3.3.3 写入时的行为

在我们开始研究多个线程或进程同时使用相同内存之前,先来看一下缓存实现的一些细节。我们要求缓存是一致的,而且这种一致性必须对用户级代码完全透明。而内核代码则有所不同,它有时候需要对缓存进行转储(flush)。

这意味着,如果对缓存线进行了修改,那么在这个时间点之后,系统的结果应该是与没有缓存的情况下是相同的,即主存的对应位置也已经被修改的状态。这种要求可以通过两种方式或策略实现:

  • 写通(write-through)
  • 写回(write-back)

写通比较简单。当修改缓存线时,处理器立即将它写入主存。这样可以保证主存与缓存的内容永远保持一致。当缓存线被替代时,只需要简单地将它丢弃即可。这种策略很简单,但是速度比较慢。如果某个程序反复修改一个本地变量,可能导致FSB上产生大量数据流,而不管这个变量是不是有人在用,或者是不是短期变量。

写回比较复杂。当修改缓存线时,处理器不再马上将它写入主存,而是打上已弄脏(dirty)的标记。当以后某个时间点缓存线被丢弃时,这个已弄脏标记会通知处理器把数据写回到主存中,而不是简单地扔掉。

写回有时候会有非常不错的性能,因此较好的系统大多采用这种方式。采用写回时,处理器们甚至可以利用FSB的空闲容量来存储缓存线。这样一来,当需要缓存空间时,处理器只需清除脏标记,丢弃缓存线即可。

但写回也有一个很大的问题。当有多个处理器(或核心、超线程)访问同一块内存时,必须确保它们在任何时候看到的都是相同的内容。如果缓存线在其中一个处理器上弄脏了(修改了,但还没写回主存),而第二个处理器刚好要读取同一个内存地址,那么这个读操作不能去读主存,而需要读第一个处理器的缓存线。在下一节中,我们将研究如何实现这种需求。

在此之前,还有其它两种缓存策略需要提一下:

  • 写入合并
  • 不可缓存

这两种策略用于真实内存不支持的特殊地址区,内核为地址区设置这些策略(x86处理器利用内存类型范围寄存器MTRR),余下的部分自动进行。MTRR还可用于写通和写回策略的选择。

写入合并是一种有限的缓存优化策略,更多地用于显卡等设备之上的内存。由于设备的传输开销比本地内存要高的多,因此避免进行过多的传输显得尤为重要。如果仅仅因为修改了缓存线上的一个字,就传输整条线,而下个操作刚好是修改线上的下一个字,那么这次传输就过于浪费了。而这恰恰对于显卡来说是比较常见的情形——屏幕上水平邻接的像素往往在内存中也是靠在一起的。顾名思义,写入合并是在写出缓存线前,先将多个写入访问合并起来。在理想的情况下,缓存线被逐字逐字地修改,只有当写入最后一个字时,才将整条线写入内存,从而极大地加速内存的访问。

最后来讲一下不可缓存的内存。一般指的是不被RAM支持的内存位置,它可以是硬编码的特殊地址,承担CPU以外的某些功能。对于商用硬件来说,比较常见的是映射到外部卡或设备的地址。在嵌入式主板上,有时也有类似的地址,用来开关LED。对这些地址进行缓存显然没有什么意义。比如上述的LED,一般是用来调试或报告状态,显然应该尽快点亮或关闭。而对于那些PCI卡上的内存,由于不需要CPU的干涉即可更改,也不该缓存。

3.3.4 多处理器支持

在上节中我们已经指出当多处理器开始发挥作用的时候所遇到的问题。甚至对于那些不共享的高速级别的缓存(至少在L1d级别)的多核处理器也有问题。

直接提供从一个处理器到另一处理器的高速访问,这是完全不切实际的。从一开始,连接速度根本就不够快。实际的选择是,在其需要的情况下,转移到其他处理器。需要注意的是,这同样应用在相同处理器上无需共享的高速缓存。

现在的问题是,当该高速缓存线转移的时候会发生什么?这个问题回答起来相当容易:当一个处理器需要在另一个处理器的高速缓存中读或者写的脏的高速缓存线的时候。但怎样处理器怎样确定在另一个处理器的缓存中的高速缓存线是脏的?假设它仅仅是因为一个高速缓存线被另一个处理器加载将是次优的(最好的)。通常情况下,大多数的内存访问是只读的访问和产生高速缓存线,并不脏。在高速缓存线上处理器频繁的操作(当然,否则为什么我们有这样的文件呢?),也就意味着每一次写访问后,都要广播关于高速缓存线的改变将变得不切实际。

