1.1. 一些相关的名词的解释

1.1.1. Non-Volatile Memory非易失性存储器

NVM,即NV (RAM)Memory,断电数据也不会丢失的存储器,比如Nand Flash,Nor Flash,硬盘等等。于此相对的是,断电了数据会丢失的存储器,比如DRAM等。

1.1.2. OTP一次性可编程存储器

OTP,一种非易失性存储器,但是只允许一次性写入数据,写入(或称烧写)数据之后,就不能修改了。

OTP的好处或者说用途是,常用于写入一些和芯片相关的一些特定数据,用于加密的一些数据等。

与一次性写入数据的OTP相对应的是,像Nand Flash,硬盘等存储器,可以被多次写入数据。只要硬盘这类的存储器没坏,你高兴写入几次就写入几次,而OTP就只能写入一次,就没法再修改里面的数据了。

1.1.3. NDA 保密协议

NDA,中文可以翻译为,非公开协议,保密协议。

说白了,还是一种协议,常用于这种情况:

某家厂商的某种技术或资料,是保密的,不希望公开的。

但是呢,如果你要用他家的芯片啊之类的东西,在开发过程中,又必须得到对应的技术和资料,才能开发产品,所以,他就会要求和你签订这样的NDA协议,意思就是,你可以用我的技术和资料,但是你不能公开给(我未授权的)其他人。如果非法泄露我的机密技术,那我肯定要走法律程序控告你,之类的。

1.1.4. Datasheet数据手册和Specification规范

英文datasheet,中文一般翻译为数据手册。

指的是对应某个硬件,多为芯片,的功能说明,定义了如何操作该硬件,达到你要的功能,这其中主要包括芯片中的相关寄存器的定义,如何发送命令,发送什么命令,以此来操作此硬件等等。

而英文Specification,引文常缩写为Spec.,中文一般翻译为规范。

多指某个组织(盈利的或非盈利的),定义了一些规矩,如果你要用某种东西,在计算机领域,常常指的是某硬件和相关的软件协议,就要按照此规矩来操作,人家这个组织呢,保证你只要实现了此规范,设备就能按照你所期望的运行,能够实现对应的功能,而你的芯片实现了此规范,就叫做,是和此规范兼容(compatible)的。

1.1.5. Nand Flash相关的一些名词解释

1.1.5.1. (Bad) Block Management(坏)块管理

Nand Flash由于其物理特性,只有有限的擦写次数,超过那个次数,基本上就是坏了。在使用过程中,有些Nand Flash的block会出现被用坏了,当发现了,要及时将此block标注为坏块,不再使用。

于此相关的管理工作,属于Nand Flash的坏块管理的一部分工作。

1.1.5.2. Wear-Leveling负载平衡

Nand Flash的block的管理,还包括负载平衡。

正是由于Nand Flash的block,都是有一定寿命限制的,所以如果你每次都往同一个block擦除然后写入数据,那么那个block就很容易被用坏了,所以我们要去管理一下,将这么多次的对同一个block的操作,平均分布到其他一些block上面,使得在block的使用上,相对较平均,这样相对来说,可以更能充分利用Nand Flash。

关于wear-leveling这个词,再简单解释一下,wear就是穿(衣服)等,用(东西)导致磨损,而leveling就是使得均衡,所以放在一起就是,使得对于Nand Flash的那么多的block的使用磨损,相对均衡一些,以此延长Nand Flash的使用寿命或者说更加充分利用Nand Flash。

1.1.5.3. ECC错误校验码

Nand Flash物理特性上使得其数据读写过程中会发生一定几率的错误,所以要有个对应的错误检测和纠正的机制,于是才有此ECC,用于数据错误的检测与纠正。Nand Flash的ECC,常见的算法有海明码和BCH,这类算法的实现,可以是软件也可以是硬件。不同系统,根据自己的需求,采用对应的软件或者是硬件。

相对来说,硬件实现这类ECC算法,肯定要比软件速度要快,但是多加了对应的硬件部分,所以成本相对要高些。如果系统对于性能要求不是很高,那么可以采用软件实现这类ECC算法,但是由于增加了数据读取和写入前后要做的数据错误检测和纠错,所以性能相对要降低一些,即Nand Flash的读取和写入速度相对会有所影响。

其中,Linux中的软件实现ECC算法,即NAND_ECC_SOFT模式,就是用的对应的海明码。

而对于目前常见的MLC的Nand Flash来说,由于容量比较大,动辄2GB,4GB,8GB等,常用BCH算法。BCH算法,相对来说,算法比较复杂。

笔者由于水平有限,目前仍未完全搞懂BCH算法的原理。

BCH算法,通常是由对应的Nand Flash的Controller中,包含对应的硬件BCH ECC模块,实现了BCH算法,而作为软件方面,需要在读取数据后,写入数据之前,分别操作对应BCH相关的寄存器,设置成BCH模式,然后读取对应的BCH状态寄存器,得知是否有错误,和生成的BCH校验码,用于写入。

其具体代码是如何操作这些寄存器的,由于是和具体的硬件,具体的nand flash的controller不同而不同,无法用同一的代码。如果你是nand flash驱动开发者,自然会得到对应的起nand flash的controller部分的datasheet,按照手册说明,去操作即可。

