二元函数二阶混合偏导数的近似计算式与误差阶推导

  • 问题
  • 引理一:
  • 引理二:
  • 引理三:
  • 引理四:
  • 命题
  • 数值实验
    • 函数一
    • 函数二
  • 结论

问题

假设f(x,y)f(x,y)f(x,y)在全平面内存在且足够的光滑,求fxy(x0,y0)f_{xy}(x_0,y_0)fxy​(x0​,y0​)的计算式与误差阶

引理一:

若fxy(x0,y0),fyx(x0,y0)f_{xy}(x_0,y_0),f_{yx}(x_0,y_0)fxy​(x0​,y0​),fyx​(x0​,y0​)均在(x0,y0)(x_0,y_0)(x0​,y0​)处存在且连续,则fxy(x0,y0)=fyx(x0,y0)f_{xy}(x_0,y_0)=f_{yx}(x_0,y_0)fxy​(x0​,y0​)=fyx​(x0​,y0​)

引理二:

设D⊂R2D \subset R^2D⊂R2为一区域,函数f(x,y)∈C2(D)f(x,y)\in C^{2}(D)f(x,y)∈C2(D),且(x0,y0)∈D,(x0+h,y0+k)∈D(x_0,y_0)\in D,(x_0+h,y_0+k) \in D(x0​,y0​)∈D,(x0​+h,y0​+k)∈D,则有二元函数带皮亚诺余项的泰勒公式
f(x0+h,y0+k)=f(x0,y0)+hfx(x0,y0)+kfy(x0,y0)+h2fxx(x0,y0)+2hkfxy(x0,y0)+k2fyy(x0,y0)2+o(ρ2)f(x_0+h,y_0+k)=f(x_0,y_0)+hf_x(x_0,y_0)+kf_y(x_0,y_0)+\frac{h^2f_{xx}(x_0,y_0)+2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0)}{2}+o(\rho^2)f(x0​+h,y0​+k)=f(x0​,y0​)+hfx​(x0​,y0​)+kfy​(x0​,y0​)+2h2fxx​(x0​,y0​)+2hkfxy​(x0​,y0​)+k2fyy​(x0​,y0​)​+o(ρ2)
其中,ρ=h2+k2\rho=\sqrt{h^2+k^2}ρ=h2+k2​

引理三:

(一元函数带拉格朗日余项的泰勒公式)设函数f(x)在包含点x0x_0x0​的区间(a,b)内具有直到n+1阶的导数,则对任意x∈(a,b)x\in(a,b)x∈(a,b)都有
f(x)=f(x0)+f′(x0)(x−x0)+12!f′′(x0)(x−x0)2+...+1n!f(n)(x0)(x−x0)n+Rn(x)f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+...+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+R_n(x)f(x)=f(x0​)+f′(x0​)(x−x0​)+2!1​f′′(x0​)(x−x0​)2+...+n!1​f(n)(x0​)(x−x0​)n+Rn​(x)
其中,Rn(x)=1(n+1)!f(n+1)(ξ)(x−x0)(n+1)R_n(x)=\frac{1}{(n+1)!}f^{(n+1)}(\xi)(x-x_0)^{(n+1)}Rn​(x)=(n+1)!1​f(n+1)(ξ)(x−x0​)(n+1),ξ\xiξ在x0x_0x0​与xxx之间

引理四:

(二元函数带拉格朗日余项的泰勒公式)设D⊂R3D \subset R^3D⊂R3为一区域,函数f(x,y)∈C3(D)f(x,y)\in C^{3}(D)f(x,y)∈C3(D),且(x0,y0)∈D,(x0+h,y0+k)∈D(x_0,y_0)\in D,(x_0+h,y_0+k) \in D(x0​,y0​)∈D,(x0​+h,y0​+k)∈D,则有
f(x0+h,y0+k)=f(x0,y0)+hfx(x0,y0)+kfy(x0,y0)+h2fxx(x0,y0)+2hkfxy(x0,y0)+k2fyy(x0,y0)2!f(x_0+h,y_0+k)=f(x_0,y_0)+hf_x(x_0,y_0)+kf_y(x_0,y_0)+\frac{h^2f_{xx}(x_0,y_0)+2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0)}{2!}f(x0​+h,y0​+k)=f(x0​,y0​)+hfx​(x0​,y0​)+kfy​(x0​,y0​)+2!h2fxx​(x0​,y0​)+2hkfxy​(x0​,y0​)+k2fyy​(x0​,y0​)​