多年来,人们开发除了MESI缓存一致性协议(MESI=Modified, Exclusive, Shared, Invalid,变更的、独占的、共享的、无效的)。协议的名称来自协议中缓存线可以进入的四种状态:

  • 变更的: 本地处理器修改了缓存线。同时暗示,它是所有缓存中唯一的拷贝。
  • 独占的: 缓存线没有被修改,而且没有被装入其它处理器缓存。
  • 共享的: 缓存线没有被修改,但可能已被装入其它处理器缓存。
  • 无效的: 缓存线无效,即,未被使用。

MESI协议开发了很多年,最初的版本比较简单,但是效率也比较差。现在的版本通过以上4个状态可以有效地实现写回式缓存,同时支持不同处理器对只读数据的并发访问。

在协议中,通过处理器监听其它处理器的活动,不需太多努力即可实现状态变更。处理器将操作发布在外部引脚上,使外部可以了解到处理过程。目标的缓存线地址则可以在地址总线上看到。在下文讲述状态时,我们将介绍总线参与的时机。

一开始,所有缓存线都是空的,缓存为无效(Invalid)状态。当有数据装进缓存供写入时,缓存变为变更(Modified)状态。如果有数据装进缓存供读取,那么新状态取决于其它处理器是否已经状态了同一条缓存线。如果是,那么新状态变成共享(Shared)状态,否则变成独占(Exclusive)状态。

如果本地处理器对某条Modified缓存线进行读写,那么直接使用缓存内容,状态保持不变。如果另一个处理器希望读它,那么第一个处理器将内容发给第一个处理器,然后可以将缓存状态置为Shared。而发给第二个处理器的数据由内存控制器接收,并放入内存中。如果这一步没有发生,就不能将这条线置为Shared。如果第二个处理器希望的是写,那么第一个处理器将内容发给它后,将缓存置为Invalid。这就是臭名昭著的”请求所有权(Request For Ownership,RFO)”操作。在末级缓存执行RFO操作的代价比较高。如果是写通式缓存,还要加上将内容写入上一层缓存或主存的时间,进一步提升了代价。 对于Shared缓存线,本地处理器的读取操作并不需要修改状态,而且可以直接从缓存满足。而本地处理器的写入操作则需要将状态置为Modified,而且需要将缓存线在其它处理器的所有拷贝置为Invalid。因此,这个写入操作需要通过RFO消息发通知其它处理器。如果第二个处理器请求读取,无事发生。因为主存已经包含了当前数据,而且状态已经为Shared。如果第二个处理器需要写入,则将缓存线置为Invalid。不需要总线操作。

Exclusive状态与Shared状态很像,只有一个不同之处: 在Exclusive状态时,本地写入操作不需要在总线上声明,因为本地的缓存是系统中唯一的拷贝。这是一个巨大的优势,所以处理器会尽量将缓存线保留在Exclusive状态,而不是Shared状态。只有在信息不可用时,才退而求其次选择shared。放弃Exclusive不会引起任何功能缺失,但会导致性能下降,因为E→M要远远快于S→M。

从以上的说明中应该已经可以看出,在多处理器环境下,哪一步的代价比较大了。填充缓存的代价当然还是很高,但我们还需要留意RFO消息。一旦涉及RFO,操作就快不起来了。

RFO在两种情况下是必需的:

  • 线程从一个处理器迁移到另一个处理器,需要将所有缓存线移到新处理器。
  • 某条缓存线确实需要被两个处理器使用。{对于同一处理器的两个核心,也有同样的情况,只是代价稍低。RFO消息可能会被发送多次。}

多线程或多进程的程序总是需要同步,而这种同步依赖内存来实现。因此,有些RFO消息是合理的,但仍然需要尽量降低发送频率。除此以外,还有其它来源的RFO。在第6节中,我们将解释这些场景。缓存一致性协议的消息必须发给系统中所有处理器。只有当协议确定已经给过所有处理器响应机会之后,才能进行状态跃迁。也就是说,协议的速度取决于最长响应时间。{这也是现在能看到三插槽AMD Opteron系统的原因。这类系统只有三个超级链路(hyperlink),其中一个连接南桥,每个处理器之间都只有一跳的距离。}总线上可能会发生冲突,NUMA系统的延时很大,突发的流量会拖慢通信。这些都是让我们避免无谓流量的充足理由。

