分析一段H264视频数据

Posted on 2007-05-31 09:42 vcommon 阅读(1968) 评论(8)  编辑 收藏 引用

分析

00 00 00 01 67 42 00 1E 99 A0 B1 31 00 00 00 01

H264的数据流分为两种,一种是NAL UNIT stream(RTP),一种是 bits stream,

两者可以互相转换。我们分析的这个是 bit stream,根据Annex B

00 00 00 01 67 42 00 1E 99 A0 B1 31 是 一个NAL,在两个00 00 00 01之间

0110 0111 0100 0010 0000 0000 0001 1110 1001 1001 1010 0000 1011 0001 0011 0001

forbidden_zero_bit(1 = 0

nal_ref_idc(2)= 11

nal_unit_type(5 = 0 0111seq_parameter_set_rbsp( )

所以 processSPS

profile_idc(8):42:0100 0010

constraint_set0_flag(1):0

constraint_set1_flag(1):0

constraint_set2_flag(1):0

constraint_set3_flag(1):0

reserved_zero_4bits(4):0

level_idc(8):1E

seq_parameter_set_id(UE(V)):

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause 9.1

uvlC: 1001:根据Table9.1 , value= 0,只占1bit.

根据profile_idc忽略掉一部分。

log2_max_frame_num_minus4(ue(v): 001 1001,len = 5,value= 5

pic_order_cnt_type(ue(v)):01 1010,len = 3,value = 2

根据pic_order_cnt_type忽略几个参数

num_ref_framesue):010,len = 3,value = 1

0000 1011 0001 0011 0001

gaps_in_frame_num_value_allowed_flag(1) = 0

pic_width_in_mbs_minus1(ue):000 1011 ,len = 7,value = 10;

pic_height_in_map_units_minus1(ue):0001 001,len = 7,value = 8

frame_mbs_only_flag(1) = 1

忽略1

direct_8x8_inference_flag(1):0

忽略

vui_parameters_present_flag(1):0

忽略

NALU结束

68 CE 38 80 00 00 00 01

0110 1000

forbidden_zero_bit(1 = 0

nal_ref_idc(2)= 11

nal_unit_type(5 =01000pic_parameter_set_rbsp( ),7.3.2.2

1100

pic_parameter_set_id (ue)=0

seq_parameter_set_id(ue)=0

entropy_coding_mode_flag(1) :0,   重要的flag,0 表示编码Exp-Golomb coded and CAVLC,1表示CABAC

pic_order_present_flag(1):0

1110

num_slice_groups_minus1(ue):0

忽略

num_ref_idx_l0_active_minus1(ue):0

num_ref_idx_l1_active_minus1(ue):0

weighted_pred_flag(1);0

0011 1000 1000 0000

weighted_bipred_idc(2):00

pic_init_qp_minus26 /* relative to 26 */(se):0

pic_init_qs_minus26 /* relative to 26 */(se):0

chroma_qp_index_offset(se):0

deblocking_filter_control_present_flag(1);0

constrained_intra_pred_flag(1):0

redundant_pic_cnt_present_flag(1):0

忽略

NALU结束

65 88 80 21 71 27 1B 88…….3888*16 byte

65:0110 0101

forbidden_zero_bit(1 = 0

nal_ref_idc(2)= 11

nal_unit_type(5 0 0101slice_layer_without_partitioning_rbsp( ),IDR浈

Slice

Slice_Header:

first_mb_in_slice(ue):0

slice_type(ue):000 1000 = 7

pic_parameter_set_id(ue) = 0

80 21:000 0000 0010 0001

frame_num(u(v): frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits,9 bits = 0

忽略

if( nal_unit_type = = 5 ) //IDR frame

idr_pic_id(u(e)):0

忽略N

ref_pic_list_reordering( ) 见7。3。3。1忽略,Islice,SI slice,B slice

nal_ref_idc  =11 所以dec_ref_pic_marking( )

nal_unit_type = 5,所以

no_output_of_prior_pics_flag(1):0

long_term_reference_flag(1):0

忽略

。。71 27

001 0111 0001 0010 0111

slice_qp_deltasev):001 01 4-2

忽略

slice_data( ):7.3.4

对I-Slice:忽略N

进入if( moreDataFlag ) { if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | |                  ( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )mb_field_decoding_flag

macroblock_layer( )}

mb_field_decoding_flag忽略

macroblock_layer( )

mb_type(ue(v):0

mb_pred( mb_type )

prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] (1bit, 对babac是ae(v)):1

1 27:0001 0010 0111

prev_intra4x4_pred_mode_flag[ 1 ] : 0001,0,001

0010 0111

prev_intra4x4_pred_mode_flag[ 2 ] : 0010,0,010

prev_intra4x4_pred_mode_flag[ 3] : 0111,0,111

……16

1b 88 00 3e cf.