+h3fxxx(x0+θh,y0+θk)+3h2kfxxy(x0+θh,y0+θk)+3hk2fxyy(x0+θh,y0+θk)+k3fyyy(x0+θh,y0+θk)3!,θ∈(0,1)+\frac{h^3f_{xxx}(x_0+\theta h,y_0+\theta k)+3h^2kf_{xxy}(x_0+\theta h,y_0+\theta k)+3hk^2f_{xyy}(x_0+\theta h,y_0+\theta k)+k^3f_{yyy}(x_0+\theta h,y_0+\theta k)}{3!},\theta \in (0,1)+3!h3fxxx​(x0​+θh,y0​+θk)+3h2kfxxy​(x0​+θh,y0​+θk)+3hk2fxyy​(x0​+θh,y0​+θk)+k3fyyy​(x0​+θh,y0​+θk)​,θ∈(0,1)

命题

fxy(x0,y0)=f(x0+h,y0+k)−f(x0−h,y0+k)−f(x0+h,y0−k)+f(x0−h,y0−k)4hkf_{xy}(x_0,y_0)=\frac{f(x_0+h,y_0+k)-f(x_0-h,y_0+k)-f(x_0+h,y_0-k)+f(x_0-h,y_0-k)}{4hk}fxy​(x0​,y0​)=4hkf(x0​+h,y0​+k)−f(x0​−h,y0​+k)−f(x0​+h,y0​−k)+f(x0​−h,y0​−k)​

证明:
由引理四得到

f(x0+h,y0+k)=f(x0,y0)+hfx(x0,y0)+kfy(x0,y0)+h2fxx(x0,y0)+2hkfxy(x0,y0)+k2fyy(x0,y0)2!f(x_0+h,y_0+k)=f(x_0,y_0)+hf_x(x_0,y_0)+kf_y(x_0,y_0)+\frac{h^2f_{xx}(x_0,y_0)+2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0)}{2!}f(x0​+h,y0​+k)=f(x0​,y0​)+hfx​(x0​,y0​)+kfy​(x0​,y0​)+2!h2fxx​(x0​,y0​)+2hkfxy​(x0​,y0​)+k2fyy​(x0​,y0​)​

+h3fxxx(x0+θ1h,y0+θ1k)+3h2kfxxy(x0+θ1h,y0+θ1k)+3hk2fxyy(x0+θ1h,y0+θ1k)+k3fyyy(x0+θ1h,y0+θ1k)3!+\frac{h^3f_{xxx}(x_0+\theta_1 h,y_0+\theta_1 k)+3h^2kf_{xxy}(x_0+\theta_1 h,y_0+\theta_1 k)+3hk^2f_{xyy}(x_0+\theta_1 h,y_0+\theta_1 k)+k^3f_{yyy}(x_0+\theta_1 h,y_0+\theta_1 k)}{3!}+3!h3fxxx​(x0​+θ1​h,y0​+θ1​k)+3h2kfxxy​(x0​+θ1​h,y0​+θ1​k)+3hk2fxyy​(x0​+θ1​h,y0​+θ1​k)+k3fyyy​(x0​+θ1​h,y0​+θ1​k)​

f(x0−h,y0+k)=f(x0,y0)−hfx(x0,y0)+kfy(x0,y0)+h2fxx(x0,y0)−2hkfxy(x0,y0)+k2fyy(x0,y0)2!f(x_0-h,y_0+k)=f(x_0,y_0)-hf_x(x_0,y_0)+kf_y(x_0,y_0)+\frac{h^2f_{xx}(x_0,y_0)-2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0)}{2!}f(x0​−h,y0​+k)=f(x0​,y0​)−hfx​(x0​,y0​)+kfy​(x0​,y0​)+2!h2fxx​(x0​,y0​)−2hkfxy​(x0​,y0​)+k2fyy​(x0​,y0​)​

