从Kaggle官网下载数据:train 、test。

赛事描述:

  • 泰坦尼克号的沉没是历史上最臭名昭著的沉船之一。1912年4月15日,泰坦尼克号在处女航时与冰山相撞沉没,2224名乘客和船员中有1502人遇难。这一耸人听闻的悲剧震惊了国际社会,并导致更好的船舶安全法规。船难造成如此巨大的人员伤亡的原因之一是船上没有足够的救生艇供乘客和船员使用。虽然在沉船事件中幸存下来是有运气因素的,但有些人比其他人更有可能存活下来。比如妇女、儿童和上层阶级。
  • 在此次比赛中,我们需要参赛者预测哪一类人更有可能存活下来。尤其是,我们需要你用机器学习的工具去预测哪些乘客在这次灾难中幸存。

目录

  • 提出问题
  • 理解数据
  • 数据处理(数据预处理and特征工程)
  • 模型构建与评估
  • 总结

一.提出问题:

根据已知信息预测test中418名乘客生存与否,并将预测结果提交。

问题分析:

即基于一组预测变量预测一个分类结果(二分类)。有监督机器学习领域中包含可用于分类的方法:逻辑回归、KNN、决策树、随机森林、支持向量机、神经网络等。本文选择Logistic 和 KNN 来做分类预测。

二.理解数据:

先初步了解一下变量个数、数据类型、分布情况、缺失情况等,并做出一些猜想。

#调入所需模块
#数据处理
import numpy as np
import pandas as pd
import re#作图
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
#设置作图风格
sns.set_style("darkgrid")

OK,先浏览数据:

#读取数据
train = pd.read_csv(r"G:\Kaggle\Titanic\train.csv")
test = pd.read_csv(r"G:\Kaggle\Titanic\test.csv")
#看一下训练集前6行
train.head(6)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
5 6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q

训练集字段:乘客ID、是否生存、舱位等级、姓名、性别、年龄、堂兄弟和堂兄妹个数、父母和孩子的个数、船票编码、票价、客舱、上船口岸。

#随机查看测试集的数据
test.sample(6)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
417 1309 3 Peter, Master. Michael J male NaN 1 1 2668 22.3583 NaN C
224 1116 1 Candee, Mrs. Edward (Helen Churchill Hungerford) female 53.0 0 0 PC 17606 27.4458 NaN C
99 991 3 Nancarrow, Mr. William Henry male 33.0 0 0 A./5. 3338 8.0500 NaN S
410 1302 3 Naughton, Miss. Hannah female NaN 0 0 365237 7.7500 NaN Q
41 933 1 Franklin, Mr. Thomas Parham male NaN 0 0 113778 26.5500 D34 S
70 962 3 Mulvihill, Miss. Bertha E female 24.0 0 0 382653 7.7500 NaN Q

与训练集相比,少了目标变量Survived,其余字段都是一样的。

train.info()
print("==" * 50)
test.info()
#查看数值型数据情况:
train.describe()
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Survived Pclass Age SibSp Parch Fare
count 891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208
std 257.353842 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429
min 1.000000 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200
75% 668.500000 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200
#查看字符型数据情况:
train.describe(include=['O'])
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Name Sex Ticket Cabin Embarked
count 891 891 891 204 889
unique 891 2 681 147 3
top Kink-Heilmann, Miss. Luise Gretchen male 1601 C23 C25 C27 S
freq 1 577 7 4 644

A.基本描述:

  • 类别型变量:Survived、Pclass(顺序)、Sex、Embarked。数值型变量:Age、 SibSp(离散)、Parch(离散)、Fare.

  • 总共4个字段有缺失,缺失程度不一样(Age、Cabin缺较多,Fare、Embarked缺较少)

  • 训练集中:

    • (1)共有891名乘客,生存率为38%
    • (2)年龄最小为0.42,最大为80岁,除去缺失值,平均年龄为29,高龄人士较少
    • (3)约25%的乘客有一个或以上的兄弟姐妹陪伴的,75%以上的乘客没有与父母孩子同行
    • (4)票价平均值在32美元,最高值在512美元,差距较大
    • (5)每个人的名字都是无重复的
    • (6)男性共计577人,男乘客较女乘客多
    • (7)Ticket有681个不同的值
    • (8)Cabin的数据缺失较多,891人中有记录的仅为204人
    • (9)上船口岸有缺失值,644人在S港口上船,占比较大

B.猜想:

现已知目标变量为Survived,其余都作为建模可供考虑的特征。下面我们要探究一下现有的每一个变量对乘客生存的影响程度,有用的留下,没用的删除,也看能不能发掘出新的信息帮助构建模型。可做出以下猜想:

1.Pclass、Fare反映一个人的身份、财力情况,在危难关头,社会等级高的乘客的生存率比等级低的乘客的生存率高。

2.在灾难发生时,人类社会的尊老爱幼、女性优先必会起作用。故老幼、女性生存率更高。

3.有多个亲人同行的话,人多力量大,生存率可能更高些。

4.名字、Ticket看不出能反映什么,可能会删掉。

5.Id在记录数据中有用,在分析中没什么用,删掉。

C:缺失数据:

对于缺失的数据,需要根据不同情况进行处理。

处理缺失值方式(在scikit-learn中,build models时若有缺失值会报错):

  • 删(简单粗暴,dropna)

    • 完整实例删除,即删行(简单粗暴,当样本量大,且缺失案例较少时用)
    • 删除有缺失值的特征(该列缺失严重,且该特征对建模效果影响不大时用)
  • Imputation(从已知的部分数据中推断出缺失值,虽然估计值并不绝对百正确,但是比上述删除列的做法来说,此法建模效果更好一点)

    • 用该特征的均值、中位数、众数等去估算(普通版)
    • 由其他已知的数值型数据,去估算缺失值的值(进阶版)

D.数据类型转换:

字符型都要转换成数值型数据。

# 三.数据处理(数据预处理and特征工程) 首先合并train和test,为了后续写代码能同时处理两个数据集:

combination_data = [train,test]

**下面将根据现在数据的类型,分数值型和字符串来讨论、研究,同时完成缺失值进行处理、根据每个变量与生存率之间的关系进行选择,必要时将删除变量或者创造出新的变量来帮助模型的构建。最终所有的数据类型都将处理为数值型。** ## 数值型: - PassengerId 乘客编码,做区分用,对预测无作用,删掉。

del train["PassengerId"]

- Pclass 船舱分三等,某种程度上代表了乘客的身份、社会地位,下面探究一下Pclass的作用:

train[["Pclass","Survived"]].groupby("Pclass",as_index=False).mean().sort_values(by="Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Pclass Survived
0 1 0.629630
1 2 0.472826
2 3 0.242363
sns.barplot(x="Pclass",y="Survived",data=train)
train[["SibSp","Survived"]].groupby("SibSp",as_index=False).mean().sort_values(by="Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

SibSp Survived
1 1 0.535885
2 2 0.464286
0 0 0.345395
3 3 0.250000
4 4 0.166667
5 5 0.000000
6 8 0.000000

SibSp为3、4、5、8人时,生存率都较小,甚至为0,有影响但不明显。

  • Parch
train[["Parch","Survived"]].groupby("Parch",as_index=False).mean().sort_values(by="Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Parch Survived
3 3 0.600000
1 1 0.550847
2 2 0.500000
0 0 0.343658
5 5 0.200000
4 4 0.000000
6 6 0.000000

看到Parch为4、5、6的生存率也较小,影响不是很明显。跟上面的SibSp情况类似,现将两变量人数合起来看对生存率的影响如何:

for dataset in combination_data:dataset["Family"] = dataset["SibSp"] + dataset["Parch"] + 1
train[["Family","Survived"]].groupby("Family",as_index=False).mean().sort_values(by="Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Family Survived
3 4 0.724138
2 3 0.578431
1 2 0.552795
6 7 0.333333
0 1 0.303538
4 5 0.200000
5 6 0.136364
7 8 0.000000
8 11 0.000000
sns.countplot(x="Family",hue="Survived",data=train)
for dataset in combination_data:dataset["Family_size"] = 0    #创建新的一列dataset.loc[dataset["Family"] == 1,"Family_size"] = 1                              #小家庭(独自一人)dataset.loc[(dataset["Family"] > 1) & (dataset["Family"] <= 4),"Family_size"] = 2  #中家庭(2-4)dataset.loc[dataset["Family"] > 4,"Family_size"] = 3                                #大家庭(5-11)dataset["Family_size"] = dataset["Family_size"].astype(int)

同时,我们也可考虑家庭成员的陪伴对生存率是否有影响,来看是否需要构建一个新的特征:

for dataset in combination_data:dataset["Alone"] = dataset["Family"].map(lambda x : 1 if x==1 else 0)
train[["Alone","Survived"]].groupby("Alone",as_index=False).mean().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Alone Survived
0 0 0.505650
1 1 0.303538
sns.barplot(x="Alone",y="Survived",data=train)
for dataset in combination_data:dataset.drop(["SibSp","Parch","Family"],axis=1,inplace=True)