intra_chroma_pred_modeue(v) : 最后的一个1bit:0

接下来是macroblock_layer的coded_block_pattern和run level,既系数

c0 06 ad a0 18

1100 0000 0000 0110 1010 0000 0001 1000

coded_block_pattern(me(v):0,根据Table 9?4,= 47,0x2f

mb_qp_delta(se(v):):0 len =1

residual( )见7.3.5.3

residual_block( LumaLevel[ i8x8 * 4 + i4x4 ], 16 )

coeff_token(ce(v): 00 0000 0000 0110 1

       nc = 0(left block and top block 相关的)

len: {   // 0702

{ 1, 6, 8, 9,10,11,13,13,13,14,14,15,15,16,16,16,16},

{ 0, 2, 6, 8, 9,10,11,13,13,14,14,15,15,15,16,16,16},

{ 0, 0, 3, 7, 8, 9,10,11,13,13,14,14,15,15,16,16,16},

{ 0, 0, 0, 5, 6, 7, 8, 9,10,11,13,14,14,15,15,16,16},

},

{

{ 2, 6, 6, 7, 8, 8, 9,11,11,12,12,12,13,13,13,14,14},

{ 0, 2, 5, 6, 6, 7, 8, 9,11,11,12,12,13,13,14,14,14},

{ 0, 0, 3, 6, 6, 7, 8, 9,11,11,12,12,13,13,13,14,14},

{ 0, 0, 0, 4, 4, 5, 6, 6, 7, 9,11,11,12,13,13,13,14},

},

{

{ 4, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9,10,10,10,10},

{ 0, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9,10,10,10},

{ 0, 0, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,10},

{ 0, 0, 0, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 9,10,10,10},

},

code:

{ 1, 5, 7, 7, 7, 7,15,11, 8,15,11,15,11,15,11, 7,4},

{ 0, 1, 4, 6, 6, 6, 6,14,10,14,10,14,10, 1,14,10,6},

{ 0, 0, 1, 5, 5, 5, 5, 5,13, 9,13, 9,13, 9,13, 9,5},

{ 0, 0, 0, 3, 3, 4, 4, 4, 4, 4,12,12, 8,12, 8,12,8},

},

{

{ 3,11, 7, 7, 7, 4, 7,15,11,15,11, 8,15,11, 7, 9,7},

{ 0, 2, 7,10, 6, 6, 6, 6,14,10,14,10,14,10,11, 8,6},

{ 0, 0, 3, 9, 5, 5, 5, 5,13, 9,13, 9,13, 9, 6,10,5},

{ 0, 0, 0, 5, 4, 6, 8, 4, 4, 4,12, 8,12,12, 8, 1,4},

},

{

{15,15,11, 8,15,11, 9, 8,15,11,15,11, 8,13, 9, 5,1},

{ 0,14,15,12,10, 8,14,10,14,14,10,14,10, 7,12, 8,4},

{ 0, 0,13,14,11, 9,13, 9,13,10,13, 9,13, 9,11, 7,3},

{ 0, 0, 0,12,11,10, 9, 8,13,12,12,12, 8,12,10, 6,2},

},

根据表查的:

code = 13,len = 15,i= 12,j=2

       所以numcoeff = 12,numtrailingones = 2

010 0000 0001 1000: totalzeros:根据numcoeff

int lentab[TOTRUN_NUM][16] =

{

{ 1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},

{ 3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},

{ 4,3,3,3,4,4,3,3,4,5,5,6,5,6},

{ 5,3,4,4,3,3,3,4,3,4,5,5,5},

{ 4,4,4,3,3,3,3,3,4,5,4,5},

{ 6,5,3,3,3,3,3,3,4,3,6},

{ 6,5,3,3,3,2,3,4,3,6},

{ 6,4,5,3,2,2,3,3,6},

{ 6,6,4,2,2,3,2,5},

{ 5,5,3,2,2,2,4},

{ 4,4,3,3,1,3},

 { 4,4,2,1,3}, numcoeff开始

{ 3,3,1,2},

{ 2,2,1},

{ 1,1},

};

int codtab[TOTRUN_NUM][16] =

{

{1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},

{7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},

{5,7,6,5,4,3,4,3,2,3,2,1,1,0},

{3,7,5,4,6,5,4,3,3,2,2,1,0},

{5,4,3,7,6,5,4,3,2,1,1,0},

{1,1,7,6,5,4,3,2,1,1,0},

{1,1,5,4,3,3,2,1,1,0},

{1,1,1,3,3,2,2,1,0},

{1,0,1,3,2,1,1,1,},

{1,0,1,3,2,1,1,},

{0,1,1,2,1,3},

{0,1,1,1,1}, numcoeff开始

{0,1,1,1},

{0,1,1},

{0,1},

};