+−h3fxxx(x0−θ2h,y0+θ2k)+3h2kfxxy(x0−θ2h,y0+θ2k)−3hk2fxyy(x0−θ2h,y0+θ2k)+k3fyyy(x0−θ2h,y0+θ2k)3!+\frac{-h^3f_{xxx}(x_0-\theta_2 h,y_0+\theta_2 k)+3h^2kf_{xxy}(x_0-\theta_2 h,y_0+\theta_2 k)-3hk^2f_{xyy}(x_0-\theta_2 h,y_0+\theta_2 k)+k^3f_{yyy}(x_0-\theta_2 h,y_0+\theta_2 k)}{3!}+3!−h3fxxx​(x0​−θ2​h,y0​+θ2​k)+3h2kfxxy​(x0​−θ2​h,y0​+θ2​k)−3hk2fxyy​(x0​−θ2​h,y0​+θ2​k)+k3fyyy​(x0​−θ2​h,y0​+θ2​k)​

f(x0+h,y0−k)=f(x0,y0)+hfx(x0,y0)−kfy(x0,y0)+h2fxx(x0,y0)−2hkfxy(x0,y0)+k2fyy(x0,y0)2!f(x_0+h,y_0-k)=f(x_0,y_0)+hf_x(x_0,y_0)-kf_y(x_0,y_0)+\frac{h^2f_{xx}(x_0,y_0)-2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0)}{2!}f(x0​+h,y0​−k)=f(x0​,y0​)+hfx​(x0​,y0​)−kfy​(x0​,y0​)+2!h2fxx​(x0​,y0​)−2hkfxy​(x0​,y0​)+k2fyy​(x0​,y0​)​

+h3fxxx(x0+θ3h,y0−θ3k)−3h2kfxxy(x0+θ3h,y0−θ3k)+3hk2fxyy(x0+θ3h,y0−θ3k)−k3fyyy(x0+θ3h,y0−θ3k)3!+\frac{h^3f_{xxx}(x_0+\theta_3 h,y_0-\theta_3 k)-3h^2kf_{xxy}(x_0+\theta_3 h,y_0-\theta_3 k)+3hk^2f_{xyy}(x_0+\theta_3 h,y_0-\theta_3 k)-k^3f_{yyy}(x_0+\theta_3 h,y_0-\theta_3 k)}{3!}+3!h3fxxx​(x0​+θ3​h,y0​−θ3​k)−3h2kfxxy​(x0​+θ3​h,y0​−θ3​k)+3hk2fxyy​(x0​+θ3​h,y0​−θ3​k)−k3fyyy​(x0​+θ3​h,y0​−θ3​k)​

f(x0−h,y0−k)=f(x0,y0)−hfx(x0,y0)−kfy(x0,y0)+h2fxx(x0,y0)+2hkfxy(x0,y0)+k2fyy(x0,y0)2!f(x_0-h,y_0-k)=f(x_0,y_0)-hf_x(x_0,y_0)-kf_y(x_0,y_0)+\frac{h^2f_{xx}(x_0,y_0)+2hkf_{xy}(x_0,y_0)+k^2f_{yy}(x_0,y_0)}{2!}f(x0​−h,y0​−k)=f(x0​,y0​)−hfx​(x0​,y0​)−kfy​(x0​,y0​)+2!h2fxx​(x0​,y0​)+2hkfxy​(x0​,y0​)+k2fyy​(x0​,y0​)​

+−h3fxxx(x0−θ4h,y0−θ4k)−3h2kfxxy(x0−θ4h,y0−θ4k)−3hk2fxyy(x0−θ4h,y0−θ4k)−k3fyyy(x0−θ4h,y0−θ4k)3!+\frac{-h^3f_{xxx}(x_0-\theta_4 h,y_0-\theta_4 k)-3h^2kf_{xxy}(x_0-\theta_4 h,y_0-\theta_4 k)-3hk^2f_{xyy}(x_0-\theta_4 h,y_0-\theta_4 k)-k^3f_{yyy}(x_0-\theta_4 h,y_0-\theta_4 k)}{3!}+3!−h3fxxx​(x0​−θ4​h,y0​−θ4​k)−3h2kfxxy​(x0​−θ4​h,y0​−θ4​k)−3hk2fxyy​(x0​−θ4​h,y0​−θ4​k)−k3fyyy​(x0​−θ4​h,y0​−θ4​k)​