不过,额外说明一下的是,关于BCH算法,往往是要从专门的做软件算法的厂家购买的,但是Micron之前在网上放出一个免费版本的BCH算法。

想要此免费的BCH算法,可以在[18]找到下载地址

1.2. 硬件特性

1.2.1. 什么是Flash

Flash全名叫做Flash Memory,从名字就能看出,是种数据存储设备,存储设备有很多类,Flash属于非易失性存储设备(Non-volatile Memory Device),与此相对应的是易失性存储设备(Volatile Memory Device)。关于什么是非易失性/易失性,从名字中就可以看出,非易失性就是不容易丢失,数据存储在这类设备中,即使断电了,也不会丢失,这类设备,除了Flash,还有其他比较常见的入硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。

1.2.1.1. Flash的硬件实现机制

Flash的内部存储是MOSFET,里面有个悬浮门(Floating Gate),是真正存储数据的单元。

在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用了Floating Gate存储数据这一技术了。

图 1.1. 典型的Flash内存单元的物理结构

数据在Flash内存单元中是以电荷(electrical charge) 形式存储的。存储电荷的多少,取决于图中的外部门(external gate)所被施加的电压,其控制了是向存储单元中冲入电荷还是使其释放电荷。而数据的表示,以所存储的电荷的电压是否超过一个特定的阈值Vth来表示,因此,Flash的存储单元的默认值,不是0(其他常见的存储设备,比如硬盘灯,默认值为0),而是1,而如果将电荷释放掉,电压降低到一定程度,表述数字0。

1.2.2. 什么是Nand Flash

Flash主要分两种,Nand Flash和nor flash。

关于Nand Flash和Nor Flash的区别,参见[6]

不过,关于两者区别,除了那个解释之外,这里再多解释解释:

  1. Nor的成本相对高,容量相对小,比如常见的只有128KB,256KB,1MB,2MB等等,优点是读写数据时候,不容易出错。所以在应用领域方面,Nor Flash比较适合应用于存储少量的代码。

  2. Nand flash成本相对低,说白了就是便宜,缺点是使用中数据读写容易出错,所以一般都需要有对应的软件或者硬件的数据校验算法,统称为ECC。但优点是,相对来说容量比较大,现在常见的Nand Flash都是1GB,2GB,更大的8GB的都有了,相对来说,价格便宜,因此适合用来存储大量的数据。其在嵌入式系统中的作用,相当于PC上的硬盘,用于存储大量数据。

所以,一个常见的应用组合就是,用小容量的Nor Flash存储启动代码,比如uboot,用大容量的Nand Flash做整个系统和用户数据的存储。

而一般的嵌入式平台的启动流程也就是,系统从装有启动代码的Nor Flash启动后,初始化对应的硬件,包括SDRAM等,然后将Nand Flash上的Linux 内核读取到内存中,做好该做的事情后,就跳转到SDRAM中去执行内核了,然后内核解压(如果是压缩内核的话,否则就直接运行了)后,开始运行,在Linux内核启动最后,去Nand Flash上,挂载根文件,比如jffs2,yaffs2等,挂载完成,运行初始化脚本,启动consle交互,才允许你通过console和内核交互。至此完成整个系统启动过程。

而Nor Flash就分别存放的是Uboot,Nand Flash存放的是Linux的内核镜像和根文件系统,以及余下的空间分成一个数据区。

1.2.2.1. Nand Flash的详细分类

Nand Flash,按照硬件类型,可以分为

  1. Bare NAND chips

    裸片。单独的Nand Flash芯片。

  2. SmartMediaCards

    裸片+一层薄塑料。常用于数码相机和MP3播放器中。之所以称smart,是由于其软件smart,而不是硬件本身有啥smart之处。

  3. DiskOnChip

    裸片+glue logic。glue logic=硬件ECC产生器+用于静态的nand 芯片控制的寄存器+直接访问一小片地址窗口,那块地址中包含了引导代码的stub桩,其可以从Nand Flash中拷贝真正的引导代码。

1.2.3. SLC和MLC的实现机制

Nand Flash按照内部存储数据单元的电压的不同层次,也就是单个内存单元中,是存储1位数据,还是多位数据,可以分为SLC和MLC。

1.2.3.1. SLC(Single Level Cell)

单个存储单元,只存储一位数据,表示1或0。

就是上面介绍的,对于数据的表示,单个存储单元中内部所存储电荷的电压,和某个特定的阈值电压Vth,相比,如果大于此Vth值,就是表示1,反之,小于Vth,就表示0。

对于Nand Flash的数据的写入1,就是控制External Gate去充电,使得存储的电荷够多,超过阈值Vth,就表示1了。而对于写入0,就是将其放电,电荷减少到小于Vth,就表示0了。

关于为何Nand Flash不能从0变成1,我的理解是,物理上来说,是可以实现每一位的,从0变成1的,但是实际上,对于实际的物理实现,出于效率的考虑,如果对于,每一个存储单元都能单独控制,即,0变成1就是,对每一个存储单元单独去充电,所需要的硬件实现就很复杂和昂贵,同时,所进行对块擦除的操作,也就无法实现之前所说的的,Flash的速度,即一闪而过的速度了,也就失去了Flash的众多特性了。