Code = 1,len = 2,i=2,j = 0, totzeros = 2

Read run: 0 0000 0001 1000根据totzeros = 2

int lentab[TOTRUN_NUM][16] =

{

{1,1},

 {1,2,2},

{2,2,2,2},

{2,2,2,3,3},

{2,2,3,3,3,3},

{2,3,3,3,3,3,3},

{3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},

};

int codtab[TOTRUN_NUM][16] =

{

{1,0},

 {1,1,0},

{3,2,1,0},

{3,2,1,1,0},

{3,2,3,2,1,0},

{3,0,1,3,2,5,4},

{7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},

Code = 1,len =1,I = 0,j = 0

0.1.1         Slice data syntax

slice_data( ) {

C

Descriptor

if( entropy_coding_mode_flag )

while( !byte_aligned( ) )

cabac_alignment_one_bit

2

f(1)

CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )

moreDataFlag = 1

prevMbSkipped = 0

do {

if( slice_type != I && slice_type != SI )

if( !entropy_coding_mode_flag ) {

mb_skip_run

2

ue(v)

prevMbSkipped = ( mb_skip_run > 0 )

for( i="0"; i<mb_skip_run; i++ )

CurrMbAddr = NextMbAddress( CurrMbAddr )

moreDataFlag = more_rbsp_data( )

} else {

mb_skip_flag

2

ae(v)

moreDataFlag = !mb_skip_flag

}

if( moreDataFlag ) {

if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | |

( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )

mb_field_decoding_flag

2

u(1) | ae(v)

macroblock_layer( )

2 | 3 | 4

}

if( !entropy_coding_mode_flag )

moreDataFlag = more_rbsp_data( )

else {

if( slice_type != I && slice_type != SI )

prevMbSkipped = mb_skip_flag

if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 )

moreDataFlag = 1

else {

end_of_slice_flag

2

ae(v)

                  moreDataFlag = !end_of_slice_flag

}

         }

CurrMbAddr = NextMbAddress( CurrMbAddr )

} while( moreDataFlag )

}

se(v) : CABAC正式介绍。根据Table 9 5 – coeff_token mapping to TotalCoeff( coeff_token ) and TrailingOnes( coeff_token )

chroma_format_idc 无

Bit string form

Range of codeNum

1

0

0 1 x0

1-2

0 0 1 x1 x0

3-6

0 0 0 1 x2 x1 x0

7-14

0 0 0 0 1 x3 x2 x1 x0

15-30

0 0 0 0 0 1 x4 x3 x2 x1 x0

31-62

0.1.1.1      Slice layer without partitioning RBSP syntax

slice_layer_without_partitioning_rbsp( ) {

C

Descriptor

slice_header( )

2

slice_data( ) /* all categories of slice_data( ) syntax */

2 | 3 | 4

rbsp_slice_trailing_bits( )

2

}

0.1.1.2      Sequence parameter set RBSP syntax

seq_parameter_set_rbsp( ) {

C

Descriptor

     profile_idc

0

u(8)

     constraint_set0_flag

0

u(1)

     constraint_set1_flag

0

u(1)

     constraint_set2_flag

0

u(1)

     constraint_set3_flag

0

u(1)

     reserved_zero_4bits /* equal to 0 */

0

u(4)

     level_idc

0

u(8)

     seq_parameter_set_id

0

ue(v)

if( profile_idc = = 100 | | profile_idc = = 110 | |
          profile_idc = = 122 | | profile_idc = = 144 ) {

         chroma_format_idc

0

ue(v)

         if( chroma_format_idc = = 3 )

              residual_colour_transform_flag

0

u(1)

         bit_depth_luma_minus8

0

ue(v)

         bit_depth_chroma_minus8

0

ue(v)

         qpprime_y_zero_transform_bypass_flag

0

u(1)

         seq_scaling_matrix_present_flag

0

u(1)

         if( seq_scaling_matrix_present_flag )

for( i = 0; i < 8; i++ ) {

                  seq_scaling_list_present_flag[ i ]

0

u(1)

if( seq_scaling_list_present_flag[ i ] )

if( i < 6 )

scaling_list( ScalingList4x4[ i ], 16,
                                                UseDefaultScalingMatrix4x4Flag[ i ])

0

else

scaling_list( ScalingList8x8[ i – 6 ], 64,
                                                UseDefaultScalingMatrix8x8Flag[ i – 6 ] )

