一、长宽表的变形

什么是长表?什么是宽表?这个概念是对于某一个特征而言的。例如:一个表中把性别存储在某一个列中,那么它就是关于性别的长表;如果把性别作为列名,列中的元素是某一其他的相关特征数值,那么这个表是关于性别的宽表。下面的两张表就分别是关于性别的长表和宽表:

import numpy as n
import pandas as pd
pd.DataFrame({'Gender':['F','F','M','M'], 'Height':[163, 160, 175, 180]})
Gender Height
0 F 163
1 F 160
2 M 175
3 M 180
pd.DataFrame({'Height: F':[163, 160], 'Height: M':[175, 180]})
Height: F Height: M
0 163 175
1 160 180

显然这两张表从信息上是完全等价的,它们包含相同的身高统计数值,只是这些数值的呈现方式不同,而其呈现方式主要又与性别一列选择的布局模式有关,即到底是以long\color{red}{long}long的状态存储还是以wide\color{red}{wide}wide的状态存储。因此,pandas针对此类长宽表的变形操作设计了一些有关的变形函数。

1. pivot

pivot是一种典型的长表变宽表的函数,首先来看一个例子:下表存储了张三和李四的语文和数学分数,现在想要把语文和数学分数作为列来展示。

df = pd.DataFrame({'Class':[1,1,2,2],'Name':['San Zhang','San Zhang','Si Li','Si Li'],'Subject':['Chinese','Math','Chinese','Math'],'Grade':[80,75,90,85]})
df
Class Name Subject Grade
0 1 San Zhang Chinese 80
1 1 San Zhang Math 75
2 2 Si Li Chinese 90
3 2 Si Li Math 85

对于一个基本的长变宽的操作而言,最重要的有三个要素,分别是变形后的行索引、需要转到列索引的列,以及这些列和行索引对应的数值,它们分别对应了pivot方法中的index, columns, values参数。新生成表的列索引是columns对应列的unique值,而新表的行索引是index对应列的unique值,而values对应了想要展示的数值列。

df.pivot(index='Name', columns='Subject', values='Grade')
Subject Chinese Math
Name
San Zhang 80 75
Si Li 90 85

通过颜色的标记,更容易地能够理解其变形的过程:

利用pivot进行变形操作需要满足唯一性的要求,即由于在新表中的行列索引对应了唯一的value,因此原表中的indexcolumns对应两个列的行组合必须唯一。例如,现在把原表中第二行张三的数学改为语文就会报错,这是由于NameSubject的组合中两次出现("San Zhang", "Chinese"),从而最后不能够确定到底变形后应该是填写80分还是75分。

df.loc[1, 'Subject'] = 'Chinese'
try:df.pivot(index='Name', columns='Subject', values='Grade')
except Exception as e:Err_Msg = e
Err_Msg
ValueError('Index contains duplicate entries, cannot reshape')

pandas1.1.0开始,pivot相关的三个参数允许被设置为列表,这也意味着会返回多级索引。这里构造一个相应的例子来说明如何使用:下表中六列分别为班级、姓名、测试类型(期中考试和期末考试)、科目、成绩、排名。

df = pd.DataFrame({'Class':[1, 1, 2, 2, 1, 1, 2, 2],'Name':['San Zhang', 'San Zhang', 'Si Li', 'Si Li','San Zhang', 'San Zhang', 'Si Li', 'Si Li'],'Examination': ['Mid', 'Final', 'Mid', 'Final','Mid', 'Final', 'Mid', 'Final'],'Subject':['Chinese', 'Chinese', 'Chinese', 'Chinese','Math', 'Math', 'Math', 'Math'],'Grade':[80, 75, 85, 65, 90, 85, 92, 88],'rank':[10, 15, 21, 15, 20, 7, 6, 2]})
df
Class Name Examination Subject Grade rank
0 1 San Zhang Mid Chinese 80 10
1 1 San Zhang Final Chinese 75 15
2 2 Si Li Mid Chinese 85 21
3 2 Si Li Final Chinese 65 15
4 1 San Zhang Mid Math 90 20
5 1 San Zhang Final Math 85 7
6 2 Si Li Mid Math 92 6
7 2 Si Li Final Math 88 2

