Swift 类似HandyJSON解析Struct

  • HandyJSON
  • 从源码解析Struct
    • 获取TargetStructMetadata
    • 获取TargetStructDescriptor
    • 实现TargetRelativeDirectPointer
    • FieldDescriptor和FieldRecord
    • fieldOffsetVectorOffset计算偏移量
  • 代码的验证

HandyJSON

HandyJSON是阿里开发的一个在swift上把JSON数据转化为对应model的框架。与其他流行的Swift JSON库相比,HandyJSON的特点是,它支持纯swift类,使用也简单。它反序列化时(把JSON转换为Model)不要求ModelNSObject继承(因为它不是基于KVC机制),也不要求你为Model定义一个Mapping函数。只要你定义好Model类,声明它服从HandyJSON协议,HandyJSON就能自行以各个属性的属性名为Key,从JSON串中解析值。不过因为HandyJSON是基于swiftmetadata来做的,如果swiftmetadata的结构改了,HandyJSON可能就直接不能用了。当然阿里一直在维护这个框架,swift的源码有变化,相信框架也是相对于有改变的。
HandyJSON的github

从源码解析Struct

获取TargetStructMetadata

由于HandyJSON是基于swiftmetadata来做的,说道解析解析struct,那就不得不去了解metadata。接下来,我们会从源码的角度去寻找metadata
首先,我们从源码Metadata.h中搜索StructMetadata相关信息,会发现其真正类型是TargetStructMetadata

using StructMetadata = TargetStructMetadata<InProcess>;

接着,我们查看TargetStructMetadata的结构会发现,TargetStructMetadata继承自TargetValueMetadataTargetValueMetadata继承自TargetMetadata

struct TargetStructMetadata : public TargetValueMetadata<Runtime> {struct TargetValueMetadata : public TargetMetadata<Runtime> {

那么,我们就可以通过这个继承链去还原TargetStructMetadata的结构。
从代码中我们可以看出,TargetStructMetadata的第一个属性是Kind,除了这个属性还有一个description,用于记录描述文件。

struct TargetMetadata {......private:/// The kind. Only valid for non-class metadata; getKind() must be used to get/// the kind value.StoredPointer Kind;......
}struct TargetValueMetadata : public TargetMetadata<Runtime> {using StoredPointer = typename Runtime::StoredPointer;TargetValueMetadata(MetadataKind Kind,const TargetTypeContextDescriptor<Runtime> *description): TargetMetadata<Runtime>(Kind), Description(description) {}//用于记录元数据的描述/// An out-of-line description of the type.TargetSignedPointer<Runtime, const TargetValueTypeDescriptor<Runtime> * __ptrauth_swift_type_descriptor> Description;......
}

这样我们就可以得到TargetStructMetadata的结构为

struct TargetStructMetadata {// StoredPointer Kind; 64位系统下  using StoredPointer = uint64_t; 即为Intvar kind: Int  //暂且先定义为UnsafeMutablePointer,后面会分析typeDescriptor的结构 T就是泛型var typeDescriptor: UnsafeMutablePointer<T>
}

获取TargetStructDescriptor

接下来我们解析Description的相关信息。从源码中可得TargetStructDescriptorDescription的结构。

  const TargetStructDescriptor<Runtime> *getDescription() const {return llvm::cast<TargetStructDescriptor<Runtime>>(this->Description);}

我们查找TargetStructDescriptor可以得到,其继承自TargetValueTypeDescriptor,含有两个属性NumFields(记录属性的count)和FieldOffsetVectorOffset(记录属性在metadata中的偏移量)

class TargetStructDescriptor final: public TargetValueTypeDescriptor<Runtime>,public TrailingGenericContextObjects<TargetStructDescriptor<Runtime>,TargetTypeGenericContextDescriptorHeader,/*additional trailing objects*/TargetForeignMetadataInitialization<Runtime>,TargetSingletonMetadataInitialization<Runtime>,TargetCanonicalSpecializedMetadatasListCount<Runtime>,TargetCanonicalSpecializedMetadatasListEntry<Runtime>,TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>> {....../// The number of stored properties in the struct./// If there is a field offset vector, this is its length.uint32_t NumFields; //记录属性的count/// The offset of the field offset vector for this struct's stored/// properties in its metadata, if any. 0 means there is no field offset/// vector.uint32_t FieldOffsetVectorOffset; //记录属性在metadata中的偏移量

