目录

导入数据

缺失值和异常值处理

特征可视化

特征选择

模型训练

模型评估

模型结果转评分

计算用户总分

一、导入数据

#导入模块

importpandas as pdimportnumpy as npfrom scipy importstatsimportseaborn as snsimportmatplotlib.pyplot as plt%matplotlib inline

plt.rc("font",family="SimHei",size="12") #解决中文无法显示的问题

#导入数据

train=pd.read_csv('F:\\python\\Give-me-some-credit-master\\data\\cs-training.csv')

数据信息简单查看

#简单查看数据

train.info()'''train.info()

RangeIndex: 150000 entries, 0 to 149999

Data columns (total 12 columns):

Unnamed: 0 150000 non-null int64

SeriousDlqin2yrs 150000 non-null int64

RevolvingUtilizationOfUnsecuredLines 150000 non-null float64

age 150000 non-null int64

NumberOfTime30-59DaysPastDueNotWorse 150000 non-null int64

DebtRatio 150000 non-null float64

MonthlyIncome 120269 non-null float64

NumberOfOpenCreditLinesAndLoans 150000 non-null int64

NumberOfTimes90DaysLate 150000 non-null int64

NumberRealEstateLoansOrLines 150000 non-null int64

NumberOfTime60-89DaysPastDueNotWorse 150000 non-null int64

NumberOfDependents 146076 non-null float64

dtypes: float64(4), int64(8)

memory usage: 13.7 MB'''

头三行和末尾三行数据查看

#头三行和尾三行数据查看

train.head(3).append(train.tail(3))

shape查看

#shape

train.shape #(150000, 11)

将各英文字段转为中文字段名方便理解

states={'Unnamed: 0':'id','SeriousDlqin2yrs':'好坏客户','RevolvingUtilizationOfUnsecuredLines':'可用额度比值','age':'年龄','NumberOfTime30-59DaysPastDueNotWorse':'逾期30-59天笔数','DebtRatio':'负债率','MonthlyIncome':'月收入','NumberOfOpenCreditLinesAndLoans':'信贷数量','NumberOfTimes90DaysLate':'逾期90天笔数','NumberRealEstateLoansOrLines':'固定资产贷款量','NumberOfTime60-89DaysPastDueNotWorse':'逾期60-89天笔数','NumberOfDependents':'家属数量'}

train.rename(columns=states,inplace=True)#设置索引

train=train.set_index('id',drop=True)

描述性统计

#描述性统计

train.describe()

二、缺失值和异常值处理

1.缺失值处理

查看缺失值

#查看每列缺失情况

train.isnull().sum()#查看缺失占比情况

train.isnull().sum()/len(train)#缺失值可视化

missing=train.isnull().sum()

missing[missing>0].sort_values().plot.bar() #将大于0的拿出来并排序

可知

月收入缺失值是:29731,缺失比例是:0.198207

家属数量缺失值:3924,缺失比例是:0.026160

先copy一份数据,保留原数据,然后对缺失值进行处理

#保留原数据

train_cp=train.copy()#月收入使用平均值填补缺失值

train_cp.fillna({'月收入':train_cp['月收入'].mean()},inplace=True)

train_cp.isnull().sum()#家属数量缺失的行去掉

train_cp=train_cp.dropna()

train_cp.shape#(146076, 11)

2.异常值处理

查看异常值

#查看异常值#画箱型图

for col intrain_cp.columns:

plt.boxplot(train_cp[col])

plt.title(col)

plt.show()

可用额度比率大于1的数据是异常的

年龄为0的数据也是异常,其实小于18岁的都可以认定为异常,逾期30-59天笔数的有一个超级离群数据

异常值处理消除不合逻辑的数据和超级离群的数据,可用额度比值应该小于1,年龄为0的是异常值,逾期天数笔数大于80的是超级离群数据,将这些离群值过滤掉,筛选出剩余部分数据

train_cp=train_cp[train_cp['可用额度比值']<1]

train_cp=train_cp[train_cp['年龄']>0]

train_cp=train_cp[train_cp['逾期30-59天笔数']<80]

train_cp=train_cp[train_cp['逾期60-89天笔数']<80]

train_cp=train_cp[train_cp['逾期90天笔数']<80]

train_cp=train_cp[train_cp['固定资产贷款量']<50]

train_cp=train_cp[train_cp['负债率']<5000]

train_cp.shape#(141180, 11)

