,很难同时满足匹配和Q值得要求,需要更多的器件,以提供更多的选择方案
一般匹配网络的器件扩展原则是串并交替
因此从L形进行一元件扩展得到T形或Π形匹配网络。

T形匹配网络 教材285页 PDF301页 例8.5

设计一个T形匹配网络,要求该网络将ZL=(60−j30)Ω{Z_{\rm{L}}} = (60 - {\rm{j}}30)\OmegaZL​=(60−j30)Ω的负载 阻抗变换成 的输入阻抗,且最大节点品质因数等于3
假设工作频率 ,计算匹配网络的元件值。

π形匹配网络 教材286页 PDF302页 例8.6

5.4 微带线匹配网络

工作频率的提高导致工作波长的减小,分立元件的寄生参数效应变得明显,分布参数元件就代替了分立元件得到广泛应用

5.4.1 从分立元件到微带线

在中间过渡频段(例如几吉赫兹到几十吉赫兹),可以采用分立元件分布参数元件混合使用的方法。
从拓扑结构上讲,这种匹配方案用微带传输线代替电感以解决高频实现的问题
从图形概念上讲,是用驻波比圆代替等电阻圆作图

教材288页 PDF304页 例8.7

首先归一化阻抗,在Smith圆图上标出两阻抗点
分别通过ZL和Zin画两个驻波比圆
选择与两圆都相交的等电导线作为过渡,确定A、B两点
ZL与A两点的夹角计算传输线长度l1
注意:内圈和外圈刻度最左边是起点,递增的方向相反,一圈=0.5
传输线的电长度l = 两点之间顺时针转过的圆弧对应的刻度×λ\times \lambda×λ
A、B两点导纳增量计算电容
B与Zin之间的夹角计算传输线长度l2

8.2.2

传输线(微带线)加上电容的匹配方案几乎可以匹配任何网络
但电容器件必须是标准容值的电容,可变性不好
根据短路或开路传输线的输入阻抗有电感或电容的特性:
Zin=Z0ZL+jZ0tgβdZ0+jZLtgβd{ZL=0;Zin=jZ0tgβdZL→∞;Zin=−jZ0ctgβd{Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}}{\rm{ }}\left\{ \begin{array}{l} {Z_L} = 0;{\rm{ }}{Z_{in}} = j{Z_0}tg\beta d\\ {Z_L} \to \infty ;{\rm{ }}{Z_{in}} = {\rm{ - }}j{Z_0}ctg\beta d \end{array} \right.Zin​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​{ZL​=0;Zin​=jZ0​tgβdZL​→∞;Zin​=−jZ0​ctgβd​
如果用它们代替电感或电容,便构成短截线匹配网络
电感电容值由传输线传输常数线长度所确定,从而解决调谐问题

短截线匹配的思想:
以网络输入端为参考,匹配可以分两个部分来考虑。
1、实部匹配,传输线完成
2、虚部匹配,串并联短截线完成
3、计算方法:
并联短截线,用导纳计算
串联短截线,用阻抗计算

工作原理

实部匹配

t=tgβdt = tg\beta dt=tgβd
ZL=RL+jXL{Z_L} = {R_L} + j{X_L}ZL​=RL​+jXL​
YL=GL+jBL{Y_L} = {G_L} + j{B_L}YL​=GL​+jBL​
Zin=Z0ZL+jZ0tgβdZ0+jZLtgβd{Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}}Zin​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​
Yin=Y0YL+jY0tgβdY0+jYLtgβd{Y_{in}} = {Y_0}\frac{{{Y_L} + j{Y_0}tg\beta d}}{{{Y_0} + j{Y_L}tg\beta d}}Yin​=Y0​Y0​+jYL​tgβdYL​+jY0​tgβd​