0

}

}

     log2_max_frame_num_minus4

0

ue(v)

     pic_order_cnt_type

0

ue(v)

if( pic_order_cnt_type = = 0 )

log2_max_pic_order_cnt_lsb_minus4

0

ue(v)

     else if( pic_order_cnt_type = = 1 ) {

         delta_pic_order_always_zero_flag

0

u(1)

         offset_for_non_ref_pic

0

se(v)

         offset_for_top_to_bottom_field

0

se(v)

         num_ref_frames_in_pic_order_cnt_cycle

0

ue(v)

         for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ )

              offset_for_ref_frame[ i ]

0

se(v)

     }

     num_ref_frames

0

ue(v)

     gaps_in_frame_num_value_allowed_flag

0

u(1)

     pic_width_in_mbs_minus1

0

ue(v)

     pic_height_in_map_units_minus1

0

ue(v)

     frame_mbs_only_flag

0

u(1)

     if( !frame_mbs_only_flag )

         mb_adaptive_frame_field_flag

0

u(1)

direct_8x8_inference_flag

0

u(1)

frame_cropping_flag

0

u(1)

if( frame_cropping_flag ) {

         frame_crop_left_offset

0

ue(v)

         frame_crop_right_offset

0

ue(v)

         frame_crop_top_offset

0

ue(v)

         frame_crop_bottom_offset

0

ue(v)

     }

     vui_parameters_present_flag

0

u(1)

     if( vui_parameters_present_flag )

         vui_parameters( )

0

rbsp_trailing_bits( )

0

}

Table 7?1 – NAL unit type codes

nal_unit_type

Content of NAL unit and RBSP syntax structure

C

0

Unspecified

1

Coded slice of a non-IDR picture
slice_layer_without_partitioning_rbsp( )

2, 3, 4

2

Coded slice data partition A
slice_data_partition_a_layer_rbsp( )

2

3

Coded slice data partition B
slice_data_partition_b_layer_rbsp( )

3

4

Coded slice data partition C
slice_data_partition_c_layer_rbsp( )

4

5

Coded slice of an IDR picture
slice_layer_without_partitioning_rbsp( )

2, 3

6

Supplemental enhancement information (SEI)
sei_rbsp( )

5

7

Sequence parameter set
seq_parameter_set_rbsp( )

0

8

Picture parameter set
pic_parameter_set_rbsp( )

1

9

Access unit delimiter
access_unit_delimiter_rbsp( )

6

10

End of sequence
end_of_seq_rbsp( )

7

11

End of stream
end_of_stream_rbsp( )

8

12

Filler data
filler_data_rbsp( )

9

13

Sequence parameter set extension
seq_parameter_set_extension_rbsp( )

10

14..18

Reserved

19

Coded slice of an auxiliary coded picture without partitioning
slice_layer_without_partitioning_rbsp( )

2, 3, 4

20..23

Reserved

24..31

Unspecified

byte_stream_nal_unit( NumBytesInNALunit ) {

C

Descriptor

     while( next_bits( 24 ) != 0x000001 &&
                  next_bits( 32 ) != 0x00000001 )

leading_zero_8bits /* equal to 0x00 */

f(8)

if( next_bits( 24 ) != 0x000001 )

         zero_byte /* equal to 0x00 */

f(8)

     start_code_prefix_one_3bytes /* equal to 0x000001 */

f(24)

     nal_unit( NumBytesInNALunit )

while( more_data_in_byte_stream( ) &&
                  next_bits( 24 ) != 0x000001 &&
                  next_bits( 32 ) != 0x00000001 )

trailing_zero_8bits /* equal to 0x00 */

f(8)

}

0.1.1.3      Picture parameter set RBSP syntax

pic_parameter_set_rbsp( ) {

C

Descriptor

     pic_parameter_set_id

1

ue(v)

     seq_parameter_set_id

1

ue(v)

     entropy_coding_mode_flag

1

u(1)

     pic_order_present_flag

1

u(1)

     num_slice_groups_minus1

1

ue(v)

if( num_slice_groups_minus1 > 0 ) {

slice_group_map_type

1

ue(v)

if( slice_group_map_type = = 0 )

for( iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++ )

run_length_minus1[ iGroup ]

1

ue(v)

else if( slice_group_map_type = = 2 )

for( iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++ ) {

top_left[ iGroup ]

1

ue(v)

bottom_right[ iGroup ]

1

ue(v)

}

else if( slice_group_map_type = = 3 | | 
                       slice_group_map_type = = 4 | | 
                       slice_group_map_type = = 5 ) {

slice_group_change_direction_flag

1

u(1)

slice_group_change_rate_minus1

1

ue(v)

} else if( slice_group_map_type = = 6 ) {

pic_size_in_map_units_minus1

1

ue(v)

for( i = 0; i <= pic_size_in_map_units_minus1; i++ )

slice_group_id[ i ]