现在想要把测试类型和科目联合组成的四个类别(期中语文、期末语文、期中数学、期末数学)转到列索引,并且同时统计成绩和排名:

根据唯一性原则,新表的行索引等价于对index中的多列使用drop_duplicates,而列索引的长度为values中的元素个数乘以columns的唯一组合数量(与index类似) 。从下面的示意图中能够比较容易地理解相应的操作:

2. pivot_table

pivot的使用依赖于唯一性条件,那如果不满足唯一性条件,那么必须通过聚合操作使得相同行列组合对应的多个值变为一个值。例如,张三和李四都参加了两次语文考试和数学考试,按照学院规定,最后的成绩是两次考试分数的平均值,此时就无法通过pivot函数来完成。

df = pd.DataFrame({'Name':['San Zhang', 'San Zhang', 'San Zhang', 'San Zhang','Si Li', 'Si Li', 'Si Li', 'Si Li'],'Subject':['Chinese', 'Chinese', 'Math', 'Math','Chinese', 'Chinese', 'Math', 'Math'],'Grade':[80, 90, 100, 90, 70, 80, 85, 95]})
df
Name Subject Grade
0 San Zhang Chinese 80
1 San Zhang Chinese 90
2 San Zhang Math 100
3 San Zhang Math 90
4 Si Li Chinese 70
5 Si Li Chinese 80
6 Si Li Math 85
7 Si Li Math 95

pandas中提供了pivot_table来实现,其中的aggfunc参数就是使用的聚合函数。上述场景可以如下写出:

df.pivot_table(index = 'Name',columns = 'Subject',values = 'Grade',aggfunc = 'mean')
Subject Chinese Math
Name
San Zhang 85 95
Si Li 75 90

这里传入aggfunc包含了上一章中介绍的所有合法聚合字符串,此外还可以传入以序列为输入标量为输出的聚合函数来实现自定义操作,上述功能可以等价写出:

df.pivot_table(index = 'Name',columns = 'Subject',values = 'Grade',aggfunc = lambda x:x.mean())
Subject Chinese Math
Name
San Zhang 85 95
Si Li 75 90

此外,pivot_table具有边际汇总的功能,可以通过设置margins=True来实现,其中边际的聚合方式与aggfunc中给出的聚合方法一致。下面就分别统计了语文均分和数学均分、张三均分和李四均分,以及总体所有分数的均分:

df.pivot_table(index = 'Name',columns = 'Subject',values = 'Grade',aggfunc='mean',margins=True)
Subject Chinese Math All
Name
San Zhang 85 95.0 90.00
Si Li 75 90.0 82.50
All 80 92.5 86.25

【练一练】

在上面的边际汇总例子中,行或列的汇总为新表中行元素或者列元素的平均值,而总体的汇总为新表中四个元素的平均值。这种关系一定成立吗?若不成立,请给出一个例子来说明。

【END】

3. melt

长宽表只是数据呈现方式的差异,但其包含的信息量是等价的,前面提到了利用pivot把长表转为宽表,那么就可以通过相应的逆操作把宽表转为长表,melt函数就起到了这样的作用。在下面的例子中,Subject以列索引的形式存储,现在想要将其压缩到一个列中。

df = pd.DataFrame({'Class':[1,2],'Name':['San Zhang', 'Si Li'],'Chinese':[80, 90],'Math':[80, 75]})
df
Class Name Chinese Math
0 1 San Zhang 80 80
1 2 Si Li 90 75
df_melted = df.melt(id_vars = ['Class', 'Name'],value_vars = ['Chinese', 'Math'],var_name = 'Subject',value_name = 'Grade')
df_melted
Class Name Subject Grade
0 1 San Zhang Chinese 80
1 2 Si Li Chinese 90
2 1 San Zhang Math 80
3 2 Si Li Math 75

melt的主要参数和压缩的过程如下图所示:

前面提到了meltpivot是一组互逆过程,那么就一定可以通过pivot操作把df_melted转回df的形式:

df_unmelted = df_melted.pivot(index = ['Class', 'Name'],columns='Subject',values='Grade')
df_unmelted # 下面需要恢复索引,并且重命名列索引名称
Subject Chinese Math
Class Name
1 San Zhang 80 80
2 Si Li 90 75
df_unmelted = df_unmelted.reset_index().rename_axis(columns={'Subject':''})
df_unmelted.equals(df)
True