此外,关于多处理器还有一个问题。虽然它的影响与具体机器密切相关,但根源是唯一的——FSB是共享的。在大多数情况下,所有处理器通过唯一的总线连接到内存控制器(参见图2.1)。如果一个处理器就能占满总线(十分常见),那么共享总线的两个或四个处理器显然只会得到更有限的带宽。

即使每个处理器有自己连接内存控制器的总线,如图2.2,但还需要通往内存模块的总线。一般情况下,这种总线只有一条。退一步说,即使像图2.2那样不止一条,对同一个内存模块的并发访问也会限制它的带宽。

对于每个处理器拥有本地内存的AMD模型来说,也是同样的问题。的确,所有处理器可以非常快速地同时访问它们自己的内存。但是,多线程呢?多进程呢?它们仍然需要通过访问同一块内存来进行同步。

对同步来说,有限的带宽严重地制约着并发度。程序需要更加谨慎的设计,将不同处理器访问同一块内存的机会降到最低。以下的测试展示了这一点,还展示了与多线程代码相关的其它效果。

多线程测量

为了帮助大家理解问题的严重性,我们来看一些曲线图,主角也是前文的那个程序。只不过这一次,我们运行多个线程,并测量这些线程中最快那个的运行时间。也就是说,等它们全部运行完是需要更长时间的。我们用的机器有4个处理器,而测试是做多跑4个线程。所有处理器共享同一条通往内存控制器的总线,另外,通往内存模块的总线也只有一条。

图3.19展示了顺序读访问时的性能,元素为128字节长(64位计算机,NPAD=15)。对于单线程的曲线,我们预计是与图3.11相似,只不过是换了一台机器,所以实际的数字会有些小差别。

更重要的部分当然是多线程的环节。由于是只读,不会去修改内存,不会尝试同步。但即使不需要RFO,而且所有缓存线都可共享,性能仍然分别下降了18%(双线程)和34%(四线程)。由于不需要在处理器之间传输缓存,因此这里的性能下降完全由以下两个瓶颈之一或同时引起: 一是从处理器到内存控制器的共享总线,二是从内存控制器到内存模块的共享总线。当工作集超过L3后,三种情况下都要预取新元素,而即使是双线程,可用的带宽也无法满足线性扩展(无惩罚)。

当加入修改之后,场面更加难看了。图3.20展示了顺序递增测试的结果。

图中Y轴采用的是对数刻度,不要被看起来很小的差值欺骗了。现在,双线程的性能惩罚仍然是18%,但四线程的惩罚飙升到了93%!原因在于,采用四线程时,预取的流量与写回的流量加在一起,占满了整个总线。

我们用对数刻度来展示L1d范围的结果。可以发现,当超过一个线程后,L1d就无力了。单线程时,仅当工作集超过L1d时访问时间才会超过20个周期,而多线程时,即使在很小的工作集情况下,访问时间也达到了那个水平。

这里并没有揭示问题的另一方面,主要是用这个程序很难进行测量。问题是这样的,我们的测试程序修改了内存,所以本应看到RFO的影响,但在结果中,我们并没有在L2阶段看到更大的开销。原因在于,要看到RFO的影响,程序必须使用大量内存,而且所有线程必须同时访问同一块内存。如果没有大量的同步,这是很难实现的,而如果加入同步,则会占满执行时间。

最后,在图3.21中,我们展示了随机访问的Addnextlast测试的结果。这里主要是为了让大家感受一下这些巨大到爆的数字。极端情况下,甚至用了1500个周期才处理完一个元素。如果加入更多线程,真是不可想象哪。我们把多线程的效能总结了一下:

这个表展示了图3.21中多线程运行大工作集时的效能。表中的数字表示测试程序在使用多线程处理大工作集时可能达到的最大加速因子。双线程和四线程的理论最大加速因子分别是2和4。从表中数据来看,双线程的结果还能接受,但四线程的结果表明,扩展到双线程以上是没有什么意义的,带来的收益可以忽略不计。只要我们把图3.21换个方式呈现,就可以很容易看清这一点。