所以,误差等于
f(x0+h,y0+k)−f(x0+h,y0−k)−f(x0−h,y0+k)+f(x0−h,y0−k)4hk−fyx(x0,y0)\frac{f(x_0+h,y_0+k)-f(x_0+h,y_0-k)-f(x_0-h,y_0+k)+f(x_0-h,y_0-k)}{4hk}-f_{yx}(x_0,y_0)4hkf(x0​+h,y0​+k)−f(x0​+h,y0​−k)−f(x0​−h,y0​+k)+f(x0​−h,y0​−k)​−fyx​(x0​,y0​)

=124hk((h3fxxx(x0+θ1h,y0+θ1k)+3h2kfxxy(x0+θ1h,y0+θ1k)+3hk2fxyy(x0+θ1h,y0+θ1k)+k3fyyy(x0+θ1h,y0+θ1k))=\frac{1}{24hk}((h^3f_{xxx}(x_0+\theta_1 h,y_0+\theta_1 k)+3h^2kf_{xxy}(x_0+\theta_1 h,y_0+\theta_1 k)+3hk^2f_{xyy}(x_0+\theta_1 h,y_0+\theta_1 k)+k^3f_{yyy}(x_0+\theta_1 h,y_0+\theta_1 k))=24hk1​((h3fxxx​(x0​+θ1​h,y0​+θ1​k)+3h2kfxxy​(x0​+θ1​h,y0​+θ1​k)+3hk2fxyy​(x0​+θ1​h,y0​+θ1​k)+k3fyyy​(x0​+θ1​h,y0​+θ1​k))

−(−h3fxxx(x0−θ2h,y0+θ2k)+3h2kfxxy(x0−θ2h,y0+θ2k)−3hk2fxyy(x0−θ2h,y0+θ2k)+k3fyyy(x0−θ2h,y0+θ2k))-(-h^3f_{xxx}(x_0-\theta_2 h,y_0+\theta_2 k)+3h^2kf_{xxy}(x_0-\theta_2 h,y_0+\theta_2 k)-3hk^2f_{xyy}(x_0-\theta_2 h,y_0+\theta_2 k)+k^3f_{yyy}(x_0-\theta_2 h,y_0+\theta_2 k))−(−h3fxxx​(x0​−θ2​h,y0​+θ2​k)+3h2kfxxy​(x0​−θ2​h,y0​+θ2​k)−3hk2fxyy​(x0​−θ2​h,y0​+θ2​k)+k3fyyy​(x0​−θ2​h,y0​+θ2​k))

−(h3fxxx(x0+θ3h,y0−θ3k)−3h2kfxxy(x0+θ3h,y0−θ3k)+3hk2fxyy(x0+θ3h,y0−θ3k)−k3fyyy(x0+θ3h,y0−θ3k))-(h^3f_{xxx}(x_0+\theta_3 h,y_0-\theta_3 k)-3h^2kf_{xxy}(x_0+\theta_3 h,y_0-\theta_3 k)+3hk^2f_{xyy}(x_0+\theta_3 h,y_0-\theta_3 k)-k^3f_{yyy}(x_0+\theta_3 h,y_0-\theta_3 k))−(h3fxxx​(x0​+θ3​h,y0​−θ3​k)−3h2kfxxy​(x0​+θ3​h,y0​−θ3​k)+3hk2fxyy​(x0​+θ3​h,y0​−θ3​k)−k3fyyy​(x0​+θ3​h,y0​−θ3​k))

+(−h3fxxx(x0−θ4h,y0−θ4k)−3h2kfxxy(x0−θ4h,y0−θ4k)−3hk2fxyy(x0−θ4h,y0−θ4k)−k3fyyy(x0−θ4h,y0−θ4k)))+(-h^3f_{xxx}(x_0-\theta_4 h,y_0-\theta_4 k)-3h^2kf_{xxy}(x_0-\theta_4 h,y_0-\theta_4 k)-3hk^2f_{xyy}(x_0-\theta_4 h,y_0-\theta_4 k)-k^3f_{yyy}(x_0-\theta_4 h,y_0-\theta_4 k)))+(−h3fxxx​(x0​−θ4​h,y0​−θ4​k)−3h2kfxxy​(x0​−θ4​h,y0​−θ4​k)−3hk2fxyy​(x0​−θ4​h,y0​−θ4​k)−k3fyyy​(x0​−θ4​h,y0​−θ4​k)))