4. wide_to_long

melt方法中,在列索引中被压缩的一组值对应的列元素只能代表同一层次的含义,即values_name。现在如果列中包含了交叉类别,比如期中期末的类别和语文数学的类别,那么想要把values_name对应的Grade扩充为两列分别对应语文分数和数学分数,只把期中期末的信息压缩,这种需求下就要使用wide_to_long函数来完成。

df = pd.DataFrame({'Class':[1,2],'Name':['San Zhang', 'Si Li'],'Chinese_Mid':[80, 75], 'Math_Mid':[90, 85],'Chinese_Final':[80, 75], 'Math_Final':[90, 85]})
df
Class Name Chinese_Mid Math_Mid Chinese_Final Math_Final
0 1 San Zhang 80 90 80 90
1 2 Si Li 75 85 75 85
pd.wide_to_long(df,stubnames=['Chinese', 'Math'],i = ['Class', 'Name'],j='Examination',sep='_',suffix='.+')
Chinese Math
Class Name Examination
1 San Zhang Mid 80 90
Final 80 90
2 Si Li Mid 75 85
Final 75 85

具体的变换过程由下图进行展示,属相同概念的元素使用了一致的颜色标出:

下面给出一个比较复杂的案例,把之前在pivot一节中多列操作的结果(产生了多级索引),利用wide_to_long函数,将其转为原来的形态。其中,使用了第八章的str.split函数,目前暂时只需将其理解为对序列按照某个分隔符进行拆分即可。

res = pivot_multi.copy()
res.columns = res.columns.map(lambda x:'_'.join(x))
res = res.reset_index()
res = pd.wide_to_long(res, stubnames=['Grade', 'rank'],i = ['Class', 'Name'],j = 'Subject_Examination',sep = '_',suffix = '.+')
res = res.reset_index()
res[['Subject', 'Examination']] = res['Subject_Examination'].str.split('_', expand=True)
res = res[['Class', 'Name', 'Examination', 'Subject', 'Grade', 'rank']].sort_values('Subject')
res = res.reset_index(drop=True)
res
Class Name Examination Subject Grade rank
0 1 San Zhang Mid Chinese 80 10
1 1 San Zhang Final Chinese 75 15
2 2 Si Li Mid Chinese 85 21
3 2 Si Li Final Chinese 65 15
4 1 San Zhang Mid Math 90 20
5 1 San Zhang Final Math 85 7
6 2 Si Li Mid Math 92 6
7 2 Si Li Final Math 88 2

二、索引的变形

1. stack与unstack

在第二章中提到了利用swaplevel或者reorder_levels进行索引内部的层交换,下面就要讨论行列索引之间\color{red}{行列索引之间}行列索引之间的交换,由于这种交换带来了DataFrame维度上的变化,因此属于变形操作。在第一节中提到的4种变形函数与其不同之处在于,它们都属于某一列或几列元素\color{red}{元素}元素和列索引\color{red}{列索引}列索引之间的转换,而不是索引之间的转换。

unstack函数的作用是把行索引转为列索引,例如下面这个简单的例子:

df = pd.DataFrame(np.ones((4,2)),index = pd.Index([('A', 'cat', 'big'),('A', 'dog', 'small'),('B', 'cat', 'big'),('B', 'dog', 'small')]),columns=['col_1', 'col_2'])
df
col_1 col_2
A cat big 1.0 1.0
dog small 1.0 1.0
B cat big 1.0 1.0
dog small 1.0 1.0
df.unstack()
col_1 col_2
big small big small
A cat 1.0 NaN 1.0 NaN
dog NaN 1.0 NaN 1.0
B cat 1.0 NaN 1.0 NaN
dog NaN 1.0 NaN 1.0

unstack的主要参数是移动的层号,默认转化最内层,移动到列索引的最内层,同时支持同时转化多个层:

df.unstack(2)
col_1 col_2
big small big small
A cat 1.0 NaN 1.0 NaN
dog NaN 1.0 NaN 1.0
B cat 1.0 NaN 1.0 NaN
dog NaN 1.0 NaN 1.0
df.unstack([0,2])
col_1 col_2
A B A B
big small big small big small big small
cat 1.0 NaN 1.0 NaN 1.0 NaN 1.0 NaN
dog NaN 1.0 NaN 1.0 NaN 1.0 NaN 1.0