我们加入Pclass来考虑此问题:

sns.factorplot(x="Pclass",y="Survived",hue="Alone",data=train)
train.Age.describe()

count 714.000000 mean 29.699118 std 14.526497 min 0.420000 25% 20.125000 50% 28.000000 75% 38.000000 max 80.000000 Name: Age, dtype: float64

#查看Age的分布情况
sns.violinplot(y="Age",data=train)
#查看生存与死亡乘客的年龄分布
sns.violinplot(y="Age",x="Survived",data=train)
train["Age_group"] = pd.cut(train.Age,5)
train[["Age_group","Survived"]].groupby("Age_group",as_index=False).mean().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Age_group Survived
0 (0.34, 16.336] 0.550000
3 (48.168, 64.084] 0.434783
2 (32.252, 48.168] 0.404255
1 (16.336, 32.252] 0.369942
4 (64.084, 80.0] 0.090909
sns.barplot(x="Age_group",y="Survived",data=train)
del train["Age_group"]

下面要填补Age的缺失值,先查看Age列的情况

train.Age.isnull().sum()

177 train数据集的891个乘客中,177人(接近20%)的年龄数据缺失,平均年龄为29.7,标准差为14.5,中位数为28。 对于age的缺失值,暂时用平均值跟标准差填补,这在某种程度上引入了噪声。后期学到更高级的估算,再回来修改。

for dataset in combination_data:Age_avg = dataset.Age.mean()Age_std = dataset["Age"].std()missing_number = dataset["Age"].isnull().sum()dataset["Age"][np.isnan(dataset["Age"])] = np.random.randint(Age_avg - Age_std, Age_avg + Age_std, missing_number)dataset["Age"] = dataset["Age"].astype(int) 

F:\Anaconda\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy “””

#仍是采用5组:
for dataset in combination_data:dataset["Age_group"] = pd.cut(dataset.Age, 5)
#现在我们以新的标识符来记录每人的分组:
for dataset in combination_data:dataset.loc[dataset["Age"]  <= 16,"Age"] = 0dataset.loc[(dataset["Age"] > 16) & (dataset["Age"] <= 32), "Age"] = 1dataset.loc[(dataset["Age"] > 32) & (dataset["Age"] <= 48), "Age"] = 2dataset.loc[(dataset["Age"] > 48) & (dataset["Age"] <= 64), "Age"] = 3dataset.loc[dataset["Age"]  > 64, "Age"] = 4
for dataset in combination_data:dataset.drop("Age_group",axis=1,inplace=True)

- Fare

train.Fare.describe()

count 891.000000 mean 32.204208 std 49.693429 min 0.000000 25% 7.910400 50% 14.454200 75% 31.000000 max 512.329200 Name: Fare, dtype: float64

sns.violinplot(y="Fare",data=train)
#对比生死乘客的票价
sns.violinplot(y="Fare",x="Survived",data=train)
train["Fare_group"] = pd.qcut(train["Fare"],4) #分段
train[["Fare_group","Survived"]].groupby("Fare_group",as_index=False).mean()
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Fare_group Survived
0 (-0.001, 7.91] 0.197309
1 (7.91, 14.454] 0.303571
2 (14.454, 31.0] 0.454955
3 (31.0, 512.329] 0.581081

随着票价的升高,乘客的生存率也是逐渐升高。所以将Fare作为一个考虑特征。

测试集中Fare有两个缺失值,我们选择用中位数填补:

test["Fare"].fillna(test["Fare"].median(),inplace=True)
for dataset in combination_data:dataset.loc[dataset["Fare"]  <= 7.91,"Fare"] = 0dataset.loc[(dataset["Fare"] >  7.91)   & (dataset["Fare"] <= 14.454), "Fare"] = 1dataset.loc[(dataset["Fare"] >  14.454) & (dataset["Fare"] <= 31.0),   "Fare"] = 2dataset.loc[dataset["Fare"]  >  31.0, "Fare"] = 3dataset["Fare"] = dataset["Fare"].astype(int)
del train["Fare_group"]

## 字符型 ### Name 成员的名字没有重复项,本可删掉。但从别人的文章得知,外国人的名字长度、头衔也能反映一个人的身份地位,于是我们来探究一下这两个因素对生存率的影响: (1)名字长度

for dataset in combination_data:dataset["The_length_of_name"] = dataset["Name"].map(lambda x:len(re.split(" ",x)))
train[["The_length_of_name","Survived"]].groupby("The_length_of_name",as_index=False).mean().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