TargetValueTypeDescriptor继承自TargetTypeContextDescriptorTargetTypeContextDescriptor含有三个属性:Name(类型的名称)、AccessFunctionPtr(指向此类型的元数据访问函数的指针)和Fields(指向类型的字段描述符的指针)。

class TargetValueTypeDescriptor: public TargetTypeContextDescriptor<Runtime> {public:static bool classof(const TargetContextDescriptor<Runtime> *cd) {return cd->getKind() == ContextDescriptorKind::Struct ||cd->getKind() == ContextDescriptorKind::Enum;}
};
class TargetTypeContextDescriptor: public TargetContextDescriptor<Runtime> {public:/// The name of the type.// 类型的名称TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> Name;/// A pointer to the metadata access function for this type.////// The function type here is a stand-in. You should use getAccessFunction()/// to wrap the function pointer in an accessor that uses the proper calling/// convention for a given number of arguments.// 指向此类型的元数据访问函数的指针TargetRelativeDirectPointer<Runtime, MetadataResponse(...),/*Nullable*/ true> AccessFunctionPtr;/// A pointer to the field descriptor for the type, if any.// 指向类型的字段描述符的指针TargetRelativeDirectPointer<Runtime, const reflection::FieldDescriptor,/*nullable*/ true> Fields;......
}

TargetTypeContextDescriptor又继承自基类TargetContextDescriptorTargetContextDescriptor包含两个属性:Flags(用于表示描述context的标志,包含kindversion)和Parent(用于表示父类的context,如果是在顶层,则表示没有父类,则为NULL)。

/// Base class for all context descriptors.
template<typename Runtime>
struct TargetContextDescriptor {/// Flags describing the context, including its kind and format version.// 用于表示描述context的标志,包含kind和versionContextDescriptorFlags Flags;/// The parent context, or null if this is a top-level context.// 用于表示父类的context,如果是在顶层,则表示没有父类,则为NULLTargetRelativeContextPointer<Runtime> Parent;......
}

从这里开始,TargetStructDescriptor就已经明了了,我们就可以写出TargetStructDescriptor的相关结构,同时修正TargetStructMetadata中的泛型T。

struct TargetStructMetadata {var kind: Intvar typeDescriptor: UnsafeMutablePointer<TargetStructDescriptor>
}struct TargetStructDescriptor {// 用于表示描述context的标志,包含kind和versionvar flags: Int32 // ContextDescriptorFlags Int32// 用于表示父类的context,如果是在顶层,则表示没有父类,则为NULLvar parent: TargetRelativeContextPointer<UnsafeRawPointer> // Relative 相对地址// 类型的名称var name: TargetRelativeDirectPointer<CChar> // Relative 相对地址// 指向此类型的元数据访问函数的指针var accessFunctionPointer: TargetRelativeDirectPointer<UnsafeRawPointer> //  Relative 相对地址// 指向类型的字段描述符的指针var fieldDescriptor: TargetRelativeDirectPointer<FieldDescriptor> //  Relative 相对地址// 记录属性的countvar numFields: Int32// 记录属性在metadata中的偏移量var fieldOffsetVectorOffset: Int32
}// 下面是一些属性的类型解析
/// Common flags stored in the first 32-bit word of any context descriptor.
// flags 就是 Int32
struct ContextDescriptorFlags {private:uint32_t Value;
}

实现TargetRelativeDirectPointer

对于相对地址TargetRelativeDirectPointer,我们从源码中搜索TargetRelativeDirectPointer可得出TargetRelativeDirectPointer就是RelativeDirectPointer

template <typename Runtime, typename Pointee, bool Nullable = true>
using TargetRelativeDirectPointer= typename Runtime::template RelativeDirectPointer<Pointee, Nullable>;