类似于pivot中的唯一性要求,在unstack中必须保证被转为列索引的行索引层\color{red}{被转为列索引的行索引层}被转为列索引的行索引层和被保留的行索引层\color{red}{被保留的行索引层}被保留的行索引层构成的组合是唯一的,例如把前两个列索引改成相同的破坏唯一性,那么就会报错:

my_index = df.index.to_list()
my_index[1] = my_index[0]
df.index = pd.Index(my_index)
df
col_1 col_2
A cat big 1.0 1.0
big 1.0 1.0
B cat big 1.0 1.0
dog small 1.0 1.0
try:df.unstack()
except Exception as e:Err_Msg = e
Err_Msg
ValueError('Index contains duplicate entries, cannot reshape')

unstack相反,stack的作用就是把列索引的层压入行索引,其用法完全类似。

df = pd.DataFrame(np.ones((4,2)),index = pd.Index([('A', 'cat', 'big'),('A', 'dog', 'small'),('B', 'cat', 'big'),('B', 'dog', 'small')]),columns=['index_1', 'index_2']).T
df
A B
cat dog cat dog
big small big small
index_1 1.0 1.0 1.0 1.0
index_2 1.0 1.0 1.0 1.0
df.stack()
A B
cat dog cat dog
index_1 big 1.0 NaN 1.0 NaN
small NaN 1.0 NaN 1.0
index_2 big 1.0 NaN 1.0 NaN
small NaN 1.0 NaN 1.0
df.stack([1, 2])
A B
index_1 cat big 1.0 1.0
dog small 1.0 1.0
index_2 cat big 1.0 1.0
dog small 1.0 1.0

2. 聚合与变形的关系

在上面介绍的所有函数中,除了带有聚合效果的pivot_table以外,所有的函数在变形前后并不会带来values个数的改变,只是这些值在呈现的形式上发生了变化。在上一章讨论的分组聚合操作,由于生成了新的行列索引,因此必然也属于某种特殊的变形操作,但由于聚合之后把原来的多个值变为了一个值,因此values的个数产生了变化,这也是分组聚合与变形函数的最大区别。

三、其他变形函数

1. crosstab

crosstab并不是一个值得推荐使用的函数,因为它能实现的所有功能pivot_table都能完成,并且速度更快。在默认状态下,crosstab可以统计元素组合出现的频数,即count操作。例如统计learn_pandas数据集中学校和转系情况对应的频数:

df = pd.read_csv('../data/learn_pandas.csv')
pd.crosstab(index = df.School, columns = df.Transfer)
Transfer N Y
School
Fudan University 38 1
Peking University 28 2
Shanghai Jiao Tong University 53 0
Tsinghua University 62 4

这等价于如下crosstab的如下写法,这里的aggfunc即聚合参数:

pd.crosstab(index = df.School, columns = df.Transfer, values = [0]*df.shape[0], aggfunc = 'count')
Transfer N Y
School
Fudan University 38.0 1.0
Peking University 28.0 2.0
Shanghai Jiao Tong University 53.0 NaN
Tsinghua University 62.0 4.0

同样,可以利用pivot_table进行等价操作,由于这里统计的是组合的频数,因此values参数无论传入哪一个列都不会影响最后的结果:

df.pivot_table(index = 'School',columns = 'Transfer',values = 'Name',aggfunc = 'count')
Transfer N Y
School
Fudan University 38.0 1.0
Peking University 28.0 2.0
Shanghai Jiao Tong University 53.0 NaN
Tsinghua University 62.0 4.0

从上面可以看出这两个函数的区别在于,crosstab的对应位置传入的是具体的序列,而pivot_table传入的是被调用表对应的名字,若传入序列对应的值则会报错。

除了默认状态下的count统计,所有的聚合字符串和返回标量的自定义函数都是可用的,例如统计对应组合的身高均值:

pd.crosstab(index = df.School, columns = df.Transfer, values = df.Height, aggfunc = 'mean')
Transfer N Y
School
Fudan University 162.043750 177.20
Peking University 163.429630 162.40
Shanghai Jiao Tong University 163.953846 NaN
Tsinghua University 163.253571 164.55