The_length_of_name Survived
6 9 1.000000
7 14 1.000000
4 7 0.842105
3 6 0.773585
5 8 0.555556
2 5 0.427083
1 4 0.340206
0 3 0.291803
sns.barplot(x="The_length_of_name",y="Survived",data=train)
from sklearn.preprocessing import StandardScaler
Stdsca = StandardScaler()
name_length1 = Stdsca.fit_transform(train[["The_length_of_name"]])
name_length1 = pd.DataFrame(name_length1,columns=["name_length"])
train = pd.concat([train,name_length1],axis=1)
#同理,test也做标准化处理
name_length2 = Stdsca.fit_transform(test[["The_length_of_name"]])
name_length2 = pd.DataFrame(name_length2,columns=["name_length"])
test = pd.concat([test,name_length2],axis=1)
#把新数据联合起来
combination_data = [train,test]
#删除原名字长度
for dataset in combination_data:del dataset["The_length_of_name"]

(2)头衔

#查看一下名字的样式
train.Name.head(7)

0 Braund, Mr. Owen Harris 1 Cumings, Mrs. John Bradley (Florence Briggs Th… 2 Heikkinen, Miss. Laina 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) 4 Allen, Mr. William Henry 5 Moran, Mr. James 6 McCarthy, Mr. Timothy J Name: Name, dtype: object

#将title取出当新的一列
for dataset in combination_data:dataset["Title"] = dataset["Name"].str.extract("([A-Za-z]+)\.",expand=False)
train.sample(4)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Name Sex Age Ticket Fare Cabin Embarked Family_size Alone name_length Title
271 1 3 Tornquist, Mr. William Henry male 1 LINE 0 NaN S 1 1 -0.059474 Mr
389 1 2 Lehmann, Miss. Bertha female 1 SC 1748 1 NaN C 1 1 -0.914177 Miss
40 0 3 Ahlin, Mrs. Johan (Johanna Persdotter Larsson) female 2 7546 1 NaN S 2 0 1.649930 Mrs
709 1 3 Moubarek, Master. Halim Gonios (“William George”) male 1 2661 2 NaN C 2 0 1.649930 Master
#title跟Sex有联系,联合起来分析
pd.crosstab(train.Title,train.Sex)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Sex female male
Title
Capt 0 1
Col 0 2
Countess 1 0
Don 0 1
Dr 1 6
Jonkheer 0 1
Lady 1 0
Major 0 2
Master 0 40
Miss 182 0
Mlle 2 0
Mme 1 0
Mr 0 517
Mrs 125 0
Ms 1 0
Rev 0 6
Sir 0 1
#Title较多集中于Master、Miss、Mr、Mrs,对于其他比较少的进行归类:
for dataset in combination_data:dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
#探索title与生存的关系
train[["Title","Survived"]].groupby("Title",as_index=False).mean().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Title Survived
3 Mrs 0.793651
1 Miss 0.702703
0 Master 0.575000
4 Rare 0.347826
2 Mr 0.156673
sns.barplot(x="Title",y="Survived",data=train)
#将各头衔转换为数值型数据
for dataset in combination_data:dataset["Title"] = dataset["Title"].map({"Mr":1,"Mrs":2,"Miss":3,"Master":4,"Rare":5})dataset["Title"] = dataset["Title"].fillna(0)
#删除原先的Name特征
for dataset in combination_data:del dataset["Name"]
#查看一下现在的数据
train.head(3)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Sex Age Ticket Fare Cabin Embarked Family_size Alone name_length Title
0 0 3 male 1 A/5 21171 0 NaN S 2 0 -0.059474 1
1 1 1 female 2 PC 17599 3 C85 C 2 0 2.504633 2
2 1 3 female 1 STON/O2. 3101282 1 NaN S 1 1 -0.914177 3
  • Sex

在分析title时,我们已知道性别对生存的影响存在,下面我们专门就Sex来研究一下:

train[["Sex","Survived"]].groupby("Sex",as_index=False).mean().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Sex Survived
0 female 0.742038
1 male 0.188908
sns.countplot(x="Sex",hue="Survived",data=train)
train[["Pclass","Sex","Survived"]].groupby(["Pclass","Sex"],as_index=False).mean().sort_values(by="Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Pclass Sex Survived
0 1 female 0.968085
2 2 female 0.921053
4 3 female 0.500000
1 1 male 0.368852
3 2 male 0.157407
5 3 male 0.135447
sns.factorplot(x="Pclass",y="Survived",hue="Sex",data=train)
#将字符串类型转换成数值型,0表示男性,1表示女性。
for dataset in combination_data:dataset["Sex"] = dataset["Sex"].map({"male":0,"female":1})
train.head(4)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Sex Age Ticket Fare Cabin Embarked Family_size Alone name_length Title
0 0 3 0 1 A/5 21171 0 NaN S 2 0 -0.059474 1
1 1 1 1 2 PC 17599 3 C85 C 2 0 2.504633 2
2 1 3 1 1 STON/O2. 3101282 1 NaN S 1 1 -0.914177 3
3 1 1 1 2 113803 3 C123 S 2 0 2.504633 2
  • Cabin
#从describe已知Cabin缺失较多
a = train.Cabin.isnull().sum()
print("缺失个数:%d" % a)