以并联短截线为例

Zin=Z0ZL+jZ0tgβdZ0+jZLtgβd=Z0RL+j(Z0t+XL)(Z0−XLt)+jRLt{Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = {Z_0}\frac{{{R_L} + j\left( {{Z_0}t + {X_L}} \right)}}{{\left( {{Z_0} - {X_L}t} \right) + j{R_L}t}}Zin​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​=Z0​(Z0​−XL​t)+jRL​tRL​+j(Z0​t+XL​)​
Yin=1Z0×(Z0−XLt)+jRLtRL+j(Z0t+XL){Y_{in}} = \frac{1}{{{Z_0}}} \times \frac{{\left( {{Z_0} - {X_L}t} \right) + j{R_L}t}}{{{R_L} + j\left( {{Z_0}t + {X_L}} \right)}}Yin​=Z0​1​×RL​+j(Z0​t+XL​)(Z0​−XL​t)+jRL​t​
Gin=Re(Yin)=RL(1+t2)RL2+(Z0t+XL)2{G_{in}}{\rm{ = }}{\mathop{\rm Re}\nolimits} \left( {{Y_{in}}} \right) = \frac{{{R_L}\left( {1 + {t^2}} \right)}}{{R_L^2 + {{\left( {{Z_0}t + {X_L}} \right)}^2}}}Gin​=Re(Yin​)=RL2​+(Z0​t+XL​)2RL​(1+t2)​
Bin=Im(Yin)=RL2t+(Z0t+XL)(XLt−Z0)Z0[RL2+(Z0t+XL)2]{B_{in}}{\rm{ = }}{\mathop{\rm Im}\nolimits} \left( {{Y_{in}}} \right) = \frac{{R_L^2t + \left( {{Z_0}t + {X_L}} \right)\left( {{X_L}t - {Z_0}} \right)}}{{{Z_0}\left[ {R_L^2 + {{\left( {{Z_0}t + {X_L}} \right)}^2}} \right]}}Bin​=Im(Yin​)=Z0​[RL2​+(Z0​t+XL​)2]RL2​t+(Z0​t+XL​)(XL​t−Z0​)​

实部匹配方法一

取适当的 t 值,使其达到
Re(YS)=Re(Yin)=RL(1+t2)RL2+(Z0t+XL)2{\mathop{\rm Re}\nolimits} ({Y_S}) = {\mathop{\rm Re}\nolimits} \left( {{Y_{in}}} \right) = \frac{{{R_L}\left( {1 + {t^2}} \right)}}{{R_L^2 + {{\left( {{Z_0}t + {X_L}} \right)}^2}}}Re(YS​)=Re(Yin​)=RL2​+(Z0​t+XL​)2RL​(1+t2)​
YS=RL(1+t2)RL2+(Z0t+XL)2{Y_S} = \frac{{{R_L}\left( {1 + {t^2}} \right)}}{{R_L^2 + {{\left( {{Z_0}t + {X_L}} \right)}^2}}}YS​=RL2​+(Z0​t+XL​)2RL​(1+t2)​
得到t
dλ=12πtg−1t,t>0\frac{d}{\lambda } = \frac{1}{{2\pi }}t{g^{ - 1}}t,{\rm{ t > 0}}λd​=2π1​tg−1t,t>0
dλ=12π(π+tg−1t),t<0\frac{d}{\lambda } = \frac{1}{{2\pi }}\left( {\pi + t{g^{ - 1}}t} \right),{\rm{ t < 0}}λd​=2π1​(π+tg−1t),t<0

实部匹配方法二

令t→∞t \to \inftyt→∞于是d=λ/λ44d = {\lambda \mathord{\left/ {\vphantom {\lambda 4}} \right.} 4}d=λ/λ44
令传输线阻抗为Z0LZ_{0L}Z0L​
Re(Yin)=lim⁡t→∞RL(1+t2)RL2+(Z0Lt+XL)2=RLZ0L2{\mathop{\rm Re}\nolimits} \left( {{Y_{in}}} \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{{R_L}\left( {1 + {t^2}} \right)}}{{R_L^2 + {{\left( {{Z_{0L}}t + {X_L}} \right)}^2}}} = \frac{{{R_L}}}{{Z_{0L}^2}}Re(Yin​)=t→∞lim​RL2​+(Z0L​t+XL​)2RL​(1+t2)​=Z0L2​RL​​
Im(Yin)=lim⁡t→∞RL2t+(Z0Lt+XL)(XLt−Z0L)Z0L[RL2+(Z0Lt+XL)2]=XLZ0L2{\mathop{\rm Im}\nolimits} \left( {{Y_{in}}} \right) = \mathop {\lim }\limits_{t \to \infty } \frac{{R_L^2t + \left( {{Z_{0L}}t + {X_L}} \right)\left( {{X_L}t - {Z_{0L}}} \right)}}{{{Z_{0L}}\left[ {R_L^2 + {{\left( {{Z_{0L}}t + {X_L}} \right)}^2}} \right]}} = \frac{{{X_L}}}{{Z_{0L}^2}}Im(Yin​)=t→∞lim​Z0L​[RL2​+(Z0L​t+XL​)2]RL2​t+(Z0L​t+XL​)(XL​t−Z0L​)​=Z0L2​XL​​
改变参数Z0,使YS=RLZ0L2{Y_S} = \frac{{{R_L}}}{{Z_{0L}^2}}YS​=Z0L2​RL​​