【练一练】

前面提到了crosstab的性能劣于pivot_table,请选用多个聚合方法进行验证。

【END】

2. explode

explode参数能够对某一列的元素进行纵向的展开,被展开的单元格必须存储list, tuple, Series, np.ndarray中的一种类型。

df_ex = pd.DataFrame({'A': [[1, 2], 'my_str', {1, 2}, pd.Series([3, 4])],'B': 1})
df_ex
A B
0 [1, 2] 1
1 my_str 1
2 {1, 2} 1
3 0 3 1 4 dtype: int64 1
df_ex.explode('A')
A B
0 1 1
0 2 1
1 my_str 1
2 {1, 2} 1
3 3 1
3 4 1

3. get_dummies

get_dummies是用于特征构建的重要函数之一,其作用是把类别特征转为指示变量。例如,对年级一列转为指示变量,属于某一个年级的对应列标记为1,否则为0:

pd.get_dummies(df.Grade).head()
Freshman Junior Senior Sophomore
0 1 0 0 0
1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 0 1

四、练习

Ex1:美国非法药物数据集

现有一份关于美国非法药物的数据集,其中SubstanceName, DrugReports分别指药物名称和报告数量:

df = pd.read_csv('../data/drugs.csv').sort_values(['State','COUNTY','SubstanceName'],ignore_index=True)
df.head(3)
YYYY State COUNTY SubstanceName DrugReports
0 2011 KY ADAIR Buprenorphine 3
1 2012 KY ADAIR Buprenorphine 5
2 2013 KY ADAIR Buprenorphine 4
  1. 将数据转为如下的形式:

df = pd.read_csv('../data/drugs.csv').sort_values(['State','COUNTY','SubstanceName'],ignore_index=True)
res = df.pivot(index=['State','COUNTY','SubstanceName'], columns='YYYY', values='DrugReports').reset_index().rename_axis(columns={'YYYY':''})
res.head(5)

2.将第1问中的结果恢复为原表。

res_melted = res.melt(id_vars = ['State','COUNTY','SubstanceName'],value_vars = res.columns[-8:],var_name = 'YYYY',value_name = 'DrugReports').dropna(subset=['DrugReports'])
res_melted = res_melted[df.columns].sort_values(['State','COUNTY','SubstanceName'],ignore_index=True).astype({'YYYY':'int64', 'DrugReports':'int64'})
res_melted.equals(df)

3.按State分别统计每年的报告数量总和,其中State, YYYY分别为列索引和行索引,要求分别使用pivot_table函数与groupby+unstack两种不同的策略实现,并体会它们之间的联系。

#策略1
res = df.pivot_table(index='YYYY', columns='State', values='DrugReports', aggfunc='sum')
res.head(3)
#策略2
res = df.groupby(['State', 'YYYY'])['DrugReports'].sum().to_frame().unstack(0).droplevel(0,axis=1)
res.head(3)

Ex2:特殊的wide_to_long方法

从功能上看,melt方法应当属于wide_to_long的一种特殊情况,即stubnames只有一类。请使用wide_to_long生成melt一节中的df_melted。(提示:对列名增加适当的前缀)

df = pd.DataFrame({'Class':[1,2],'Name':['San Zhang', 'Si Li'],'Chinese':[80, 90],'Math':[80, 75]})
df
Class Name Chinese Math
0 1 San Zhang 80 80
1 2 Si Li 90 75
df = df.rename(columns={'Chinese':'pre_Chinese', 'Math':'pre_Math'})
pd.wide_to_long(df,stubnames=['pre'],i = ['Class', 'Name'],j='Subject',sep='_',suffix='.+').reset_index().rename(columns={'pre':'Grade'})

datawhale task5变形相关推荐

  1. Datawhale零基础入门数据挖掘-Task5模型融合

    Datawhale零基础入门数据挖掘-Task5模型融合 五.模型融合 5.1 模型融合目标 5.2 内容介绍 5.3 Stacking相关理论介绍 5.4 代码示例 5.4.1 回归\分类概率-融合 ...