缺失个数:687 超过75%的数据缺失,故不打算填补。考虑以Cabin是否缺失来构建一个新特征,看是否对生存有影响。若没有影响,则删除该列。

train["Cabin_exist"] = train.Cabin.map(lambda x : "Yes" if type(x)==str else "No")
train[["Cabin_exist", "Survived"]].groupby("Cabin_exist",as_index=False).mean()
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Cabin_exist Survived
0 No 0.299854
1 Yes 0.666667
sns.barplot(x="Cabin_exist",y="Survived",data=train)
#需将此列转换为数值型变量,删掉再构建一遍
del train["Cabin_exist"]
#船舱存在用1表示,缺失则用0表示
for dataset in combination_data:dataset["Cabin_exist"] = dataset["Cabin"].map(lambda x : 1 if type(x)==str else 0)
#将原Cabin删掉
for dataset in combination_data:del dataset["Cabin"]
train.head(3)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Sex Age Ticket Fare Embarked Family_size Alone name_length Title Cabin_exist
0 0 3 0 1 A/5 21171 0 S 2 0 -0.059474 1 0
1 1 1 1 2 PC 17599 3 C 2 0 2.504633 2 1
2 1 3 1 1 STON/O2. 3101282 1 S 1 1 -0.914177 3 0
  • Embarked

该列有缺失值。我们先研究一下不同的上船地点对生存率是否有影响:

train[["Embarked","Survived"]].groupby("Embarked",as_index=False).count().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Embarked Survived
2 S 644
0 C 168
1 Q 77
train[["Embarked","Survived"]].groupby("Embarked",as_index=False).mean().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Embarked Survived
0 C 0.553571
1 Q 0.389610
2 S 0.336957
sns.barplot(x="Embarked",y="Survived",data=train)
sns.factorplot(x="Pclass",y="Survived",hue="Embarked",data=train)
train[["Sex","Survived","Embarked"]].groupby(["Sex","Embarked"],as_index=False).count().sort_values("Survived",ascending=False)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Sex Embarked Survived
2 0 S 441
5 1 S 203
0 0 C 95
3 1 C 73
1 0 Q 41
4 1 Q 36

S口岸,登船人数644,女性乘客占比46%;C口岸,登船人数168,女性占比接近77%;Q口岸,登船人数77,女性占比接近88%。前面已知女性生存率明显高于男性生存率,所以上述问题可能由性别因素引起。

缺失值处理:在查看数据集的时候,我们已知较多人在S口岸上岸,而Embarked缺失2个。于是我们选择用S来替换train的缺失值:

train["Embarked"] = train.Embarked.fillna("S")
#将Embarked转换成数值型数据:
for dataset in combination_data:dataset["Embarked"] = dataset["Embarked"].map({"C":0,"Q":1,"S":2}).astype(int)
train.head(2)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Sex Age Ticket Fare Embarked Family_size Alone name_length Title Cabin_exist
0 0 3 0 1 A/5 21171 0 2 2 0 -0.059474 1 0
1 1 1 1 2 PC 17599 3 0 2 0 2.504633 2 1
  • Ticket
train.Ticket.sample(10)

749 335097 87 SOTON/OQ 392086 179 LINE 682 6563 629 334912 586 237565 159 CA. 2343 466 239853 539 13568 419 345773 Name: Ticket, dtype: object 该列无缺失值,但信息较为混乱,有681个不重复值,删掉不做考虑。

for dataset in combination_data:del dataset["Ticket"]

## 特征选择 数据处理完毕,现在看一下我们的特征:

train.tail(4)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Sex Age Fare Embarked Family_size Alone name_length Title Cabin_exist
887 1 1 1 1 2 2 1 1 -0.059474 3 1
888 0 3 1 1 2 2 2 0 0.795228 3 0
889 1 1 0 1 2 0 1 1 -0.059474 1 1
890 0 3 0 1 0 1 1 1 -0.914177 1 0
test.head(4)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Pclass Sex Age Fare Embarked Family_size Alone name_length Title Cabin_exist
0 892 3 0 2 0 1 1 1 -0.933840 1 0
1 893 3 1 2 0 2 2 0 0.716668 2 0
2 894 2 0 3 1 1 1 1 -0.108586 1 0
3 895 3 0 1 1 2 1 1 -0.933840 1 0