1

u(v)

}

}

num_ref_idx_l0_active_minus1

1

ue(v)

num_ref_idx_l1_active_minus1

1

ue(v)

weighted_pred_flag

1

u(1)

weighted_bipred_idc

1

u(2)

pic_init_qp_minus26 /* relative to 26 */

1

se(v)

pic_init_qs_minus26 /* relative to 26 */

1

se(v)

chroma_qp_index_offset

1

se(v)

     deblocking_filter_control_present_flag

1

u(1)

     constrained_intra_pred_flag

1

u(1)

     redundant_pic_cnt_present_flag

1

u(1)

if( more_rbsp_data( ) ) {

transform_8x8_mode_flag

1

u(1)

         pic_scaling_matrix_present_flag

1

u(1)

         if( pic_scaling_matrix_present_flag )

for( i = 0; i < 6 + 2* transform_8x8_mode_flag; i++ ) {

                  pic_scaling_list_present_flag[ i ]

1

u(1)

if( pic_scaling_list_present_flag[ i ] )

if( i < 6 )

scaling_list( ScalingList4x4[ i ], 16,
                                                UseDefaultScalingMatrix4x4Flag[ i ] )

1

else

scaling_list( ScalingList8x8[ i – 6 ], 64,
                                                UseDefaultScalingMatrix8x8Flag[ i – 6 ] )

1

}

second_chroma_qp_index_offset

1

se(v)

}

rbsp_trailing_bits( )

1

}

0.1.2         Slice header syntax

slice_header( ) {

C

Descriptor

first_mb_in_slice

2

ue(v)

slice_type

2

ue(v)

pic_parameter_set_id

2

ue(v)

frame_num

2

u(v)

if( !frame_mbs_only_flag ) {

field_pic_flag

2

u(1)

if( field_pic_flag )

bottom_field_flag

2

u(1)

}

if( nal_unit_type = = 5 )

idr_pic_id

2

ue(v)

if( pic_order_cnt_type = = 0 ) {

pic_order_cnt_lsb

2

u(v)

if( pic_order_present_flag && !field_pic_flag )

delta_pic_order_cnt_bottom

2

se(v)

}

if( pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag ) {

delta_pic_order_cnt[ 0 ]

2

se(v)

if( pic_order_present_flag && !field_pic_flag )

delta_pic_order_cnt[ 1 ]

2

se(v)

}

if( redundant_pic_cnt_present_flag )

redundant_pic_cnt

2

ue(v)

if( slice_type = = B )

direct_spatial_mv_pred_flag

2

u(1)

if( slice_type = = P | | slice_type = = SP | | slice_type = = B ) {

num_ref_idx_active_override_flag

2

u(1)

if( num_ref_idx_active_override_flag ) {

num_ref_idx_l0_active_minus1

2

ue(v)

if( slice_type  = = B )

num_ref_idx_l1_active_minus1

2

ue(v)

}

}

ref_pic_list_reordering( )

2

if( ( weighted_pred_flag && ( slice_type = = P | | slice_type = = SP ) ) | |
         ( weighted_bipred_idc = = 1 && slice_type = = B ) )

pred_weight_table( )

2

if( nal_ref_idc != 0 )

dec_ref_pic_marking( )

2

if( entropy_coding_mode_flag && slice_type != I && slice_type != SI )

cabac_init_idc

2

ue(v)

slice_qp_delta

2

se(v)

if( slice_type  = = SP | | slice_type = = SI ) {

if( slice_type = = SP )

sp_for_switch_flag

2

u(1)

slice_qs_delta

2

se(v)

}

if( deblocking_filter_control_present_flag ) {

disable_deblocking_filter_idc

2

ue(v)

if( disable_deblocking_filter_idc != 1 ) {

slice_alpha_c0_offset_div2

2

se(v)

slice_beta_offset_div2

2

se(v)

}

}

if( num_slice_groups_minus1 > 0 &&
         slice_group_map_type >= 3 && slice_group_map_type <= 5)

slice_group_change_cycle

2

u(v)

}

0.1.3         Slice data syntax

slice_data( ) {

C

Descriptor

if( entropy_coding_mode_flag )

while( !byte_aligned( ) )

cabac_alignment_one_bit

2

f(1)

CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )

moreDataFlag = 1

prevMbSkipped = 0

do {

if( slice_type != I && slice_type != SI )

if( !entropy_coding_mode_flag ) {

mb_skip_run

2

ue(v)

prevMbSkipped = ( mb_skip_run > 0 )

for( i="0"; i<mb_skip_run; i++ )

CurrMbAddr = NextMbAddress( CurrMbAddr )

moreDataFlag = more_rbsp_data( )