1.2.3.2. MLC(Multi Level Cell)

与SLC相对应的,就是单个存储单元,可以存储多个位,比如2位,4位等。其实现机制,说起来比较简单,就是通过控制内部电荷的多少,分成多个阈值,通过控制里面的电荷多少,而达到我们所需要的存储成不同的数据。比如,假设输入电压是Vin=4V(实际没有这样的电压,此处只是为了举例方便),那么,可以设计出2的2次方=4个阈值, 1/4 的Vin=1V,2/4的Vin=2V,3/4的Vin=3V,Vin=4V,分别表示2位数据00,01,10,11,对于写入数据,就是充电,通过控制内部的电荷的多少,对应表示不同的数据。

对于读取,则是通过对应的内部的电流(与Vth成反比),然后通过一系列解码电路完成读取,解析出所存储的数据。这些具体的物理实现,都是有足够精确的设备和技术,才能实现精确的数据写入和读出的。

单个存储单元可以存储2位数据的,称作2的2次方=4 Level Cell,而不是2 Level Cell,关于这点,之前看Nand flash的数据手册(datasheet)的时候,差点搞晕了。

同理,对于新出的单个存储单元可以存储4位数据的,称作 2的4次方=16 Level Cell。

1.2.3.3. 关于如何识别SLC还是MLC

Nand Flash设计中,有个命令叫做Read ID,读取ID,意思是读取芯片的ID,就像大家的身份证一样,这里读取的ID中,是读取好几个字节,一般最少是4个,新的芯片,支持5个甚至更多,从这些字节中,可以解析出很多相关的信息,比如此Nand Flash内部是几个芯片(chip)所组成的,每个chip包含了几片(Plane),每一片中的页大小,块大小,等等。在这些信息中,其中有一个,就是识别此flash是SLC还是MLC。下面这个就是最常见的Nand Flash的datasheet中所规定的,第3个字节,3rd byte,所表示的信息,其中就有SLC/MLC的识别信息:

表 1.1. Nand Flash第3个ID的含义

  Description I/O7 I/O6 I/O5 I/O4 I/O3 I/O2 I/O1 I/O0
Internal Chip Number

1
2
4
8

       

0      0
0      1
1      0
1      1

Cell Type

2 Level Cell
4 Level Cell
4 Level Cell
8 Level Cell

     

0      0
0      1
1      0
1      1

 
Number of Simultaneously Programmed Pages

1
2
4
8

   

0      0
0      1
1      0
1      1

   
Interleave Program Between multiple chips

Not Support
Support

 

0
1

     
Cache Program

Not Support
Support

0
1

     

1.2.4. Nand Flash数据存储单元的整体架构

简单说就是,常见的Nand Flash,内部只有一个chip,每个chip只有一个plane。

而有些复杂的,容量更大的Nand Flash,内部有多个chip,每个chip有多个plane。这类的Nand Flash,往往也有更加高级的功能,比如下面要介绍的Multi Plane Program和Interleave Page Program等。

概念上,由大到小来说,就是:

Nand Flash ⇒ Chip ⇒ Plane ⇒ Block ⇒ Page ⇒ oob

用图表来表示,更加易懂:

图 1.2. Nand Flash的结构图

比如,型号为K9K8G08U0A这块Nand Flash(有时候也被称为此块chip芯片),其内部有两个K9F4G08U0A的chip,chip#1和chip#2,每个K9F4G08U0A的chip包含了2个Plane,每个Plane是2Gbbit,所以K9F4G08U0A的大小是2Gb×2 = 4Gb = 512MB,因此,K9K8G08U0A内部有2个K9F4G08U0A,或者说4个Plane,总大小是×256MB=1GB。

用公式表示如下:

公式 1.1. K9K8G08U0A的物理结构所组成的总容量

K9K8G08U0A(这块Nand Flash)

= 2 × K9F4G08U0A(K9F4G08U0A是chip,1 K9F4G08U0A = 2 Plane)

= 2 × 2个Plane

= 4 Plane(1 Plane = 2048 Block)

= 4 × 2048个Block(1 Block = 64 Page)

= 4 × 2048 × 64Page(1 Page = 2KB)

= 4 × 2048 × 64Page × 2KB

= 4 × 2048 × 128KB(1 Block = 128KB)

= 4 × 256MB(1 Plane = 2Gb = 256MB)

= 2 × 512MB(1 K9F4G08U0A = 4Gb = 512MB)

= 1GB(1 K9K8G08U0A = 1GB)

而型号是K9WAG08U1A的Nand Flash,内部包含了2个K9K8G08U0A,所以,总容量是K9K8G08U0A的两倍=1GB×2=2GB,类似地K9NBG08U5A,内部包含了4个K9K8G08U0A,总大小就是4×1GB=4GB。

通常只关心Nand的总大小

上面所说的block,page等Nand Flash的物理上的组织结构,是在chip的基础上来说的,但是软件编程的时候,除非你要用到Multi Plane Program和Interleave Page Program等,一般很少区分内部有几个chip以及每个chip有几个plane,而最关心的只是Nand Flash的总体容量size有多大,比如是1GB还是2GB等等。

下面详细介绍一下,Nand Flash的一个chip内部的硬件逻辑组织结构。

1.2.5. Nand Flash的物理存储单元的阵列组织结构

Nand Flash的内部组织结构,此处还是用图来解释,比较容易理解:

图 1.3. Nand Flash物理存储单元的阵列组织结构

上图是K9K8G08U0A的datasheet中的描述。

简单解释就是:

1.2.5.1. Block块

一个Nand Flash(的chip,芯片)由很多个块(Block)组成,块的大小一般是128KB,256KB,512KB,此处是128KB。其他的小于128KB的,比如64KB,一般都是下面将要介绍到的small block的Nand Flash。

块Block,是Nand Flash的擦除操作的基本/最小单位。

1.2.5.2. Page页

每个块里面又包含了很多页(page)。每个页的大小,对于现在常见的Nand Flash多数是2KB,最新的Nand Flash的是4KB、8KB等,这类的页大小大于2KB的Nand Flash,被称作big block的Nand Flash,对应的发读写命令地址,一共5个周期(cycle),而老的Nand Flash,页大小是256B,512B,这类的Nand Flash被称作small block,地址周期只有4个。

页Page,是读写操作的基本单位。

不过,也有例外的是,有些Nand Flash支持subpage(1/2页或1/4页)子页的读写操作,不过一般很少见。

1.2.5.3. oob / Redundant Area / Spare Area

每一个页,对应还有一块区域,叫做空闲区域(spare area)/冗余区域(redundant area),而Linux系统中,一般叫做OOB(Out Of Band),这个区域,是最初基于Nand Flash的硬件特性:数据在读写时候相对容易错误,所以为了保证数据的正确性,必须要有对应的检测和纠错机制,此机制被叫做EDC(Error Detection Code)/ECC(Error Code Correction, 或者 Error Checking and Correcting),所以设计了多余的区域,用于放置数据的校验值。

Oob的读写操作,一般是随着页的操作一起完成的,即读写页的时候,对应地就读写了oob。

关于oob具体用途,总结起来有:

  1. 标记是否是坏快
  2. 存储ECC数据
  3. 存储一些和文件系统相关的数据。如jffs2就会用到这些空间存储一些特定信息,而yaffs2文件系统,会在oob中,存放很多和自己文件系统相关的信息。

1.2.6. Flash名称的由来

Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次性地将一个block,常见的块的大小是128KB/256KB。。,全部擦除为1,也就是里面的内容全部都是0xFF了,由于是一下子就擦除了,相对来说,擦除用的时间很短,可以用一闪而过来形容,所以,叫做Flash Memory。所以一般将Flash翻译为 (快速)闪存。

1.2.7. Flash相对于普通设备的特殊性

根据上面提到过的,Flash最小操作单位,相对于普通存储设备,就显得有些特殊。

因为一般存储设备,比如硬盘或内存,读取和写入都是以位(bit)为单位,读取一个bit的值,将某个值写入对应的地址的位,都是可以按位操作的。

但是Flash由于物理特性,使得内部存储的数据,只能从1变成0,这点,这点可以从前面的内部实现机制了解到,对于最初始值,都是1,所以是0xFFFFFFFF,而数据的写入,即是将对应的变成0,而将数据的擦出掉,就是统一地,以block为单位,全部一起充电,所有位,都变成初始的1,而不是像普通存储设备那样,每一个位去擦除为0。而数据的写入,就是电荷放电的过程,代表的数据也从1变为了0。

所以,总结一下Flash的特殊性如下:

表 1.2. Flash和普通设备相比所具有的特殊性

  普通设备(硬盘/内存等) Flash
读取/写入的叫法 读取/写入 读取/编程(Program)①
读取/写入的最小单位 Bit/位 Page/页②
擦除(Erase)操作的最小单位 Bit/位 Block/块②
擦除操作的含义 将数据删除/全部写入0 将整个块都擦除成全是1,也就是里面的数据都是0xFF③
对于写操作 直接写即可 在写数据之前,要先擦除,然后再写
提示
  1. 之所以将写操作叫做编程,是因为flash是从之前的EPROM、EEPROM等继承发展而来,而之前的EEPROM,往里面写入数据,就叫做编程Program,之所以这么称呼,是因为其对数据的写入,是需要用电去擦除/写入的,所以叫做编程。
  2. 对于目前常见的页大小是2K/4K的Nand Flash,其块的大小有128KB/256KB/512KB等。而对于Nor Flash,常见的块大小有64K/32K等。
  3. 在写数据之前,要先擦除,内部就都变成0xFF了,然后才能写入数据,也就是将对应的位由1变成0。

1.2.8. Nand Flash的位反转特性

Nand Flash的位反转,也叫做位翻转,对应的英文表达有:Bit Flip=Bit Flipping=Bit-Flip=Bit twiddling。

Nand Flash由于本身硬件的内在特性,会导致(极其)偶尔的出现位反转的现象。

所谓的位反转,bit flip,指的是原先Nand Flash中的某个位,变化了,即要么从1变成0了,要么从0变成1了。

1.2.8.1. Nand Flash位反转的原因

Nand Flash的位反转现象,主要是由以下一些原因/效应所导致:

  1. 漂移效应(Drifting Effects)

    漂移效应指的是,Nand Flash中cell的电压值,慢慢地变了,变的和原始值不一样了。

  2. 编程干扰所产生的错误(Program-Disturb Errors)