下面通过计算各个特征与标签的相关系数,来选择特征。

corr_df = train.corr()
corr_df
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

Survived Pclass Sex Age Fare Embarked Family_size Alone name_length Title Cabin_exist
Survived 1.000000 -0.338481 0.543351 -0.049290 0.295875 -0.167675 0.108631 -0.203367 0.278520 0.405921 0.316912
Pclass -0.338481 1.000000 -0.131900 -0.308842 -0.628459 0.162098 -0.043973 0.135207 -0.222866 -0.120491 -0.725541
Sex 0.543351 -0.131900 1.000000 -0.087157 0.248940 -0.108262 0.280570 -0.303646 0.375797 0.564438 0.140391
Age -0.049290 -0.308842 -0.087157 1.000000 0.066096 -0.039259 -0.187662 0.144766 0.052876 -0.194844 0.225237
Fare 0.295875 -0.628459 0.248940 0.066096 1.000000 -0.112248 0.559259 -0.568942 0.320767 0.265495 0.497108
Embarked -0.167675 0.162098 -0.108262 -0.039259 -0.112248 1.000000 -0.004951 0.063532 0.032424 -0.082845 -0.160196
Family_size 0.108631 -0.043973 0.280570 -0.187662 0.559259 -0.004951 1.000000 -0.923090 0.311132 0.328943 0.088993
Alone -0.203367 0.135207 -0.303646 0.144766 -0.568942 0.063532 -0.923090 1.000000 -0.369259 -0.289292 -0.158029
name_length 0.278520 -0.222866 0.375797 0.052876 0.320767 0.032424 0.311132 -0.369259 1.000000 0.124584 0.184484
Title 0.405921 -0.120491 0.564438 -0.194844 0.265495 -0.082845 0.328943 -0.289292 0.124584 1.000000 0.104024
Cabin_exist 0.316912 -0.725541 0.140391 0.225237 0.497108 -0.160196 0.088993 -0.158029 0.184484 0.104024 1.000000
#查看各特征与Survived的线性相关系数
corr_df["Survived"].sort_values(ascending=False)

Survived 1.000000 Sex 0.543351 Title 0.405921 Cabin_exist 0.316912 Fare 0.295875 name_length 0.278520 Family_size 0.108631 Age -0.049290 Embarked -0.167675 Alone -0.203367 Pclass -0.338481 Name: Survived, dtype: float64 正线性相关前三为:Sex、Title、Cabin_exist;负线性相关前三:Pclass、Alone、Embarked。

#用图形直观查看线性相关系数
plt.figure(figsize=(13,13))
plt.title("Pearson Correlation of Features")
sns.heatmap(corr_df,linewidths=0.1,square=True,linecolor="white",annot=True,cmap='YlGnBu',vmin=-1,vmax=1)
for dataset in combination_data:del dataset["Family_size"]
test.head(3)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Pclass Sex Age Fare Embarked Alone name_length Title Cabin_exist
0 892 3 0 2 0 1 1 -0.933840 1 0
1 893 3 1 2 0 2 0 0.716668 2 0
2 894 2 0 3 1 1 1 -0.108586 1 0
#查看删去Family_size的线性相关情况:
corr_df2 = train.corr()
corr_df2["Survived"].sort_values(ascending=False)

Survived 1.000000 Sex 0.543351 Title 0.405921 Cabin_exist 0.316912 Fare 0.295875 name_length 0.278520 Age -0.049290 Embarked -0.167675 Alone -0.203367 Pclass -0.338481 Name: Survived, dtype: float64

plt.figure(figsize=(13,13))
plt.title("Pearson Correlation of Features2")
sns.heatmap(corr_df2,linewidths=0.1,square=True,linecolor="white",annot=True,cmap='YlGnBu',vmin=-1,vmax=1)

# 四.模型构建与评估

#划分训练集、训练集数据
#一般情况下,会用train_test_split来按比例划分数据集,但是Kaggle已经划分好,我们只需做预测并提交答案即可
x_train = train.drop("Survived",axis=1)
y_train =train["Survived"]
x_test = test.drop("PassengerId",axis=1)

## 1.Logistic回归

from sklearn.linear_model import LogisticRegression
Classifier1 = LogisticRegression()
#训练模型
Classifier1.fit(x_train,y_train)
#预测
Y1_prediction = Classifier1.predict(x_test)
#模型评估
score_Logit = Classifier1.score(x_train,y_train)
score_Logit