} else {

mb_skip_flag

2

ae(v)

moreDataFlag = !mb_skip_flag

}

if( moreDataFlag ) {

if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | |

( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )

mb_field_decoding_flag

2

u(1) | ae(v)

macroblock_layer( )

2 | 3 | 4

}

if( !entropy_coding_mode_flag )

moreDataFlag = more_rbsp_data( )

else {

if( slice_type != I && slice_type != SI )

prevMbSkipped = mb_skip_flag

if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 )

moreDataFlag = 1

else {

end_of_slice_flag

2

ae(v)

                  moreDataFlag = !end_of_slice_flag

}

         }

CurrMbAddr = NextMbAddress( CurrMbAddr )

} while( moreDataFlag )

}

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = ( mb_adaptive_frame_field_flag && !field_pic_flag )                           (7-22)

0.1.4         Macroblock layer syntax

macroblock_layer( ) {

C

Descriptor

mb_type

2

ue(v) | ae(v)

if( mb_type = = I_PCM ) {

while( !byte_aligned( ) )

pcm_alignment_zero_bit

2

f(1)

for( i = 0; i < 256; i++ )

pcm_sample_luma[ i ]

2

u(v)

for( i = 0; i < 2 * MbWidthC * MbHeightC; i++ )

pcm_sample_chroma[ i ]

2

u(v)

} else {

noSubMbPartSizeLessThan8x8Flag = 1

if( mb_type != I_NxN &&

MbPartPredMode( mb_type, 0 ) != Intra_16x16 &&

NumMbPart( mb_type ) = = 4 ) {

sub_mb_pred( mb_type )

2

for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )

if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 ) {

if( NumSubMbPart( sub_mb_type[ mbPartIdx ] ) > 1 )

noSubMbPartSizeLessThan8x8Flag = 0

} else if( !direct_8x8_inference_flag )

noSubMbPartSizeLessThan8x8Flag = 0

} else {

if( transform_8x8_mode_flag && mb_type = = I_NxN )

transform_size_8x8_flag

2

u(1) | ae(v)

mb_pred( mb_type )

2

}

if( MbPartPredMode( mb_type, 0 ) != Intra_16x16 ) {

coded_block_pattern

2

me(v) | ae(v)

if( CodedBlockPatternLuma > 0 &&

transform_8x8_mode_flag && mb_type != I_NxN &&

noSubMbPartSizeLessThan8x8Flag &&

( mb_type != B_Direct_16x16 | | direct_8x8_inference_flag ) )

transform_size_8x8_flag

2

u(1) | ae(v)

}

if( CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |
              MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {

mb_qp_delta

2

se(v) | ae(v)

residual( )

3 | 4

}

}

}

0.1.4.1      Macroblock prediction syntax

mb_pred( mb_type ) {

C

Descriptor

if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 | | 
         MbPartPredMode( mb_type, 0 ) = = Intra_8x8 | | 
         MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {

if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 )

for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) {

prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]

2

u(1) | ae(v)

if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )

rem_intra4x4_pred_mode[ luma4x4BlkIdx ]

2

u(3) | ae(v)

}

if( MbPartPredMode( mb_type, 0 ) = = Intra_8x8 )

for( luma8x8BlkIdx=0; luma8x8BlkIdx<4; luma8x8BlkIdx++ ) {

prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ]

2

u(1) | ae(v)

if( !prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ] )

rem_intra8x8_pred_mode[ luma8x8BlkIdx ]

2

u(3) | ae(v)

}

if( chroma_format_idc != 0 )

intra_chroma_pred_mode

2

ue(v) | ae(v)

} else if( MbPartPredMode( mb_type, 0 ) != Direct ) {

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( ( num_ref_idx_l0_active_minus1 > 0 | |
                       mb_field_decoding_flag ) && 
                   MbPartPredMode( mb_type, mbPartIdx ) != Pred_L1 )

ref_idx_l0[ mbPartIdx ]

2

te(v) | ae(v)

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( ( num_ref_idx_l1_active_minus1 > 0 | |
                       mb_field_decoding_flag ) && 
                  MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )

ref_idx_l1[ mbPartIdx ]

2

te(v) | ae(v)

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( MbPartPredMode ( mb_type, mbPartIdx ) != Pred_L1 )

for( compIdx = 0; compIdx < 2; compIdx++ )

mvd_l0[ mbPartIdx ][ 0 ][ compIdx ]

2

se(v) | ae(v)

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )

for( compIdx = 0; compIdx < 2; compIdx++ )

mvd_l1[ mbPartIdx ][ 0 ][ compIdx ]

2

se(v) | ae(v)

}

}

0.1.4.2      Residual data syntax

residual( ) {

C

Descriptor

if( !entropy_coding_mode_flag )

residual_block = residual_block_cavlc

else

residual_block = residual_block_cabac

if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

residual_block( Intra16x16DCLevel, 16 )