接着在RelativePointer.h找到RelativeDirectPointer,发现RelativeDirectPointer继承自基类RelativeDirectPointerImpl,其包含一个属性RelativeOffset(偏移量)。并且其含有通过偏移量获取真实内存的方法。

template <typename T, bool Nullable = true, typename Offset = int32_t,typename = void>
class RelativeDirectPointer;/// A direct relative reference to an object that is not a function pointer.
// offset传入Int32
template <typename T, bool Nullable, typename Offset>
class RelativeDirectPointer<T, Nullable, Offset,typename std::enable_if<!std::is_function<T>::value>::type>: private RelativeDirectPointerImpl<T, Nullable, Offset>
{......
}/// A relative reference to a function, intended to reference private metadata
/// functions for the current executable or dynamic library image from
/// position-independent constant data.
template<typename T, bool Nullable, typename Offset>
class RelativeDirectPointerImpl {private:/// The relative offset of the function's entry point from *this.Offset RelativeOffset;......// 通过偏移量计算 同时还返回泛型T类型PointerTy get() const & {// Check for null.if (Nullable && RelativeOffset == 0)return nullptr;// The value is addressed relative to `this`.uintptr_t absolute = detail::applyRelativeOffset(this, RelativeOffset);return reinterpret_cast<PointerTy>(absolute);}......
}/// Apply a relative offset to a base pointer. The offset is applied to the base
/// pointer using sign-extended, wrapping arithmetic.
// 通过偏移量计算
template<typename BasePtrTy, typename Offset>
static inline uintptr_t applyRelativeOffset(BasePtrTy *basePtr, Offset offset) {static_assert(std::is_integral<Offset>::value &&std::is_signed<Offset>::value,"offset type should be signed integer");auto base = reinterpret_cast<uintptr_t>(basePtr);// We want to do wrapping arithmetic, but with a sign-extended// offset. To do this in C, we need to do signed promotion to get// the sign extension, but we need to perform arithmetic on unsigned values,// since signed overflow is undefined behavior.auto extendOffset = (uintptr_t)(intptr_t)offset;// 指针地址+存放的offset(偏移地址) -- 内存平移获取值return base + extendOffset;
}

那么我们就可以TargetRelativeDirectPointer的结构:

// 传入泛型Pointee
struct TargetRelativeDirectPointer<Pointee> {var offset: Int32// 通过偏移量计算内存mutating func getmeasureRelativeOffset() -> UnsafeMutablePointer<Pointee> {let offset = self.offsetreturn withUnsafePointer(to: &self) { p in// 使用advanced偏移offset,再重新绑定成Pointee类型return UnsafeMutablePointer(mutating: UnsafeRawPointer(p).advanced(by: numericCast(offset)).assumingMemoryBound(to: Pointee.self))}}
}

同时我们就可以修正TargetStructDescriptor为:

struct TargetStructDescriptor {// 用于表示描述context的标志,包含kind和versionvar flags: Int32// 用于表示父类的context,如果是在顶层,则表示没有父类,则为NULLvar parent: Int32// 由于不去解析,暂时定义为Int32// 类型的名称var name: TargetRelativeDirectPointer<CChar>// 指向此类型的元数据访问函数的指针var accessFunctionPointer: TargetRelativeDirectPointer<UnsafeRawPointer>// 指向类型的字段描述符的指针var fieldDescriptor: TargetRelativeDirectPointer<FieldDescriptor>// 记录属性的countvar numFields: Int32// 记录属性在metadata中的偏移量var fieldOffsetVectorOffset: Int32
}// TargetRelativeContextPointer暂时不解析,通过源码分析可得暂时解析为Int32
template<typename Runtime,template<typename _Runtime> class Context = TargetContextDescriptor>
using TargetRelativeContextPointer =RelativeIndirectablePointer<const Context<Runtime>,/*nullable*/ true, int32_t,TargetSignedContextPointer<Runtime, Context>>;

FieldDescriptor和FieldRecord

再下一步,我们开始解析FieldDescriptor,源码中FieldDescriptor如下:

// Field descriptors contain a collection of field records for a single
// class, struct or enum declaration.
class FieldDescriptor {const FieldRecord *getFieldRecordBuffer() const {return reinterpret_cast<const FieldRecord *>(this + 1);}public:const RelativeDirectPointer<const char> MangledTypeName;const RelativeDirectPointer<const char> Superclass;FieldDescriptor() = delete;const FieldDescriptorKind Kind;const uint16_t FieldRecordSize;const uint32_t NumFields;......// 获取所有属性,每个属性用FieldRecord封装llvm::ArrayRef<FieldRecord> getFields() const {return {getFieldRecordBuffer(), NumFields};}......
}// FieldDescriptorKin就是 Int16
enum class FieldDescriptorKind : uint16_t {......
}