0.79685746352413023

#各个特征对应的系数
Classifier1.coef_

array([[-0.77898168, 2.00093191, -0.33760786, -0.08497359, -0.30653537, 0.20655901, 0.28367358, 0.37006791, 0.76227031]])

Final = pd.DataFrame({"PassengerId":test["PassengerId"],"Survived":Y1_prediction})
Final.head(10)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Survived
0 892 0
1 893 0
2 894 0
3 895 0
4 896 1
5 897 0
6 898 1
7 899 0
8 900 1
9 901 0
Final.to_csv(r"G:\Kaggle\Titanic\Final4.csv",index=False)

Kaggle得分0.77990 Fare系数很小,这时候我们剔除Fare,看看效果:

#重新划分训练集、训练集数据
x1_train = train.drop(["Survived","Fare"],axis=1)
y1_train =train["Survived"]
x1_test = test.drop(["PassengerId","Fare"],axis=1)
Classifier2 = LogisticRegression()
#训练模型
Classifier2.fit(x1_train,y1_train)
Y2_prediction = Classifier2.predict(x1_test)
#模型评估
score_Logit_2 = Classifier2.score(x1_train,y1_train)
score_Logit_2

0.79685746352413023

Classifier2.coef_

array([[-0.73467593, 2.00683788, -0.34049416, -0.31016514, 0.29292148, 0.27713963, 0.36168232, 0.73342319]])

Final_2 = pd.DataFrame({"PassengerId":test["PassengerId"],"Survived":Y2_prediction})
Final_2.head(10)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Survived
0 892 0
1 893 0
2 894 0
3 895 0
4 896 1
5 897 0
6 898 1
7 899 0
8 900 1
9 901 0
Final_2.to_csv(r"G:\Kaggle\Titanic\Final5.csv",index=False)

提交kaggle后,得分降了。所以还是保存Fare。 ## 2.KNN

from sklearn.neighbors import KNeighborsClassifier
Classifier3 = KNeighborsClassifier(n_neighbors=5)
Classifier3.fit(x_train,y_train)
Y3_prediction = Classifier3.predict(x_test)
#模型评估
score_Knn = Classifier3.score(x_train,y_train)
score_Knn

0.82603815937149272

Final_3 = pd.DataFrame({"PassengerId":test["PassengerId"],"Survived":Y3_prediction})
Final_3.head(10)
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Survived
0 892 0
1 893 0
2 894 0
3 895 0
4 896 1
5 897 0
6 898 1
7 899 0
8 900 1
9 901 0
Final_3.to_csv(r"G:\Kaggle\Titanic\Final6.csv",index=False)

当k=3,kaggle评分0.74641;当k=5,kaggle评分0.77511.

3.决策树、随机森林

对这些算法还没深入了解,后期再回来补充。

# 决策树
#from sklearn.tree import DecisionTreeClassifier
#Classifier4 = DecisionTreeClassifier()
#Classifier4.fit(x_train,y_train)
#Y4_prediction = Classifier4.predict(x_test)
#score_Dtc = Classifier4.score(x_train,y_train)
#score_Dtc
#随机森林
#from sklearn.ensemble import RandomForestClassifier
#Classifier5 = RandomForestClassifier(n_estimators=100)
#Classifier5.fit(x_train,y_train)
#Y5_prediction = Classifier5.predict(x_test)
#模型评估
#score_Rfc = Classifier5.score(x_train,y_train)
#score_Rfc

五.总结

1.初次走了一遍机器学习的流程,并不算很全面,但是也熟悉了一遍流程,对numpy、pandas、matplotlib等包有所掌握。

2.对于缺失值的处理问题,还需熟悉数据,找到其缺失的原因,并以较好的方式去处理。有imputer,也有以其余数值型变量去估算缺失值的回归方法(RandomForestRegressor),这个要多看别人的文章,多去理解,并找机会练手。

3.对于数据的理解、数据的敏感还需要多加强,多学会用图去发现问题。对于特征互相之间能否构建出新的特征来帮助预测,后面需多去分析。

泰坦尼克号生存预测 (Logistic and KNN)相关推荐

  1. 【机器学习kaggle赛事】泰坦尼克号生存预测

    目录 写在前面 数据集情况查看 数据清洗 Embarked: Fare Age Cabin 特征工程 1,探究Sex与Survived的相关性 2,探究Pcalss与Survived的关联性 3,Em ...

  2. 机器学习实战一:泰坦尼克号生存预测 Titantic

    泰坦尼克号生存预测 Titantic 这是我在kaggle上找到的一个泰坦尼克号的生存的预测案例 希望能用它来进行我的学习与实践,从这里开始入门Machine Learning 也希望在这里,开始我的 ...