图3.22中的曲线展示了加速因子,即多线程相对于单线程所能获取的性能加成值。测量值的精确度有限,因此我们需要忽略比较小的那些数字。可以看到,在L2与L3范围内,多线程基本可以做到线性加速,双线程和四线程分别达到了2和4的加速因子。但是,一旦工作集的大小超出L3,曲线就崩塌了,双线程和四线程降到了基本相同的数值(参见表3.3中第4列)。也是部分由于这个原因,我们很少看到4CPU以上的主板共享同一个内存控制器。如果需要配置更多处理器,我们只能选择其它的实现方式(参见第5节)。

可惜,上图中的数据并不是普遍情况。在某些情况下,即使工作集能够放入末级缓存,也无法实现线性加速。实际上,这反而是正常的,因为普通的线程都有一定的耦合关系,不会像我们的测试程序这样完全独立。而反过来说,即使是很大的工作集,即使是两个以上的线程,也是可以通过并行化受益的,但是需要程序员的聪明才智。我们会在第6节进行一些介绍。

特例: 超线程

由CPU实现的超线程(有时又叫对称多线程,SMT)是一种比较特殊的情况,每个线程并不能真正并发地运行。它们共享着除寄存器外的绝大多数处理资源。每个核心和CPU仍然是并行工作的,但核心上的线程则受到这个限制。理论上,每个核心可以有大量线程,不过到目前为止,Intel的CPU最多只有两个线程。CPU负责对各线程进行时分复用,但这种复用本身并没有多少厉害。它真正的优势在于,CPU可以在当前运行的超线程发生延迟时,调度另一个线程。这种延迟一般由内存访问引起。

如果两个线程运行在一个超线程核心上,那么只有当两个线程合起来的运行时间少于单线程运行时间时,效率才会比较高。我们可以将通常先后发生的内存访问叠合在一起,以实现这个目标。有一个简单的计算公式,可以帮助我们计算如果需要某个加速因子,最少需要多少的缓存命中率。

程序的执行时间可以通过一个只有一级缓存的简单模型来进行估算(参见[htimpact]):

各变量的含义如下:

为了让任何判读使用双线程,两个线程之中任一线程的执行时间最多为单线程指令的一半。两者都有一个唯一的变量缓存命中数。 如果我们要解决最小缓存命中率相等的问题需要使我们获得的线程的执行率不少于50%或更多,如图 3.23.

X轴表示单线程指令的缓存命中率Ghit,Y轴表示多线程指令所需的缓存命中率。这个值永远不能高于单线程命中率,否则,单线程指令也会使用改良的指令。为了使单线程的命中率在低于55%的所有情况下优于使用多线程,cup要或多或少的足够空闲因为缓存丢失会运行另外一个超线程。

绿色区域是我们的目标。如果线程的速度没有慢过50%,而每个线程的工作量只有原来的一半,那么它们合起来的耗时应该会少于单线程的耗时。对我们用的示例系统来说(使用超线程的P4机器),如果单线程代码的命中率为60%,那么多线程代码至少要达到10%才能获得收益。这个要求一般来说还是可以做到的。但是,如果单线程代码的命中率达到了95%,那么多线程代码要做到80%才行。这就很难了。而且,这里还涉及到超线程,在两个超线程的情况下,每个超线程只能分到一半的有效缓存。因为所有超线程是使用同一个缓存来装载数据的,如果两个超线程的工作集没有重叠,那么原始的95%也会被打对折——47%,远低于80%。

因此,超线程只在某些情况下才比较有用。单线程代码的缓存命中率必须低到一定程度,从而使缓存容量变小时新的命中率仍能满足要求。只有在这种情况下,超线程才是有意义的。在实践中,采用超线程能否获得更快的结果,取决于处理器能否有效地将每个进程的等待时间与其它进程的执行时间重叠在一起。并行化也需要一定的开销,需要加到总的运行时间里,这个开销往往是不能忽略的。

在6.3.4节中,我们会介绍一种技术,它将多个线程通过公用缓存紧密地耦合起来。这种技术适用于许多场合,前提是程序员们乐意花费时间和精力扩展自己的代码。

如果两个超线程执行完全不同的代码(两个线程就像被当成两个处理器,分别执行不同进程),那么缓存容量就真的会降为一半,导致缓冲未命中率大为攀升,这一点应该是很清楚的。这样的调度机制是很有问题的,除非你的缓存足够大。所以,除非程序的工作集设计得比较合理,能够确实从超线程获益,否则还是建议在BIOS中把超线程功能关掉。{我们可能会因为另一个原因 开启 超线程,那就是调试,因为SMT在查找并行代码的问题方面真的非常好用。}