3

for( i8x8 = 0; i8x8 < 4; i8x8++ ) /* each luma 8x8 block */

if( !transform_size_8x8_flag | | !entropy_coding_mode_flag )

for( i4x4 = 0; i4x4 < 4; i4x4++ ) { /* each 4x4 sub-block of block */

if( CodedBlockPatternLuma & ( 1 << i8x8 ) )

if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

residual_block( Intra16x16ACLevel[ i8x8 * 4 + i4x4 ], 15 )

3

else

residual_block( LumaLevel[ i8x8 * 4 + i4x4 ], 16 )

3 | 4

else if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

for( i = 0; i < 15; i++ )

Intra16x16ACLevel[ i8x8 * 4 + i4x4 ][ i ] = 0

else

for( i = 0; i < 16; i++ )

LumaLevel[ i8x8 * 4 + i4x4 ][ i ] = 0

if( !entropy_coding_mode_flag && transform_size_8x8_flag )

for( i = 0; i < 16; i++ )

LumaLevel8x8[ i8x8 ][ 4 * i + i4x4 ] =
                                                     LumaLevel[ i8x8 * 4 + i4x4 ][ i ]

}

else if( CodedBlockPatternLuma & ( 1 << i8x8 ) )

residual_block( LumaLevel8x8[ i8x8 ], 64 )

3 | 4

else

for( i = 0; i < 64; i++ )

LumaLevel8x8[ i8x8 ][ i ] = 0

if( chroma_format_idc != 0 ) {

NumC8x8 = 4 / ( SubWidthC * SubHeightC )

for( iCbCr = 0; iCbCr < 2; iCbCr++ )

if( CodedBlockPatternChroma & 3 ) /* chroma DC residual present */

residual_block( ChromaDCLevel[ iCbCr ], 4 * NumC8x8 )

3 | 4

else

for( i = 0; i < 4 * NumC8x8; i++ )

ChromaDCLevel[ iCbCr ][ i ] = 0

for( iCbCr = 0; iCbCr < 2; iCbCr++ )

for( i8x8 = 0; i8x8 < NumC8x8; i8x8++ )

for( i4x4 = 0; i4x4 < 4; i4x4++ )

if( CodedBlockPatternChroma & 2 )
                                                             /* chroma AC residual present */

residual_block( ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ], 15)

3 | 4

else

for( i = 0; i < 15; i++ )

ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ][ i ] = 0

}

residual_block_cavlc( coeffLevel, maxNumCoeff ) {

C

Descriptor

for( i = 0; i < maxNumCoeff; i++ )

coeffLevel[ i ] = 0

coeff_token

3 | 4

ce(v)

if( TotalCoeff( coeff_token ) > 0 ) {

if( TotalCoeff( coeff_token ) > 10 && TrailingOnes( coeff_token ) < 3 )

suffixLength = 1

else

suffixLength = 0

for( i = 0; i < TotalCoeff( coeff_token ); i++ )

if( i < TrailingOnes( coeff_token ) ) {

trailing_ones_sign_flag

3 | 4

u(1)

level[ i ] = 1 – 2 * trailing_ones_sign_flag

} else {

level_prefix

3 | 4

ce(v)

levelCode = ( Min( 15, level_prefix ) << suffixLength )

if( suffixLength > 0 | | level_prefix >= 14 ) {

level_suffix

3 | 4

u(v)

levelCode += level_suffix

}

if( level_prefix > = 15 && suffixLength = = 0 )

levelCode += 15

if( level_prefix > = 16 )

levelCode += ( 1 << ( level_prefix – 3 ) ) – 4096

if( i = = TrailingOnes( coeff_token ) && 
                   TrailingOnes( coeff_token ) < 3 )

levelCode += 2

if( levelCode % 2 = = 0 )

level[ i ] = ( levelCode + 2 ) >> 1

else

level[ i ] = ( –levelCode – 1 ) >> 1

if( suffixLength = = 0 )

suffixLength = 1

if( Abs( level[ i ] ) > ( 3 << ( suffixLength – 1 ) ) && 
                   suffixLength < 6 )

suffixLength++

}

if( TotalCoeff( coeff_token ) < maxNumCoeff ) {

total_zeros

3 | 4

ce(v)

zerosLeft = total_zeros

} else

zerosLeft = 0

for( i = 0; i < TotalCoeff( coeff_token ) – 1; i++ ) {

if( zerosLeft > 0 ) {

run_before

3 | 4

ce(v)

run[ i ] = run_before

} else

run[ i ] = 0

zerosLeft = zerosLeft – run[ i ]

}

run[ TotalCoeff( coeff_token ) – 1 ] = zerosLeft

coeffNum = ?1

for( i = TotalCoeff( coeff_token ) – 1; i >= 0; i-- ) {

coeffNum += run[ i ] + 1

coeffLevel[ coeffNum ] = level[ i ]

}

}

}

分析一段H264视频数据相关推荐

  1. 基于Android4.2系统的H264视频数据的获取

    基于Android4.2系统的H264视频数据的获取 0引言 Andriod系统本身不支持H264视频原始压缩数据(即符合H264压缩标准,具有NAL头的裸数据)的实时获取,基本上都是利用MediaR ...