  3. kaggle 泰坦尼克号生存预测——六种算法模型实现与比较

    Hi,大家好,这是我第一篇博客. 作为非专业程序小白,博客内容必然有不少错误之处,还望各位大神多多批评指正. 在开始正式内容想先介绍下自己和一些异想天开的想法. 我是一名研究生,研究的方向是蛋白质结构 ...

  4. Kaggle经典数据分析项目:泰坦尼克号生存预测!

    ↑↑↑关注后"星标"Datawhale 每日干货 & 每月组队学习,不错过 Datawhale干货 作者:陈锴,中山大学,Datawhale成员 最近有很多读者留言,希望能 ...

  5. 【阿旭机器学习实战】【13】决策树分类模型实战:泰坦尼克号生存预测

    [阿旭机器学习实战]系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流. 本文用机器学习中的决策树分类模型对泰坦尼克号生存项目进行预测. 关于决策树的详细介绍及原理参见前一 ...

  6. Kaggle泰坦尼克号生存预测挑战——模型建立、模型调参、融合

    Kaggle泰坦尼克号生存预测挑战 这是kaggle上Getting Started 的Prediction Competition,也是比较入门和简单的新人赛,我的最好成绩好像有进入top8%,重新 ...

  7. 泰坦尼克号生存预测(多种模型实现)python

    泰坦尼克号生存预测 这是kaggle上面比较入门的一个比赛.今天让我们来看看怎么做吧.kaggle传送门.首先报名,下载数据集. 数据载入及概述 首先导入从Kaggle上面下载的数据集,在导入的过程中 ...

  8. Kaggle泰坦尼克号生存预测挑战——数据分析

    Kaggle泰坦尼克号生存预测挑战 这是kaggle上Getting Started 的Prediction Competition,也是比较入门和简单的新人赛,我的最好成绩好像有进入top8%,重新 ...

  9. 机器学习实战-泰坦尼克号生存预测案例

    泰坦尼克号生存预测案例 操作平台:Jupyter Notebook 实验数据:从官方下载的泰坦尼克号测试集与训练集 使用语言:python 实验步骤: 安装我们所需要的第三方库,本次实验需要额外下载安 ...

  10. Kaggle经典数据分析项目:泰坦尼克号生存预测!1. 数据概述与可视化2. 数据预处理3. 模型训练4. 模型优化(调参)

    ↑↑↑关注后"星标"Datawhale 每日干货 & 每月组队学习 ,不错过 Datawhale干货 作者:陈锴,中山大学,Datawhale成员 最近有很多读者留言,希望 ...

最新文章

  1. Caffe: LMDB 及其数据转换
  2. 油价新年首涨:“五连跌”终结 一箱油多花4元
  3. opencv 报错:Error: Assertion failed (data) in cv::Mat::at, file ... mat.inl.hpp, line 897(访问了不存在矩阵的像素)
  4. r语言没有forecast这个函数_R语言学习日记——时间序列分析之ARIMA模型预测
  5. 【数据结构和算法05】 红-黑树(转发)
  6. 升哲科技 x 百度智能云丨智能全感知系统,挽救 127 个生命的城市安全方案
  7. 数码相机如何当做摄像头(图文并茂版)
  8. 黑群晖docker清理缓存_群晖Docker半洗白 不关机快速修改sn/mac方法
  9. 北京、纽约、伦敦、东京、巴黎五大都市圈中,东京人口集中度最高,北京人均GDP增速卓越 | 美通社头条...
  10. Java中Character类的概述及其详解
  11. adobe服务器无响应,链接不到adobe服务器
  12. 命令可以在linux的安全系统中,什么命令可以在linux的安全系统中完成文件向磁带备份的工作...
  13. TinyOS 学习第一周-Ubuntu-10.10下安装TinyOS-2.1.1
  14. 不同颜色的RGB值、透明度A
  15. 森林保护类毕业论文文献都有哪些?
  16. 前端JS如何获取主域名(根域名)
  17. [生存志] 第124节 经络气穴精微
  18. hiredis 判断主节点
  19. [文章阅读] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object ...
  20. 深入浅出matplotlib(48):使用指南的笔记

热门文章

  1. vue element select 下拉加载更多
  2. 我建议你自己写一个疫情数据监控
  3. 香港服务器防攻击能力怎么样
  4. python 什么是鸭子类型
  5. NXP KV10 FTM fault功能的配置
  6. MovieClip序列帧动画 视频教程
  7. OJ每日一练——输出元音字母
  8. 【python】计算圆周率到任意位支持任意位(速度快)
  9. ios MultipeerConnectivity蓝牙通讯
  10. WinDbg 定位句柄泄漏问题