    此现象有时候也叫做,过度编程效应(over-program effect)。

    对于某个页面的编程操作,即写操作,引起非相关的其他的页面的某个位跳变了。

  3. 读操作干扰产生的错误(Read-Disturb Errors)

    此效应是,对一个页进行数据读取操作,却使得对应的某个位的数据,产生了永久性的变化,即Nand Flash上的该位的值变了。

1.2.8.2. Nand Flash位反转的影响

位反转,说白了,就是读取数据的时候,数据出错了。

因此,如果你读取的数据正好是属于某个重要的文件中的数据,比如系统的配置文件等,那么此时错了一位,都会导致系统出现异常,问题相对会很严重。

而如果此数据属于音视频流中的数据,那么此时即使错了一位,对整个音视频的播放产生的影响也很小,所以问题也不大。

1.2.8.3. Nand Flash位反转的类型和解决办法

对应的位反转的类型,有两种:

  1. 一种是nand flash物理上的数据存储的单元上的数据,是正确的,只是在读取此数据出来的数据中的某位,发生变化,出现了位反转,即读取出来的数据中,某位错了,本来是0变成1,或者本来是1变成0了。此处可以成为软件上位反转。此数据位的错误,当然可以通过一定的校验算法检测并纠正。
  2. 另外一种,就是nand flash中的物理存储单元中,对应的某个位,物理上发生了变化,原来是1的,变成了0,或原来是0的,变成了1,发生了物理上的位的数据变化。此处可以成为硬件上的位反转。此错误,由于是物理上发生的,虽然读取出来的数据的错误,可以通过软件或硬件去检测并纠正过来,但是物理上真正发生的位的变化,则没办法改变了。不过个人理解,好像也是可以通过擦除Erase整个数据块Block的方式去擦除此错误,不过在之后的Nand Flash的使用过程中,估计此位还是很可能继续发生同样的硬件的位反转的错误。

以上两种类型的位反转,其实对于从Nand Flash读取出来的数据来说,解决其中的错误的位的方法,都是一样的,即通过一定的校验算法,常称为ECC,去检测出来,或检测并纠正错误。

如果只是单独检测错误,那么如果发现数据有误,那么再重新读取一次即可。

实际中更多的做法是,ECC校验发现有错误,会有对应的算法去找出哪位错误并且纠正过来。

其中对错误的检测和纠正,具体的实现方式,有软件算法,也有硬件实现,即硬件Nand Flash的控制器controller本身包含对应的硬件模块以实现数据的校验和纠错的。

1.2.9. Nand Flash引脚(Pin)的说明

图 1.4. Nand Flash引脚功能说明

上图是常见的Nand Flash所拥有的引脚(Pin)所对应的功能,简单翻译如下:

表 1.3. Nand Flash引脚功能的中文说明

引脚名称 引脚功能
I/O0 ~ I/O7 用于输入地址/数据/命令,输出数据
CLE Command Latch Enable,命令锁存使能,在输入命令之前,要先在模式寄存器中,设置CLE使能
ALE Address Latch Enable,地址锁存使能,在输入地址之前,要先在模式寄存器中,设置ALE使能
CE# Chip Enable,芯片使能,在操作Nand Flash之前,要先选中此芯片,才能操作
RE# Read Enable,读使能,在读取数据之前,要先使CE#有效。
WE# Write Enable,写使能, 在写取数据之前,要先使WE#有效
WP# Write Protect,写保护
R/B# Ready/Busy Output,就绪/忙,主要用于在发送完编程/擦除命令后,检测这些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成
Vcc Power,电源
Vss Ground,接地
N.C Non-Connection,未定义,未连接
数据手册中的#表示低电平

在数据手册中,你常会看到,对于一个引脚定义,有些字母上面带一横杠的,那是说明此引脚/信号是低电平有效,比如你上面看到的RE头上有个横线,就是说明,此RE是低电平有效,此外,为了书写方便,在字母后面加“#”,也是表示低电平有效,比如我上面写的CE#;如果字母头上啥都没有,就是默认的高电平有效,比如上面的CLE,就是高电平有效。

1.2.9.1. 为何需要ALE和CLE

硬件上,有了电源的Vcc和接地的Vss等引脚,很好理解,但是为何还要有ALE和CLE这样的引脚,为何设计这么多的命令,把整个系统搞这么复杂,关于这点,最后终于想明白了:

设计命令锁存使能(Command Latch Enable, CLE) 和 地址锁存使能(Address Latch Enable,ALE),那是因为,Nand Flash就8个I/O,而且是复用的,也就是,可以传数据,也可以传地址,也可以传命令,为了区分你当前传入的到底是啥,所以,先要用发一个CLE(或ALE)命令,告诉Nand Flash的控制器一声,我下面要传的是命令(或地址),这样,里面才能根据传入的内容,进行对应的动作。否则,Nand Flash内部,怎么知道你传入的是数据,还是地址,还是命令,也就无法实现正确的操作了。

1.2.9.2. Nand Flash只有8个I/O引脚的好处

在Nand Flash的硬件设计中,你会发现很多个引脚。关于硬件上为何设计这样的引脚,而不是直接像其他存储设备,比如普通的RAM,直接是一对数据线引出来,多么方便和好理解啊。

关于这样设计的好处:

1.2.9.2.1. 减少外围连线

相对于并口(Parellel)的Nor Flash的48或52个引脚来说,的确是大大减小了引脚数目,这样封装后的芯片体积,就小很多。现在芯片在向体积更小,功能更强,功耗更低发展,减小芯片体积,就是很大的优势。同时,减少芯片接口,也意味着使用此芯片的相关的外围电路会更简化,避免了繁琐的硬件连线。

1.2.9.2.2. 提高系统的可扩展性

因为没有像其他设备一样用物理大小对应的完全数目的addr引脚,在芯片内部换了芯片的大小等的改动,对于用全部的地址addr的引脚,那么就会引起这些引脚数目的增加,比如容量扩大一倍,地址空间/寻址空间扩大一倍,所以,地址线数目/addr引脚数目,就要多加一个,而对于统一用8个I/O的引脚的Nand Flash,由于对外提供的都是统一的8个引脚,内部的芯片大小的变化或者其他的变化,对于外部使用者(比如编写Nand Flash驱动的人)来说,不需要关心,只是保证新的芯片,还是遵循同样的接口,同样的时序,同样的命令,就可以了。这样就提高了系统的扩展性。

说白了,对于旧的Nand Flash所实现的驱动,这些软件工作,在换新的硬件的Nand Flash的情况下,仍然可以工作,或者是通过极少的修改,就同样可以工作,使得软硬件兼容性大大提高。

1.2.10. Nand Flash的一些典型(typical)的特性

  1. 页擦除时间是200us,有些慢的有800us
  2. 块擦除时间是1.5ms
  3. 页数据读取到数据寄存器的时间一般是20us
  4. 串行访问(Serial access)读取一个数据的时间是25ns,而一些旧的Nand Flash是30ns,甚至是50ns
  5. 输入输出端口是地址和数据以及命令一起multiplex复用的
  6. Nand Flash的编程/擦除的寿命:即,最多允许的擦除的次数

    以前老的Nand Flash,编程/擦除时间比较短,比如K9G8G08U0M,才5K次,而后来的多数也只有10K=1万次,而现在很多新的Nand Flash,技术提高了,比如,Micron的MT29F1GxxABB,Numonyx的 NAND04G-B2D/NAND08G-BxC,都可以达到100K,也就是10万次的编程/擦除,达到和接近于之前常见的Nor Flash,几乎是同样的使用寿命了。

  7. 封装形式

    48引脚的TSOP1封装 或 52引脚的ULGA封装

1.2.11. Nand Flash控制器与Nand Flash芯片

关于Nand Flash的控制器Controller和Nand Flash芯片chip之间的关系,觉得有必要解释一下:

首先,我们要知道的是,我们写驱动,是写Nand Flash 控制器的驱动,而不是Nand Flash 芯片的驱动,因为独立的Nand Flash芯片,一般来说,是很少直接拿来用的,多数都是硬件上有对应的硬件的Nand Flash的控制器,去操作和控制Nand Flash,包括提供时钟信号,提供硬件ECC校验等等功能,我们所写的驱动软件,是去操作Nand Flash的控制器

然后由控制器去操作Nand Flash芯片,实现我们所要的功能。

1.2.12. Nand Flash中的特殊硬件结构

由于Nand Flash相对其他常见设备来说,比较特殊,所以,特殊的设备,就有特殊的设计,就对应某些特殊的硬件特性,就有必要解释解释:

页寄存器(Page Register)

由于Nand Flash读取和编程操作来说,一般最小单位是页,所以Nand Flash在硬件设计时候,就考虑到这一特性,对于每一片(Plane),都有一个对应的区域专门用于存放,将要写入到物理存储单元中去的或者刚从存储单元中读取出来的,一页的数据,这个数据缓存区,本质上就是一个缓存buffer,但是只是此处datasheet里面把其叫做页寄存器page register而已,实际将其理解为页缓存,更贴切原意。

而正是因为有些人不了解此内部结构,才容易产生之前遇到的某人的误解,以为内存里面的数据,通过Nand Flash的FIFO,写入到Nand Flash里面去,就以为立刻实现了实际数据写入到物理存储单元中了,而实际上只是写到了这个页缓存中,只有当你再发送了对应的编程第二阶段的确认命令,即0x10,之后,实际的编程动作才开始,才开始把页缓存中的数据,一点点写到物理存储单元中去。

所以,简单总结一下就是,对于数据的流向,实际是经过了如下步骤:

图 1.5. Nand Flash读写时的数据流向

1.2.13. Nand Flash中的坏块(Bad Block)

Nand Flash中,一个块中含有1个或多个位是坏的,就称为其为坏块Bad Block。

坏块的稳定性是无法保证的,也就是说,不能保证你写入的数据是对的,或者写入对了,读出来也不一定对的。与此对应的正常的块,肯定是写入读出都是正常的。

1.2.13.1. 坏块的分类

坏块有两种:

  1. 出厂时就有存在的坏块

    一种是出厂的时候,也就是,你买到的新的,还没用过的Nand Flash,就可以包含了坏块。此类出厂时就有的坏块,被称作factory (masked) bad block或initial bad/invalid block,在出厂之前,就会做对应的标记,标为坏块。