  2. Datawhale 数据挖掘新手入门笔记 -Task5 模型融合

    文章目录 一.前言 二.模型融合目标 三.内容介绍 四.Stacking相关理论介绍 1.什么是stacking 2.如何进行stacking 3.Stacking的方法讲解 五.代码示例 1.回归\ ...

  3. Datawhale NLP入门:Task5 基于深度学习的文本分类2

    Task5 基于深度学习的文本分类2 在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的.在本章我们将继续深入. 基于深度学习的文本分类 本章将继续学习 ...

  4. DataWhale NLP组队学习 Task5 基于深度学习的文本分类2

    文章目录 文本表示方法 Part3 词向量 TextCNN TextRNN 基于TextCNN.TextRNN的文本表示 TextCNN TextRNN 使用HAN用于文本分类 本章小结 本章作业 后 ...

  5. Datawhale零基础入门NLP赛事 - Task5 基于深度学习的文本分类2

    在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的.在本章我们将继续深入. 基于深度学习的文本分类 本章将继续学习基于深度学习的文本分类. 学习目标 学 ...

  6. Day5-Python变形(DataWhale)

    变形 import numpy as np import pandas as pd 一.长表变宽表 长表:一个表中把性别存储在某一个列中,它就是关于性别的长表 宽表:把性别作为列名,列中的元素是某一其 ...

  7. Datawhale第23期组队学习—深度学习推荐系统—task5 DIN

    DIN 1. 背景 2. 模型原理 2.1 特征表示 2.2 模型原理 3. 代码实现 参考来源: https://github.com/datawhalechina/team-learning-rs ...

  8. Datawhale 零基础入门CV赛事-Task5 模型集成

    这里写目录标题 1.集成学习方法 2.深度学习中的集成学习 Dropout TTA Snapshot 1.集成学习方法 在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stac ...

  9. Datawhale 零基础入门数据挖掘-Task5 模型融合

    模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式. 一.简单加权融合 1.回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean): 2 ...

  10. Datawhale零基础入门NLP day5/Task5基于深度学习的文本分类2

    基于深度学习的文本分类 本章将继续学习基于深度学习的文本分类. 学习目标 学习Word2Vec的使用和基础原理 学习使用TextCNN.TextRNN进行文本表示 学习使用HAN网络结构完成文本分类 ...

最新文章

  1. wtl中显示html,用WTL构建HTML界面应用程序(1)
  2. 哪个术语描述了服务器软件在专用计算机,计算机网络基础
  3. 浅谈WebService的调用转
  4. python3源代码_Python3源代码编译安装
  5. 华为手机日历倒计时_倒计时40小时!谁来拿走这台华为手机?
  6. 青岛三网融合试点:三屏合一切入
  7. 自动检测技术学习心得体会_国培计划(2020)—学校管理团队信息化领导力提升培训心得体会...
  8. 设计一个简单分页存储管理系统_【系统架构】如何设计一个简单灵活的收银系统?看这里!(1)...
  9. 小程序开发时能否使用我们自定义的字体图标
  10. html相册魔方代码,魔方相册制作方法现成的魔方相册代码:
  11. MAX30102的STM32驱动程序
  12. R语言检测异常值的几个案例
  13. AOC显示器OSD已锁是什么意思?怎么解锁?
  14. 艾客私域风暴进行时—打造服务型私域,赋能品牌增长新引擎
  15. Ethernet和802.3的区别及历史
  16. ChatGPT 会开源吗?
  17. english words
  18. HTML5游戏化互动学习平台,h5游戏平台_触摸型互动slg黄油手游
  19. 百度AI攻略:驾驶行为识别
  20. 车牌识别之一:车牌定位

热门文章

  1. SQL(HIVE -HUE)剔除的三种方式
  2. webSpider----request
  3. 简单制作百度注册页面
  4. Spark RDD常用算子-Transformation(Python版)
  5. FusionSphere虚拟化套件
  6. 怎样测试企业级SSD
  7. 手把手教你用VMware安装Centos7.9镜像(史上最详细)
  8. 通俗易懂奈奎斯特定理和香农定理
  9. java 匿名函数_Java8学习系列之匿名函数Lambda
  10. 3 非齐次线性微分方程与无量纲化