3.3.5 其它细节

我们已经介绍了地址的组成,即标签、集合索引和偏移三个部分。那么,实际会用到什么样的地址呢?目前,处理器一般都向进程提供虚拟地址空间,意味着我们有两种不同的地址: 虚拟地址和物理地址。

虚拟地址有个问题——并不唯一。随着时间的变化,虚拟地址可以变化,指向不同的物理地址。同一个地址在不同的进程里也可以表示不同的物理地址。那么,是不是用物理地址会比较好呢?

问题是,处理器指令用的虚拟地址,而且需要在内存管理单元(MMU)的协助下将它们翻译成物理地址。这并不是一个很小的操作。在执行指令的管线(pipeline)中,物理地址只能在很后面的阶段才能得到。这意味着,缓存逻辑需要在很短的时间里判断地址是否已被缓存过。而如果可以使用虚拟地址,缓存查找操作就可以更早地发生,一旦命中,就可以马上使用内存的内容。结果就是,使用虚拟内存后,可以让管线把更多内存访问的开销隐藏起来。

处理器的设计人员们现在使用虚拟地址来标记第一级缓存。这些缓存很小,很容易被清空。在进程页表树发生变更的情况下,至少是需要清空部分缓存的。如果处理器拥有指定变更地址范围的指令,那么可以避免缓存的完全刷新。由于一级缓存L1i及L1d的时延都很小(~3周期),基本上必须使用虚拟地址。

对于更大的缓存,包括L2和L3等,则需要以物理地址作为标签。因为这些缓存的时延比较大,虚拟到物理地址的映射可以在允许的时间里完成,而且由于主存时延的存在,重新填充这些缓存会消耗比较长的时间,刷新的代价比较昂贵。

一般来说,我们并不需要了解这些缓存处理地址的细节。我们不能更改它们,而那些可能影响性能的因素,要么是应该避免的,要么是有很高代价的。填满缓存是不好的行为,缓存线都落入同一个集合,也会让缓存早早地出问题。对于后一个问题,可以通过缓存虚拟地址来避免,但作为一个用户级程序,是不可能避免缓存物理地址的。我们唯一可以做的,是尽最大努力不要在同一个进程里用多个虚拟地址映射同一个物理地址。

另一个细节对程序员们来说比较乏味,那就是缓存的替换策略。大多数缓存会优先逐出最近最少使用(Least Recently Used,LRU)的元素。这往往是一个效果比较好的策略。在关联性很大的情况下(随着以后核心数的增加,关联性势必会变得越来越大),维护LRU列表变得越来越昂贵,于是我们开始看到其它的一些策略。

在缓存的替换策略方面,程序员可以做的事情不多。如果缓存使用物理地址作为标签,我们是无法找出虚拟地址与缓存集之间关联的。有可能会出现这样的情形: 所有逻辑页中的缓存线都映射到同一个缓存集,而其它大部分缓存却空闲着。即使有这种情况,也只能依靠OS进行合理安排,避免频繁出现。

虚拟化的出现使得这一切变得更加复杂。现在不仅操作系统可以控制物理内存的分配。虚拟机监视器(VMM,也称为 hypervisor)也负责分配内存。

对程序员来说,最好 a) 完全使用逻辑内存页面 b) 在有意义的情况下,使用尽可能大的页面大小来分散物理地址。更大的页面大小也有其他好处,不过这是另一个话题(见第4节)。

产生线程安全的原因(3)(操作系统)相关推荐

  1. 产生线程安全的原因(4)(操作系统)

    3.4 指令缓存 其实,不光处理器使用的数据被缓存,它们执行的指令也是被缓存的.只不过,指令缓存的问题相对来说要少得多,因为: 执行的代码量取决于代码大小.而代码大小通常取决于问题复杂度.问题复杂度则 ...

  2. 多线程编程:线程死锁的原因以及解决方法

    多线程编程:线程死锁的原因以及解决方法 关于线程死锁这个问题相信程序员在编写多线程程序时会经常遇到的一个经典问题,这种情况往往出现在多个线程同时对临界资源访问时所产生的. 属于临界资源的硬件有打印机. ...