  2. 使用过程中产生的坏块

    第二类叫做在使用过程中产生的,由于使用过程时间长了,在擦块除的时候,出错了,说明此块坏了,也要在程序运行过程中,发现,并且标记成坏块的。具体标记的位置,和上面一样。这类块叫做worn-out bad block。即用坏了的块。

1.2.13.2. 坏块的标记

具体标记的地方是,对于现在常见的页大小为2K的Nand Flash,是块中第一个页的oob起始位置(关于什么是页和oob,下面会有详细解释)的第1个字节(旧的小页面,pagesize是512B甚至256B的Nand Flash,坏块标记是第6个字节),如果不是0xFF,就说明是坏块。相对应的是,所有正常的块,好的块,里面所有数据都是0xFF的。

不过,对于现在新出的有些Nand Flash,很多标记方式,有些变化,有的变成该坏块的第一个页或者第二个页,也有的是,倒数最后一个或倒数第二个页,用于标记坏块的。

具体的信息,请参考对应的Nand Flash的数据手册,其中会有说明。

对于坏块的标记,本质上,也只是对应的flash上的某些字节的数据是非0xFF而已,所以,只要是数据,就是可以读取和写入的。也就意味着,可以写入其他值,也就把这个坏块标记信息破坏了。对于出厂时的坏块,一般是不建议将标记好的信息擦除掉的。

uboot中有个命令是

nand scrub

就可以将块中所有的内容都擦除了,包括坏块标记,不论是出厂时的,还是后来使用过程中出现而新标记的。一般来说,不建议用这个。

不过,在实际的驱动编程开发过程中,为了方便起见,我倒是经常用,其实也没啥大碍,呵呵。不过呢,其实最好的做法是,用

nand erase

只擦除好的块,对于已经标记坏块的块,不要轻易擦除掉,否则就很难区分哪些是出厂时就坏的,哪些是后来使用过程中用坏的了。

1.2.13.3. 坏块的管理

对于坏块的管理,在Linux系统中,叫做坏块管理(BBM,Bad Block Management),对应的会有一个表去记录好块,坏块的信息,以及坏块是出厂就有的,还是后来使用产生的,这个表叫做坏块表(BBT,Bad Block Table)。在Linux 内核MTD架构下的Nand Flash驱动,和Uboot中Nand Flash驱动中,在加载完驱动之后,如果你没有加入参数主动要求跳过坏块扫描的话,那么都会去主动扫描坏块,建立必要的BBT的,以备后面坏块管理所使用。

1.2.13.4. 坏块的比例

而关于好块和坏块,Nand Flash在出厂的时候,会做出保证:

  1. 关于好的,可以使用的块的数目达到一定的数目,比如三星的K9G8G08U0M,整个flash一共有4096个块,出厂的时候,保证好的块至少大于3996个,也就是意思是,你新买到这个型号的Nand Flash,最坏的可能, 有3096-3996=100个坏块。不过,事实上,现在出厂时的坏块,比较少,绝大多数,都是使用时间长了,在使用过程中出现的。
  2. 保证第一个块是好的,并且一般相对来说比较耐用。做此保证的主要原因是,很多Nand Flash坏块管理方法中,就是将第一个块,用来存储上面提到的BBT,否则,都是出错几率一样的块,那么也就不太好管理了,连放BBT的地方,都不好找了,^_^。

一般来说,不同型号的Nand Flash的数据手册中,也会提到,自己的这个Nand Flash,最多允许多少个坏块。就比如上面提到的,三星的K9G8G08U0M,最多有100个坏块。

1.2.14. Nand Flash中页的访问顺序

在一个块内,对每一个页进行编程的话,必须是顺序的,而不能是随机的。比如,一个块中有128个页,那么你只能先对page0编程,再对page1编程,。。。。,而不能随机的,比如先对page3,再page1,page2,page0,page4,。。。

关于此处对于只能顺序给页编程的说法,只是翻译自datasheet,但是实际情况却发现是,程序中没有按照此逻辑处理,可以任意对某Block内的Page去做Program的动作,而不必是顺序的。但是datasheet为何如此解释,原因未知,有待知情者给解释一下。

1.2.15. 常见的Nand Flash的操作

要实现对Nand Flash的操作,比如读取一页的数据,写入一页的数据等,都要发送对应的命令,而且要符合硬件的规定,如图:

图 1.6. Nand Flash K9K8G08U0A的命令集合

从上图可以看到,如果要实现读一个页的数据,就要发送Read的命令,而且是分两个周期(Cycle),即分两次发送对应的命令,第一次是0x00h,第二次是0x30h,而两次命令中间,需要发送对应的你所要读取的页的地址,关于此部分详细内容,留待后表。

对应地,其他常见的一些操作,比如写一个页的数据(Page Program),就是先发送0x80h,然后发生要写入的地址,再发送0x10h。

注意

对于不同厂家的不同型号的Nand Flash 的基本操作,即读页数据Read Page,写页数据(对页进行编程)Page Program,擦除整个块的数据Erase Block等操作,所用的命令都是一样的,但是针对一些Nand Flash的高级的一些特性,比如交错页编程(Interleave Page Program),多片同时编程(Simultaneously Program Multi Plane)等,所用的命令,未必一样,不过对于同一厂家的Nand Flash的芯片,那一般来说,都是统一的。

关于一些常见的操作,比如读一个页的Read操作和写一个页的Page Program,下面开始更深入的介绍。

【详解一】Nand Flash 编写驱动之前要了解的知识相关推荐

  1. filter vue 循环_详解在Vue.js编写更好的v-for循环的6种技巧

    在vuejs中,v-for循环是每个项目都会使用的东西,它允许您在模板代码中编写for循环. 在最基本的用法中,它们的用法如下. {{ product.name }} 但是,在本文中,我将介绍六种方法 ...