虚部匹配

确定实部匹配后,虚部为一固定值,并联或串联短截线后使
−BS=Im(Yin)+B- {B_S} = {\mathop{\rm Im}\nolimits} \left( {{Y_{in}}} \right) + B−BS​=Im(Yin​)+B
B为并联短截线电纳
B=−[Im(Yin)+BS]B = - \left[ {{\mathop{\rm Im}\nolimits} \left( {{Y_{in}}} \right) + {B_S}} \right]B=−[Im(Yin​)+BS​]

短截线长度

开路线
lλ={12πtg−1BY0,B>012π[π−tg−1BY0],B<0\frac{l}{\lambda } = \left\{ \begin{array}{l} \frac{1}{{2\pi }}t{g^{ - 1}}\frac{B}{{{Y_0}}},B > 0\\ \frac{1}{{2\pi }}\left[ {\pi - t{g^{ - 1}}\frac{B}{{{Y_0}}}} \right],B < 0 \end{array} \right.λl​={2π1​tg−1Y0​B​,B>02π1​[π−tg−1Y0​B​],B<0​
短路线
lλ={12πctg−1BY0,B<012π[π−ctg−1BY0],B>0\frac{l}{\lambda } = \left\{ \begin{array}{l} \frac{1}{{2\pi }}ct{g^{ - 1}}\frac{B}{{{Y_0}}},B < 0\\ \frac{1}{{2\pi }}\left[ {\pi - ct{g^{ - 1}}\frac{B}{{{Y_0}}}} \right],B > 0 \end{array} \right.λl​={2π1​ctg−1Y0​B​,B<02π1​[π−ctg−1Y0​B​],B>0​

串联短截线

注意:
如果用解析法求解,传输线短截线特征阻抗可以任意选择
可以相同,也可以不同。
但是,如果用Smith圆图求解,所有归一化变量所用的特征阻抗必须相同。

例匹配网络的拓扑结构如图


假设负载ZL=100-j20,源端输出阻抗为ZS=32-j24。确定匹配电路参数。
向左看阻抗为ZS=32-j24,要达到阻抗匹配,需连接阻抗为Zin=32+j24,即导纳为Yin=0.02-j0.015
右端传输线长为
短截线导纳为
用短路连接线,特征阻抗Z0k可选

单节短截线图解法

假设源端的阻抗为Z0,则只需将负载匹配到Z0即可
并联短截线采用导纳图求解
串联短截线采用阻抗图求解

例:给定负载阻抗为ZL=100+j132,匹配到特征阻抗=50欧姆
1)首先归一化阻抗 ,在Smith圆图上标出该点
ZL/Z0=2+j2.64{{{Z_L}}}/{{{Z_0}}} = 2 + j2.64ZL​/Z0​=2+j2.64
ΓZL=0.707∠25.9∘{\Gamma _{{Z_L}}} = 0.707\angle {25.9^ \circ }ΓZL​​=0.707∠25.9∘
2)过该点在Smith圆图画出对应的SWR圆
3)找到SWR圆1电导圆1电阻圆)的交点(两个)
Γy1=0.707∠−135∘{\Gamma _{y1}} = 0.707\angle - {135^ \circ }Γy1​=0.707∠−135∘
Γy2=0.707∠+135∘{\Gamma _{y2}} = 0.707\angle + {135^ \circ }Γy2​=0.707∠+135∘
4)求出电纳(电抗)值
5)由负载方向求出传输线长
d1=0.223λ{d_1} = 0.223\lambdad1​=0.223λ、d2=0.348λ{d_2} = 0.348\lambdad2​=0.348λ
6)确定短截线形式(开、短路)
7)从负载方向读出短截线长
采用短路短截线
l1=0.074λ{l_1} = 0.074\lambdal1​=0.074λ、l2=0.426λ{l_2} = 0.426\lambdal2​=0.426λ
采用开路短截线
l1=0.324λ{l_1} = 0.324\lambdal1​=0.324λ、l2=0.176λ{l_2} = 0.176\lambdal2​=0.176λ

作业

《射频电路设计——理论与应用》
第三章中习题:3.1,3.8,3.11,3.20, 3.27,3.30
第八章中习题 :8.3,8.5,8.10,8.15,8.17

第五章 阻抗匹配与调谐 Smith圆图相关推荐

  1. matlab可以实现从阻抗圆到导纳圆,阻抗匹配与史密斯(Smith)圆图,这是我见过最详尽的版本...

    来源:美信半导体 摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南.文中给出了反射系数.阻抗和导纳的作图范例,并给出了 MAX2472工作在900MHz时匹配网络的作图范例. 事实证明,史密斯圆图仍 ...

  2. 【射频】Smith圆图阻抗匹配变化规律

    Smith圆图阻抗匹配变化规律 一.Smith圆图结构 二.阻抗匹配示例 Smith圆图 阻抗匹配 滤波 串C并L 高通 并L串C 高通 串L并C 低通 并C串L 低通 三.规律总结 1.上感下容 在 ...