  3. 调试JDK源码-Hashtable实现原理以及线程安全的原因

    调试JDK源码-一步一步看HashMap怎么Hash和扩容 调试JDK源码-ConcurrentHashMap实现原理 调试JDK源码-HashSet实现原理 调试JDK源码-调试JDK源码-Hash ...

  4. java 线程安全的原因_Java并发编程——线程安全性深层原因

    线程安全性深层原因 这里我们将会从计算机硬件和编辑器等方面来详细了解线程安全产生的深层原因. 缓存一致性问题 CPU内存架构 随着CPU的发展,而因为CPU的速度和内存速度不匹配的问题(CPU寄存器的 ...

  5. 线程安全问题的原因和解决方案

    一.首先产生线程安全的原因: (一)站在开发者的角度看:①多个线程之间操作同一个数据②至少有一个线程修改这个数据(不是读操作而是写操作) (二)站在系统的角度看:一条语句对应多个指令,线程调度可以发生 ...

  6. 导致线程死锁的原因?怎么解除线程死锁

    欢迎大家关注我的公众号[老周聊架构],Java后端主流技术栈的原理.源码分析.架构以及各种互联网高并发.高性能.高可用的解决方案. 一.导致线程死锁的原因 多个线程同时被阻塞,它们中的一个或者全部都在 ...

  7. 引发线程安全的原因是什么?怎么解决?程序员一定要掌握的东西

    目录 前言 一.引发线程安全的原因 1.抢占式执行 2.多线程修改同一个变量 3.操作是原子的 4.指令重排序 5.内存的可见性问题 对于线程不安全问题,如何解决? Java的代码中如何进行加锁呢? ...

  8. 产生线程安全的原因(1)(操作系统)

    首先了解cpu 告诉缓存问题和架构 这是Ulrich Drepper写"程序员都该知道存储器"的第二部.那些没有读过第一部 的读者可能希望从这一部开始.这本书写的非常好,并且感谢U ...

  9. 产生线程安全的原因(2)(操作系统)

    3.3.2 Cache的性能测试 用于测试程序的数据可以模拟一个任意大小的工作集:包括读.写访问,随机.连续访问.在图3.4中我们可以看到,程序为工作集创建了一个与其大小和元素类型相同的数组: str ...

最新文章

  1. 计算机软件可以一次摊销吗,研发用无形资产可以一次摊销吗
  2. 流式传输大数据:Storm,Spark和Samza
  3. 二进制安装mysql-5.7.26
  4. 常见算法详解(原理及代码实现Python版本)
  5. pde中微元分析法的主要思想_有限元方法的核心思想
  6. 关于PHPExcel 导出下载表格,调试器响应乱码
  7. Selenium学习之==Switch与SelectApi接口详解
  8. icon 做成html形式,一段生成iconfont预览html的代码
  9. Google Chrome 最新市场份额
  10. 图片随意移动,可以拖动图片计算
  11. centos 最小化安装 补充命令_CentOS7安装后没网络的解决方法
  12. java二叉树递归算法_Java二叉树的四种遍历(递归和非递归)
  13. java 向后台传两个json数据类型_前台向后台传递JSON字符串,处理JSON字符串类型的方法...
  14. 紫猫中控-脚本界面的基本设计和代码结构
  15. 详解自动驾驶安全软件开发流程
  16. Mac怎么安装Andriod模拟器
  17. 【清华大学】操作系统 陈渝——Part5 虚拟存储概念
  18. day2-requests和bs4
  19. Ubuntu/Windows配置AlphaPose填坑(亲测有效)
  20. 含论文基于JAVA的户籍信息管理系统【数据库设计、源码、开题报告】

热门文章

  1. It's highly recommended that you fix the library with 'execstack -c libfile', or link it with '-z
  2. fatal error: opencv2/core/cvdef.h: 沒有此一檔案或目錄
  3. codeblocks运行结果输出的对话框字体太小的问题
  4. Linux报错:Syntax error: ( unexpected解决办法(转)
  5. spark中累加器的使用(转)
  6. springboot连接SQL数据库配置application
  7. 视图解析器中配置前缀和后缀---SpringMVC学习笔记(五)
  8. Hash索引和BTree索引
  9. 机房管理系列之工作站
  10. C++ 解决enum redeclaration的冲突