将等式右边合并同类项按照h3,h2k,hk2,k3h^3,h^2k,hk^2,k^3h3,h2k,hk2,k3分成四类考虑

含h3h^3h3的几项为

h324hk(fxxx(x0+θ1h,y0+θ1k)+fxxx(x0−θ2h,y0+θ2k)−fxxx(x0+θ3h,y0−θ3k)−fxxx(x0−θ4h,y0−θ4k))\frac{h^3}{24hk}(f_{xxx}(x_0+\theta_1 h,y_0+\theta_1 k)+f_{xxx}(x_0-\theta_2 h,y_0+\theta_2 k)-f_{xxx}(x_0+\theta_3 h,y_0-\theta_3 k)-f_{xxx}(x_0-\theta_4 h,y_0-\theta_4 k))24hkh3​(fxxx​(x0​+θ1​h,y0​+θ1​k)+fxxx​(x0​−θ2​h,y0​+θ2​k)−fxxx​(x0​+θ3​h,y0​−θ3​k)−fxxx​(x0​−θ4​h,y0​−θ4​k))

设G(θ)=fxxx(x0+θh,y0+θk),H(θ)=fxxx(x0−θh,y0+θk)G(\theta)=f_{xxx}(x_0+\theta h,y_0+\theta k),H(\theta)=f_{xxx}(x_0-\theta h,y_0+\theta k)G(θ)=fxxx​(x0​+θh,y0​+θk),H(θ)=fxxx​(x0​−θh,y0​+θk)

则上面几项可以化为h224k((G(θ1)−G(−θ4)+(H(θ2)−H(−θ3)))\frac{h^2}{24k}((G(\theta_1)-G(-\theta_4)+(H(\theta_2)-H(-\theta_3)))24kh2​((G(θ1​)−G(−θ4​)+(H(θ2​)−H(−θ3​)))

=h224k((θ1+θ4)G′(ξ1)+(θ2+θ3)H′(ξ2))=\frac{h^2}{24k}((\theta_1+\theta_4)G^{'}(\xi_1)+(\theta_2+\theta_3)H^{'}(\xi_2))=24kh2​((θ1​+θ4​)G′(ξ1​)+(θ2​+θ3​)H′(ξ2​))

而用链式法则对G,HG,HG,H求导,得到

G′(θ)=hfxxxx(x0+θh,y0+θk)+kfxxxy(x0+θh,y0+θk)G^{'}(\theta)=hf_{xxxx}(x_0+\theta h,y_0+\theta k)+kf_{xxxy}(x_0+\theta h,y_0+\theta k)G′(θ)=hfxxxx​(x0​+θh,y0​+θk)+kfxxxy​(x0​+θh,y0​+θk)

H′(θ)=−hfxxxx(x0−θh,y0+θk)+kfxxxy(x0−θh,y0+θk)H^{'}(\theta)=-hf_{xxxx}(x_0-\theta h,y_0+\theta k)+kf_{xxxy}(x_0-\theta h,y_0+\theta k)H′(θ)=−hfxxxx​(x0​−θh,y0​+θk)+kfxxxy​(x0​−θh,y0​+θk)

因此,原来几项可以化为

h224k((θ1+θ4)(hfxxxx(x0+ξ1h,y0+ξ1k)+kfxxxy(x0+ξ1h,y0+ξ1k))\frac{h^2}{24k}((\theta_1+\theta_4)(hf_{xxxx}(x_0+\xi_1 h,y_0+\xi_1 k)+kf_{xxxy}(x_0+\xi_1 h,y_0+\xi_1 k))24kh2​((θ1​+θ4​)(hfxxxx​(x0​+ξ1​h,y0​+ξ1​k)+kfxxxy​(x0​+ξ1​h,y0​+ξ1​k))

+(θ2+θ3)(−hfxxxx(x0−ξ2h,y0+ξ2k)+kfxxxy(x0−ξ2h,y0+ξ2k)))+(\theta_2+\theta_3)(-hf_{xxxx}(x_0-\xi_2 h,y_0+\xi_2 k)+kf_{xxxy}(x_0-\xi_2 h,y_0+\xi_2 k)))+(θ2​+θ3​)(−hfxxxx​(x0​−ξ2​h,y0​+ξ2​k)+kfxxxy​(x0​−ξ2​h,y0​+ξ2​k)))