  2. Linux编写脚本nsum求和,详解Linux Shell脚本编写技巧,附实例说明

    原标题:详解Linux Shell脚本编写技巧,附实例说明 Linux Shell是一个很难的知识板块.虽然大家都认真学,基本的语法很都掌握,但有需求时,很难直接上手编程,要么写了很久,要么写不好!对 ...

  3. nand flash (k9f5608)驱动编程

    nand flash (k9f5608)驱动编程 1.nand flash的引脚 nand flash比较重要的几个引脚如下 I/O引脚:对于该款flash芯片I/O引脚有8个0-7,有的芯片有16个 ...

  4. linux设备驱动开发详解源码,linux设备驱动开发详解光盘源码.rar

    压缩包 : linux设备驱动开发详解光盘源码.rar 列表 19/busybox源代码/busybox-1.2.1.tar.bz2 19/MTD工具/mtd-utils-1.0.0.tar.gz 1 ...

  5. linux设备驱动开发详解孔夫子,Linux设备驱动开发详解

    [内容简介] <Linux设备驱动开发详解(第2版)>是一本介绍linux设备驱动开发理论.框架与实例的书,<Linux设备驱动开发详解(第2版)>基于ldd6410开发板,以 ...

  6. 大数据架构详解_【数据如何驱动增长】(3)大数据背景下的数仓建设 amp; 数据分层架构设计...

    背景 了解数据仓库.数据流架构的搭建原理对于合格的数据分析师或者数据科学家来说是一项必不可少的能力.它不仅能够帮助分析人员更高效的开展分析任务,帮助公司或者业务线搭建一套高效的数据处理架构,更是能够从 ...

  7. linux内核epub,Android底层开发技术实战详解——内核、移植和驱动(第2版)[EPUB][MOBI][AZW3][42.33MB]...

    内容简介 本书从底层原理开始讲起,结合真实的案例向读者详细介绍了Android内核.移植和驱动开发的整个流程.全书分为21章,依次讲解驱动移植的必要性, Goldfish.OMAP内核和驱动解析,显示 ...

  8. linux shell命令行及脚本编程实例详解_超全整理!这些Shell编程必备知识你都掌握了吗?...

    正文最近很多粉丝咨询我,被问到了一些Shell编程的问题,看看大家能否答出来: 1.shell脚本千千万,不知道从哪入手 2.没经验缺方法,面试通不过.做事没头绪 3.野路子.没人教自动化,做了几年基 ...

  9. 详解预训练模型、图神经网络、模型压缩、知识图谱、信息抽取、序列模型、深度学习、语法分析、文本处理...

    NLP近几年非常火,且发展特别快.像BERT.GPT-3.图神经网络.知识图谱等技术应运而生.我们正处在信息爆炸的时代.面对每天铺天盖地的网络资源和论文.很多时候我们面临的问题并不是缺资源,而是找准资 ...

最新文章

  1. 5软件开发与软件测试
  2. 节能信标灯设计第一版本:预备实验
  3. postman test 脚本
  4. python自然语言处理书籍推荐-python自然语言处理
  5. 信息系统项目管理师项目变更管理
  6. 【网络流24题----09】方格取数问题
  7. HBase读写的几种方式(一)java篇
  8. linux常用命令.txt
  9. 地平线后端开发实习面经
  10. c语言题目1120,九度题目1120:全排列
  11. 如何解决服装面料纬斜问题
  12. 数学建模——数据分析方法
  13. qt视频教程qt入门教程嵌入式linux应用开发qt编程开发,QT项目实战教程-Qt应用项目实例开发视频教程...
  14. (自动)运动控制系统学习笔记
  15. Google Indexing API 推送 (避免踩坑)
  16. 超详细的Spring Boot教程,搞定面试官!
  17. 坚叔:让科幻片的概念变成产品丨编程挑战赛 x 嘉宾分享
  18. 电话号码对应英文单词
  19. 更改jupyter的默认打开路径失败,Exception while loading config file C:\.\.jupyter\jupyter_notebook_config.py
  20. 解决gazebo [gazebo_gui-3] process has died和[Err] [REST.cc:205] Error in REST request错误

热门文章

  1. Python接口自动化测试流程及步骤1
  2. word2010排版技巧
  3. OSPF高级特性 —— 修改参考带宽值 + 修改优先级
  4. 汇编debug指令科普(汇编实验汇编集成环境+调试)
  5. bitcomet端口阻塞,黄灯,解决方案
  6. 谭浩强c 语言程序设计
  7. GPIO口模拟IIC--适用于任何ARM系列单片机
  8. 体系建模系统:体系结构建模工具攻略
  9. 「学习总结-Haskell-1」Haskell 基础知识
  10. 如何从官方网站下载jdk1.7?