FieldRecord在源码中的结构为:

class FieldRecord {const FieldRecordFlags Flags;public:const RelativeDirectPointer<const char> MangledTypeName;const RelativeDirectPointer<const char> FieldName;......
}// Field records describe the type of a single stored property or case member
// of a class, struct or enum.
// FieldRecordFlags 就是Int32
class FieldRecordFlags {using int_type = uint32_t;......
}

fieldOffsetVectorOffset计算偏移量

最后还有fieldOffsetVectorOffset(记录属性在metadata中的偏移量)的计算,来获取属性再metadata中的偏移量。源码中能得到的资料是:

// StoredPointer 是Int32 即会返回一个Int32/// Get a pointer to the field offset vector, if present, or null.const StoredPointer *getFieldOffsets() const {assert(isTypeMetadata());auto offset = getDescription()->getFieldOffsetVectorOffset();if (offset == 0)return nullptr;auto asWords = reinterpret_cast<const void * const*>(this);return reinterpret_cast<const StoredPointer *>(asWords + offset);}

但是以这个逻辑去处理,获取的数据是不对的,所以我从HandyJSON的源码中找到了这个:

// 当时64位是 offset 会乘以2
return Int(UnsafePointer<Int32>(pointer)[vectorOffset * (is64BitPlatform ? 2 : 1) + $0])

分析到这里,我们就得到了一个比较清晰地结构线,如下:

// 通过偏移量计算内存地址 传入泛型Pointee
struct TargetRelativeDirectPointer<Pointee> {var offset: Int32// 通过偏移量计算内存mutating func getmeasureRelativeOffset() -> UnsafeMutablePointer<Pointee> {let offset = self.offsetreturn withUnsafePointer(to: &self) { p in// 使用advanced偏移offset,再重新绑定成Pointee类型return UnsafeMutablePointer(mutating: UnsafeRawPointer(p).advanced(by: numericCast(offset)).assumingMemoryBound(to: Pointee.self))}}
}struct TargetStructMetadata {var kind: Intvar typeDescriptor: UnsafeMutablePointer<TargetStructDescriptor>
}struct TargetStructDescriptor {var flags: Int32var parent: Int32var name: TargetRelativeDirectPointer<CChar>var accessFunctionPointer: TargetRelativeDirectPointer<UnsafeRawPointer>var fieldDescriptor: TargetRelativeDirectPointer<FieldDescriptor>var numFields: Int32var fieldOffsetVectorOffset: Int32func getFieldOffsets(_ metadata: UnsafeRawPointer) -> UnsafePointer<Int32> {print(metadata)return metadata.assumingMemoryBound(to: Int32.self).advanced(by: numericCast(self.fieldOffsetVectorOffset) * 2)}// 计算元型时使用var genericArgumentOffset: Int {return 2}
}struct FieldDescriptor {var MangledTypeName: TargetRelativeDirectPointer<CChar>var Superclass: TargetRelativeDirectPointer<CChar>var kind: UInt16var fieldRecordSize: Int16var numFields: Int32var fields: FieldRecordBuffer<FieldRecord>
}struct FieldRecord {var fieldRecordFlags: Int32var mangledTypeName: TargetRelativeDirectPointer<CChar>var fieldName: TargetRelativeDirectPointer<UInt8>
}// 获取FieldRecord
struct FieldRecordBuffer<Element> {var element: Elementmutating func buffer(n: Int) -> UnsafeBufferPointer<Element> {return withUnsafePointer(to: &self) {let ptr = $0.withMemoryRebound(to: Element.self, capacity: 1) { start inreturn start}return UnsafeBufferPointer(start: ptr, count: n)}}mutating func index(of i: Int) -> UnsafeMutablePointer<Element> {return withUnsafePointer(to: &self) {return UnsafeMutablePointer(mutating: UnsafeRawPointer($0).assumingMemoryBound(to: Element.self).advanced(by: i))}}
}