由于θ1+θ4\theta_1+\theta_4θ1​+θ4​与θ2+θ3\theta_2+\theta_3θ2​+θ3​一般不相等,所以无法用拉格朗日中值定理进一步化简

因此当h,kh,kh,k大小接近的时候,若假设上面的四阶偏导数均有界,则有误差阶数为O(h2)O(h^2)O(h2)

类似地对h2k,hk2,k3h^2k,hk^2,k^3h2k,hk2,k3讨论,得到在h与k同阶的时候,误差阶数为O(h2)O(h^2)O(h2)

数值实验

函数一

f(x,y)=x2sin(y)+exy2f(x,y)=x^2sin(y)+e^{xy^2}f(x,y)=x2sin(y)+exy2

fx(x,y)=2xsin(y)+y2exy2f_{x}(x,y)=2xsin(y)+y^2e^{xy^2}fx​(x,y)=2xsin(y)+y2exy2

fy(x,y)=x2cos(y)+2xyexy2f_{y}(x,y)=x^2cos(y)+2xye^{xy^2}fy​(x,y)=x2cos(y)+2xyexy2

fxy(x,y)=2xcos(y)+2yexy2+2xy3exy2f_{xy}(x,y)=2xcos(y)+2ye^{xy^2}+2xy^3e^{xy^2}fxy​(x,y)=2xcos(y)+2yexy2+2xy3exy2

 import numpy as npdef f1(x,y):return x*x*np.sin(y)+np.exp(x*y*y)def f1xy(x,y):return 2*x*np.cos(y)+2*y*np.exp(x*y*y)+2*x*y*y*y*np.exp(x*y*y)x=2.5y=1.8h=0.1k=0.1print("(%.4f,%.4f)二阶混合偏导数真实值:%.10f"%(x,y,f2xy(x,y)))print("序号\th,k\t\t近似公式计算值\t\t误差\t\t误差衰减倍数")for i in range(20):now=(f1(x+h,y+k)-f1(x-h,y+k)-f1(x+h,y-k)+f1(x-h,y-k))*0.25/h/kprint("%d\t%.7f\t%.10f\t%.10f"%(i+1,h,now,now-f1xy(x,y)),end='')if i>0:print("\t%.6f"%(las/(now-f1xy(x,y))))else:print()las=now-f1xy(x,y)h*=0.5k*=0.5

(2.5000,1.8000)二阶混合偏导数真实值:2.6708851424
序号 h,k 近似公式计算值 误差 误差衰减倍数
1 0.1000000 133118.5135877089 25192.8754518838
2 0.0500000 113820.5496154785 5894.9114796533 4.273665
3 0.0250000 109375.4104465985 1449.7723107733 4.066095
4 0.0125000 108286.6028087446 360.9646729195 4.016383
5 0.0062500 108015.7871949166 90.1490590915 4.004087
6 0.0031250 107948.1696480652 22.5315122401 4.001021
7 0.0015625 107931.2706538942 5.6325180690 4.000256
8 0.0007813 107927.0462427288 1.4081069037 4.000064
9 0.0003906 107925.9901575744 0.3520217493 4.000057
10 0.0001953 107925.7261663675 0.0880305424 3.998859
11 0.0000977 107925.6601095200 0.0219736948 4.006178
12 0.0000488 107925.6436347961 0.0054989710 3.995965
13 0.0000244 107925.6391525269 0.0010167017 5.408637
14 0.0000122 107925.6431579590 0.0050221338 0.202444
15 0.0000061 107925.5615234375 -0.0766123876 -0.065553
16 0.0000031 107925.3906250000 -0.2475108251 0.309531
17 0.0000015 107925.4882812500 -0.1498545751 1.651673
18 0.0000008 107926.7578125000 1.1196766749 -0.133837
19 0.0000004 107917.9687500000 -7.6693858251 -0.145993
20 0.0000002 107887.5000000000 -38.1381358251 0.201095