  2. android player通过rtp协议接收h264视频数据播放

    android recorder通过rtp发送h264视频数据给vlc播放 android player通过rtp协议接收h264视频数据播放 Android recorder通过rtp发送aac数据 ...

  3. 【FFMPEG】基于RTP的H264视频数据打包解包类

    最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打包.解包的文档和代码.功夫不负有心人,找到不少有价值的文档和代码.参考这些资料,写了H264 RTP打包类.解包类,实现 ...

  4. java aac rtp封装_分享一段H264视频和AAC音频的RTP封包代码

    1. H264视频的RTP封包 static int h264_parse(Track *tr, uint8_t *data, size_t len) { h264_priv *priv = tr-& ...

  5. 关于从海康威视或者大华摄像头获取PS数据流中的H264视频数据

    PS流数据原理网上基本能够搜索到,这里我也就没必要粘贴复制,解析PS数据包主要分 00 00 00 ba 这是ps头,然后是系统头00 00 00 bb ,然后是Program Stream map包 ...

  6. ffmpeg获取h264视频数据

    源资源来自教程,来自慕课网 李超,本人仅仅是添加注释 #include <stdio.h> #include <libavutil/log.h> #include <li ...

  7. WebRTC视频数据流程分析

    本文来自<WebRTC Native开发实战>书籍作者许建林在LiveVideoStack线上分享中的内容,详细分析总结 WebRTC 的视频数据流程,并对大型项目如何快速上手:分析方法, ...

  8. 实例说明代码段(.text)、数据段(.data)、bss段、只读数据段(.rodata)、堆栈的划分依据

    目录 程序实例介绍各个段内容.分析段(segment)分布 分析代码段(.text).数据段(.data).bss段.只读数据段(.rodata)划分依据 程序实例介绍各个段内容.分析段(segmen ...

  9. Android音频学习之MediaExtractor,提取音频视频轨道数据(从视频中分离音频视频数据)

    一个音视频文件是由音频和视频组成的,我们可以通过MediaExtractor.MediaMuxer把音频或视频给单独抽取出来,抽取出来的音频和视频能单独播放: 1 MediaExtractor 说明 ...

最新文章

  1. 【Linux笔记(002) 】-- centos7 文档操作基本命令
  2. FPGA设计心得(5)Aurora 例子工程分析与仿真实例分析(streaming版)
  3. ARM处理器全解析:A8/A9/A15都是什么?
  4. from html参数传到另外php文件中_在 PHP 中格式化并高亮 SQL 语句
  5. 解决Mono for android的xml编辑器无法代码完成的问题
  6. org.hibernate.service.ServiceRegistryBuilder被弃用
  7. js 拾遗 js时间戳转换
  8. [HDU] 3491 Thieves
  9. SQL Server 数据库操作类
  10. 将桌面文件映射至E盘
  11. CentOS系统优化
  12. 【NLP】统计自然语言处理(第2版)思维导图
  13. maxdea如何计算指数_MaxDEA
  14. 基于PTPX的功耗分析
  15. HDU - 1166 敌兵布阵(线段树模板)(入门题)
  16. He's a Pirate---David Garrett
  17. ZooKeeper示例 实时更新server列表
  18. HDCP Key工作原理
  19. 小米usb测试软件,你还在用USB传文件?小米10系列USB详细测试——《小米10十大槽点》番外 图文版...
  20. Playwright + Python爬虫

热门文章

  1. etl构建数据仓库五步法_带你了解数据仓库的基本架构
  2. 【ZOJ - 3956】Course Selection System(01背包)
  3. 【CodeForces - 892C 】Pride (数学,思维构造,gcd)
  4. 【 HDU - 5363】Key Set(水题,快速幂,组合数学)
  5. 【HDU - 4217 】Data Structure? (线段树求第k小数)
  6. 几位无人驾驶领域的杰出科学家
  7. Python之Numpy入门实战教程(1):基础篇
  8. matlab考试试题,matlab-考试试题-
  9. 关闭 Pycharm 更新提示
  10. Caused by: org.springframework.boot.web.server.PortInUseException: Port 8081 is already in use 端口占用