代码的验证

下面我们就代码来验证我们得到的这个结构。

protocol BrigeProtocol {}extension BrigeProtocol {// 通过协议重新绑定类型 返回出去static func get(from pointor: UnsafeRawPointer) -> Any {// Self就是真实的类型pointor.assumingMemoryBound(to: Self.self).pointee}
}struct BrigeMetadataStruct {let type: Any.Typelet witness: Int
}func custom(type: Any.Type) -> BrigeProtocol.Type {let container = BrigeMetadataStruct(type: type, witness: 0)let cast = unsafeBitCast(container, to: BrigeProtocol.Type.self)return cast
}
// LLPerson结构体
struct LLPerson {var age: Int = 18var name: String = "LL"var nameTwo: String = "LLLL"
}
// 创建一个实例
var p = LLPerson()
// LLPerson的metadata按位塞入TargetStructMetadata这个metadata中,LLPerson.self就是UnsafeMutablePointer<TargetStructMetadata>.self
let ptr = unsafeBitCast(LLPerson.self as Any.Type, to: UnsafeMutablePointer<TargetStructMetadata>.self)// 拿到结构体名称
let namePtr = ptr.pointee.typeDescriptor.pointee.name.getmeasureRelativeOffset()
print("当前 struct name: \(String(cString: namePtr))")
// 拿到属性个数
let numFields = ptr.pointee.typeDescriptor.pointee.numFields
print("当前类属性个数: \(numFields)")// 拿到属性再metadata中的偏移量
let offsets = ptr.pointee.typeDescriptor.pointee.getFieldOffsets(UnsafeRawPointer(ptr).assumingMemoryBound(to: Int.self))print("----------- start fetch field -------------")for i in 0..<numFields {// 获取属性名let fieldName = ptr.pointee.typeDescriptor.pointee.fieldDescriptor.getmeasureRelativeOffset().pointee.fields.index(of: Int(i)).pointee.fieldName.getmeasureRelativeOffset()print("----- field \(String(cString: fieldName))  -----")// 拿到属性对应的偏移量 按字节偏移的let fieldOffset = offsets[Int(i)]print("\(String(cString: fieldName)) 的偏移量是:\(fieldOffset)字节")// 这是swift混写过的类型名称 需要把它转成真正的类型名称let typeMangleName = ptr.pointee.typeDescriptor.pointee.fieldDescriptor.getmeasureRelativeOffset().pointee.fields.index(of: Int(i)).pointee.mangledTypeName.getmeasureRelativeOffset()
//    print("\(String(cString: typeMangleName))")let genericVector = UnsafeRawPointer(ptr).advanced(by: ptr.pointee.typeDescriptor.pointee.genericArgumentOffset * MemoryLayout<UnsafeRawPointer>.size).assumingMemoryBound(to: Any.Type.self)// 需要用到这个库函数 swift_getTypeByMangledNameInContext 传递四个参数let fieldType = swift_getTypeByMangledNameInContext(typeMangleName, // 混写过后的名称256,            // 混写过后的名称信息长度,需要计算 HandyJSON中直接 256UnsafeRawPointer(ptr.pointee.typeDescriptor), // 上下文 typeDescriptor中UnsafeRawPointer(genericVector).assumingMemoryBound(to: Optional<UnsafeRawPointer>.self)) //当前的泛型参数 还原符号信息// 将fieldType按位塞入Anylet type = unsafeBitCast(fieldType, to: Any.Type.self)// 通过协议桥接获取我们的真实类型信息let value = custom(type: type)//获取实例对象p的指针 需要转换成UnsafeRawPointer 并且绑定成1字节即Int8类型,//因为后面是按字节计算偏移量的,不转换,会以结构体的长度偏移let instanceAddress = withUnsafePointer(to: &p){return UnsafeRawPointer($0).assumingMemoryBound(to: Int8.self)}print("fieldTyoe: \(type) \nfieldValue: \(value.get(from: instanceAddress.advanced(by: Int(fieldOffset))))")
}print("----------- end fetch field -------------")

打印信息:

从内存地址我们也可以看出属性的布局信息。

Swift 类似HandyJSON解析Struct相关推荐

  1. Swift之深入解析如何避免单元测试中的强制解析

    一.前言 强制解析(使用 !)是 Swift 语言中不可或缺的一个重要特点(特别是和 Objective-C 的接口混合使用时),它回避了一些其他问题,使得 Swift 语言变得更加优秀. 比如在我的 ...