函数二

f(x,y)=x32sin(x+y)f(x,y)=x^{\frac{3}{2}}sin(x+y)f(x,y)=x23​sin(x+y)

fx(x,y)=x32cos(x+y)+32x12sin(x+y)f_{x}(x,y)=x^{\frac{3}{2}}cos(x+y)+\frac{3}{2}x^{\frac{1}{2}}sin(x+y)fx​(x,y)=x23​cos(x+y)+23​x21​sin(x+y)

fy(x,y)=x32cos(x+y)f_{y}(x,y)=x^{\frac{3}{2}}cos(x+y)fy​(x,y)=x23​cos(x+y)

fxy(x,y)=−x32sin(x+y)+32x12cos(x+y)f_{xy}(x,y)=-x^{\frac{3}{2}}sin(x+y)+\frac{3}{2}x^{\frac{1}{2}}cos(x+y)fxy​(x,y)=−x23​sin(x+y)+23​x21​cos(x+y)

 import numpy as npdef f2(x,y):return x**1.5*np.sin(x+y)def f2xy(x,y):return 1.5*(x**0.5)*np.cos(x+y)-x**1.5*np.sin(x+y)x=5y=5h=0.1k=0.1print("(%.4f,%.4f)二阶混合偏导数真实值:%.10f"%(x,y,f2xy(x,y)))print("序号\th,k\t\t近似公式计算值\t\t误差\t\t误差衰减倍数")for i in range(15):now=(f2(x+h,y+k)-f2(x-h,y+k)-f2(x+h,y-k)+f2(x-h,y-k))*0.25/h/kprint("%d\t%.7f\t%.10f\t%.10f"%(i+1,h,now,now-f2xy(x,y)),end='')if i>0:print("\t%.6f"%(las/(now-f2xy(x,y))))else:print()las=now-f2xy(x,y)h*=0.5k*=0.5

(5.0000,5.0000)二阶混合偏导数真实值:3.2680094602
序号 h,k 近似公式计算值 误差 误差衰减倍数
1 0.1000000 3.2674426586 -0.0005668017
2 0.0500000 3.2678703460 -0.0001391142 4.074362
3 0.0250000 3.2679748435 -0.0000346167 4.018704
4 0.0125000 3.2680008162 -0.0000086441 4.004682
5 0.0062500 3.2680072998 -0.0000021604 4.001154
6 0.0031250 3.2680089201 -0.0000005401 4.000008
7 0.0015625 3.2680093253 -0.0000001350 4.001843
8 0.0007813 3.2680094264 -0.0000000338 3.989878
9 0.0003906 3.2680094504 -0.0000000098 3.446221
10 0.0001953 3.2680094533 -0.0000000069 1.421488
11 0.0000977 3.2680094242 -0.0000000360 0.191759
12 0.0000488 3.2680093311 -0.0000001291 0.278833
13 0.0000244 3.2680094242 -0.0000000360 3.586371
14 0.0000122 3.2680064440 -0.0000030162 0.011938
15 0.0000061 3.2679975033 -0.0000119569 0.252259

由上面几个函数的例子可以看出,h和k减小为原来一半时,误差减小为原来的四分之一,因此验证了误差的阶数为平方级别

结论

对于足够光滑的函数f(x,y)f(x,y)f(x,y),有二阶混合偏导数计算式:

fxy(x0,y0)=f(x0+h,y0+k)−f(x0−h,y0+k)−f(x0+h,y0−k)+f(x0−h,y0−k)4hkf_{xy}(x_0,y_0)=\frac{f(x_0+h,y_0+k)-f(x_0-h,y_0+k)-f(x_0+h,y_0-k)+f(x_0-h,y_0-k)}{4hk}fxy​(x0​,y0​)=4hkf(x0​+h,y0​+k)−f(x0​−h,y0​+k)−f(x0​+h,y0​−k)+f(x0​−h,y0​−k)​

该计算式的误差阶上界数为二阶

由于作者水平有限,如果推导过程中有错误或考虑不周之处,还望不吝指正。

【数值分析】二元函数二阶混合偏导数的近似计算式与误差阶推导相关推荐

  1. 二元函数可微与可导的关系_如何理解多元函数可微与可偏导的关系?

    原标题:如何理解多元函数可微与可偏导的关系? 谈到多元函数可微与可偏导时,相信不少人头皮有点发麻.一元函数中,可微与可导是等价的,但是在多元函数中,可微与可偏导之间的关系就没那么简单了,这是为什么呢? ...

  2. 二元函数泰勒公式例题_考研数一对二元函数的二阶泰勒公式的要求是了解,那我们要了解到什么程度呢?会出那种类型的题呢?...