  3. serenade打开smith圆图进行阻抗匹配辅助

    一.新建工程 1.file->schematic File 2.确定 3.Create 二.搭建电路 1.设置频率范围 2.放置电阻 3.输入50ohm 4.放置地 5.放置Port 6.连线 ...

  4. 用ADS软件的Smith圆图求解传输线阻抗匹配问题

    举个栗子: 这里给出手算过程: 以下为图解法. 首先搭建电路原理图,配置好参数,如下图所示: 接着, 点击Tools,找到smith chart,弹出smith chart utility窗口. 开始 ...

  5. 第五章 USB2.0布线及注意事项

    第五章 USB2.0布线及注意事项 5.1 USB2.0 PCB布线关键 USB是一种快速.双向.同步传输.廉价.方便使用的可热拔插的串行接口.由于数据传输快,接口方便,支持热插拔等优点使USB设备得 ...

  6. 网络工程师知识点整理—第五章:无线通信网

    目录 1.移动通信网 1.1第一代蜂窝通信系统 1.2第二代移动通信系统 1.3第三代移动通信系统 1.4第四代移动通信系统 1.5第五代移动通信系统 2.无线局域网 2.1 WLAN基本概念 2.2 ...

  7. 读《微波工程(第三版)》笔记 (11:Smith圆图)(腰斩,就写了一点点)

    Smith圆图是一种辅助图形,在求解传输线问题时非常有用. 除了Smith圆图,其实还有其他的阻抗和反射系数圆图,但Smith圆图的应用最为广泛. Smith圆图将 无限(0−∞0-\infty0−∞ ...

  8. 天线的匹配和测量——如何用Smith圆图和网络分析仪优化天线(转)

    很好的文章,感谢作者,特地收藏.原作者:诗韵乐乐的阿康 1. 概述 随着频率的增加,PCB上的走线,电路的参数会越来越重要.因为器件和电路的尺寸已经可以和波长相比较.可以用公式:波长(单位:厘米)=3 ...

  9. 王道考研 计算机网络笔记 第五章:传输层

    本文基于2019 王道考研 计算机网络: 2019 王道考研 计算机网络 个人笔记总结 第一章:王道考研 计算机网络笔记 第一章:概述&计算机网络体系结构 第二章:王道考研 计算机网络笔记 第 ...

最新文章

  1. Redis 日志篇:无畏宕机实现高可用的杀手锏
  2. 三巨头对中国人工智能技术的支撑性作用
  3. 提高.net程序性能和稳定性-CLR Profile
  4. 开发函数计算的正确姿势———为 PHP 运行时添加自定义扩展
  5. Mac是大脑,iPad是四肢 如何实现的呢?右键而已
  6. VTK:图片之ImageContinuousDilate3D
  7. 火狐浏览器Firefox如何使用插件,火狐有哪些好用的插件
  8. 关于2017年无人驾驶智能车辆比赛,参赛报名日期调整的通知
  9. WebSocket | 为什么你前后端推送不会用?因为你少了WebSocket的帮忙
  10. 找不到ADO.NET Entity Data Model模板或 sql server database project模板
  11. tftp服务器的配置文件,tftp 服务器 系统配置文件
  12. 微生物的质谱鉴定原理
  13. 华为HCIA-datacom 学习笔记18——SDN与NFV概述
  14. 三万元存一年,利息是多少?银行工作人员:这么存最合算!
  15. HTML将某几个文字添加下划线 并标红
  16. 介绍了用Meta标签代码让360双核浏览器默认极速模式(google)打开网站不是兼容模式
  17. ACM-SIAM离散算法研讨会SODA 2020今日召开
  18. [Python] GDAL/OGR操作矢量数据(shp、GeoJSON)
  19. Mysql创建多表视图view
  20. 2022年登高架设考试模拟100题及在线模拟考试

热门文章

  1. 视频编码技术 -1.2色彩原理
  2. 这三种屏幕OLED、AMOLED、LCD的优缺点有哪些呢?
  3. mysql columns表_MySQL--INFORMATION_SCHEMA COLUMNS表
  4. 中国国际货代行业市场运营规划及发展潜力研究报告2022年版
  5. vue-router路由重复点击时报错的解决方案
  6. Github实用Android开源项目推荐(三)
  7. dropzonejs vue 使用_可能是史上最全面的学习资源 — VUE 开源库篇(一)
  8. 上海户籍新政不是被迫作秀 符合条件人员会逐年增加
  9. css3 三角形_用尺规作直线同时平分三角形面积和周长
  10. 删除桌面计算机,电脑设置小技巧(多余壁纸、屏保删除方法)