  2. swift php json解析,Swift 4.0 | JSON数据的解析和编码

    文 / 菲拉兔 自己撸的图 要求: Platform: iOS8.0+ Language: Swift4.0 Editor: Xcode9 [问题补充2017-09-28] 最近我发现了一个问题:在S ...

  3. iOS swift Alamofire+HandyJSON网络框架封装

    iOS swift Alamofire+HandyJSON网络框架封装 我们在学习Objective_C时使用的网络框架是AFNetworking+MJExtension,而在swift中Alamof ...

  4. Swift之深入解析如何使用Xcode和LLDB v2修改UI元素

    一.前言 在上一篇博客中,已经详细地介绍如何使用 LLDB 表达式修改 UI 元素,具体请参考:Swift之深入解析如何将代码添加为自定义LLDB命令. 在这篇博客中,将继续讨论相同的问题需求,并将重 ...

  5. Swift之深入解析如何进行多重条件排序

    一.前言 在一个条件或者单个属性上进行排序非常简单, Swift 本身就有相关的功能. 如下所示,对 int 数组进行排序的例子: let numbers = [3, 5, 6, 1, 8, 2] l ...

  6. Swift之深入解析“对象”的底层原理

    一.Swift 编译简介 Swift 的编译环境配置和编译流程,请参考我之前的博客:Swift之源码编译的环境搭建和编译流程: 新建一个 Swift 工程,在 main.swift 中创建一个 YDW ...

  7. Swift中Class和Struct异同

    Swift 中类和结构体有很多共同点.共同处在于: 定义属性用于存储值 定义方法用于提供功能 定义下标操作使得可以通过下标语法来访问实例所包含的值 定义构造器用于生成初始化值 通过扩展以增加默认实现的 ...

  8. Swift之深入解析类和结构体的本质

    一.类和结构体的异同 Swift中,类和结构体有许多相似之处,但也有不同.内存分配可以分为堆区(Heap)和栈区(Stack),由于栈区内存是连续的,内存的分配和销毁是通过入栈和出栈操作进行的,速度要 ...

  9. Swift之深入解析可选链的功能和使用

    一.什么是可选链? 可选链(Optional Chaining)是一种可以请求和调用属性.方法和子脚本的过程,用于请求或调用的目标可能为nil. 可选链返回两个值: 如果目标有值,调用就会成功,返回该 ...

最新文章

  1. 自己开发的Grid组件 针对IOS的
  2. C#字符ASCII码学习经验
  3. better-scroll:angularJs中用better-scroll封装一个滚动的指令
  4. PyQt5 Introduction and components
  5. Wireshark个人实战总结
  6. SpringBoot学习笔记001--创建第一个spring boot应用
  7. VsCode crtl + 鼠标右键 python代码无法跳转
  8. 定义字符串 && 字符串数组
  9. C++之调用C的so
  10. MATLAB数值微积分与方程求解
  11. Java实现滑块拼图验证码校验
  12. AtCoder Beginner Contest 158 D.String Formation
  13. 一只程序员的成长与思考
  14. 怎么做二维码?二维码制作的简单方法
  15. android 目录详解,Android源码目录结构详解
  16. 交互式多模型-无迹卡尔曼滤波IMM-UKF算法matlab实现(跟踪场景二)
  17. 关于:File.separator ( 详解 )
  18. ecshop mysql 30秒_ecshop数据库字段说明汇总
  19. 小游戏《塔防》开发(二)
  20. 气泡shader_Android超简单气泡效果

热门文章

  1. GEE账号注册--踩雷笔记(看后秒过)
  2. 红蓝对抗-钓鱼邮件模板一
  3. 在Java中实现两数相乘
  4. h5 input标签使用正则表达式限制输入
  5. java爬山问题,关于java:不爬山不拍照设计模式入门到入坑第一课
  6. java 中FreeMaker的使用(excel、word),涉及解压缩
  7. 使用xlsx.full.min.js读取excel表格数据
  8. Ceph集群修改IP地址
  9. 微信小程序:Component “页面路径“ does not have a method “ 方法名“ to handle event “tap“.
  10. linux怎么开启telnet命令,linux如何开启telnet服务?linux开启telnet服务的方法