    展开全部 二阶泰勒来公式不需要很32313133353236313431303231363533e78988e69d8331333433626531深的了解,基本上是考不到的,从97到11年的真题来看 ...

  3. 二阶可导的充要条件_二元函数可微的充要条件

    二元函数可微的充要条件:[f(x+dx,y+dy)-f(x,y)]是[(x^2+y^2)^1/2]的高阶无穷小.必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在. 二元函数的条件 1. ...

  4. 10.0.高等数学四-多元函数的泰勒公式(二元函数二阶导数海赛矩阵)

    多元函数的泰勒公式 问题引入 海赛矩阵 海赛矩阵定义(二元函数的二阶导数) 推广到n元函数的海赛矩阵 例1 例2 定理1 麦克劳林公式 二阶导数 二元函数的拉格朗日中值公式(一阶) 例3 一阶带拉格朗 ...

  5. 二元函数连续与偏导数存在的关系_《高等数学》微课视频“二元函数的全微分求积”录音...

    大家好,我今天讲解的题目是 "二元函数的全微分求积" 前面我们学习了两类曲线积分,以及曲线积分和重积分之间的桥梁,我们称之为格林公式,这个公式给出了平面闭区域上的重积分和分段光滑的 ...

  6. 二元函数对xy同时求导_复变函数学习笔记(5)

    到现在为止复变函数的理论还算友善,只是Cauchy积分定理很难证.不过接下来,一系列震撼我妈的结论就要出现,这就是复变函数与实函数的区别. (果然我还是喜欢无口系少女www) Cauchy积分公式,复 ...

  7. 二元函数泰勒公式例题_高等数学(I-2)

    第七章 微分方程 1. 了解微分方程.解.通解.特解.初始条件等概念. 2.  掌握可分离变量方程以及一阶线性微分方程的解法, 会解齐次方程.Bernoulli方程. 3.   会用降阶法解三类高阶方 ...

  8. 一元函数对象、一元谓词、二元函数对象、二元谓词

    一元函数对象:函数参数1个 二元函数对象:函数参数2个 一元谓词 函数参数1个,函数返回值是bool类型,可以作为一个判断式,谓词可以是一个仿函数,也可以是一个回调函数. 二元谓词 函数参数2个,函数 ...

  9. 二元函数可微与偏导数_二元函数的连续、偏导数、可微之间的关系-推荐下载...

    目 录 摘要 -----------------------------------1 关键词 ----------------------------------1 Abstract-------- ...

最新文章

  1. mega_[MEGA DEAL]完整的Android开发人员课程–构建14个应用程序(91%折扣)
  2. JavaScript思维导图之数组
  3. 前端学习(712):数组的概念
  4. Postman和postwoman安装及简介
  5. Ubuntu 软件源sources.list
  6. tomcat性能调优和性能监控(visualvm)
  7. 20181213-python1119作业郭恩赐
  8. windows网络安全以及常见网络***方式
  9. 黑马程序员 re模块的高级用法 学习笔记
  10. Open Virtual Machine Tools
  11. 小马激活软件下载,当心伪小马,有病毒
  12. 关于最优化问题的个人理解以及黑塞矩阵的示例
  13. AspNetPager分页控制
  14. js return加分号_JavaScript 语句后应该加分号么?
  15. HDU 4585 Shaolin (STL)
  16. CHD+CM-1 安装
  17. 实现HTML格式电子邮件群发
  18. html给页面添加艺术型边框,如何为2016word的页面设置艺术型页面边框
  19. 全国各省一本和二本录取率2014年,用事实说话
  20. 2022T电梯修理考试题库及模拟考试

热门文章

  1. poi下载模板含下拉框
  2. 苹果手机测试手机电平软件,用*3001#12345#*测试iphone信号强度
  3. 国产spi flash 配置xilinx xc7k325t
  4. 小苏的Shell编程笔记之三--数组和算术运算
  5. python的枚举和for循环_python 基础4 分支、循环、条件与枚举
  6. 超级简单java企业人力资源管理系统设计与实现.rar(论文+程序源码+ppt答辩)
  7. 计算机组成与结构资源,计算机组成与系统结构-Selubc资源共享空间-home.ppt
  8. 俄罗斯方块经典游戏——JS实现
  9. Synergy实现一套鼠标和键盘控制两台电脑
  10. javax.net.ssl.SSLException:hostname in certificate didn't match