三、特征可视化

1.单变量可视化

好坏用户

#好坏用户

train_cp.info()

train_cp['好坏客户'].value_counts()

train_cp['好坏客户'].value_counts()/len(train_cp)

train_cp['好坏客户'].value_counts().plot.bar()'''0 132787

1 8393

Name: 好坏客户, dtype: int64

数据严重倾斜

0 0.940551

1 0.059449

Name: 好坏客户, dtype: float64'''

可知y值严重倾斜

可用额度比值和负债率

#可用额度比值和负债率

train_cp['可用额度比值'].plot.hist()

train_cp['负债率'].plot.hist()

#负债率大于1的数据影响太大了

a=train_cp['负债率']

a[a<=1].plot.hist()

逾期30-59天笔数,逾期90天笔数,逾期60-89天笔数

#逾期30-59天笔数,逾期90天笔数,逾期60-89天笔数

for i,col in enumerate(['逾期30-59天笔数','逾期90天笔数','逾期60-89天笔数']):

plt.subplot(1,3,i+1)

train_cp[col].value_counts().plot.bar()

plt.title(col)

train_cp['逾期30-59天笔数'].value_counts().plot.bar()

train_cp['逾期90天笔数'].value_counts().plot.bar()

train_cp['逾期60-89天笔数'].value_counts().plot.bar()

年龄:基本符合正态分布

#年龄

train_cp['年龄'].plot.hist()

月收入

#月收入

train_cp['月收入'].plot.hist()

sns.distplot(train_cp['月收入'])#超级离群值影响太大了,我们取小于5w的数据画图

a=train_cp['月收入']

a[a<=50000].plot.hist()#发现小于5万的也不多,那就取2w

a=train_cp['月收入']

a[a<=20000].plot.hist()

信贷数量

#信贷数量

train_cp['信贷数量'].value_counts().plot.bar()

sns.distplot(train_cp['信贷数量'])

固定资产贷款量

#固定资产贷款量

train_cp['固定资产贷款量'].value_counts().plot.bar()

sns.distplot(train_cp['固定资产贷款量'])

家属数量

#家属数量

train_cp['家属数量'].value_counts().plot.bar()

sns.distplot(train_cp['家属数量'])

2.单变量与y值可视化

可用额度比值

#单变量与y值可视化#可用额度比值、负债率、年龄、月收入,这些需要分箱#可用额度比值

train_cp['可用额度比值_cut']=pd.cut(train_cp['可用额度比值'],5)

pd.crosstab(train_cp['可用额度比值_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['可用额度比值_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

可见分箱最后的每个箱子的逾期率相差居然有6倍只差,说明该特征还是不错的

负债率

#负债率

cut=[-1,0.2,0.4,0.6,0.8,1,1.5,2,5,10,5000]

train_cp['负债率_cut']=pd.cut(train_cp['负债率'],bins=cut)

pd.crosstab(train_cp['负债率_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['负债率_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

年龄

#年龄

cut=[0,30,40,50,60,100]

train_cp['年龄_cut']=pd.cut(train_cp['年龄'],bins=cut)

pd.crosstab(train_cp['年龄_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['年龄_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

为什么老年人这么多,不大现实吧,难道产品主要针对老年用户

月收入

#月收入

cut=[0,3000,5000,7000,10000,15000,30000,1000000]

train_cp['月收入_cut']=pd.cut(train_cp['月收入'],bins=cut)

pd.crosstab(train_cp['月收入_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['月收入_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

逾期30-59天笔数,逾期90天笔数,逾期60-89天笔数 \信贷数量\固定资产贷款量\家属数量这些暂时不需要分箱:

逾期30-59天笔数

#逾期30-59天笔数,逾期90天笔数,逾期60-89天笔数 \信贷数量\固定资产贷款量\家属数量#逾期30-59天笔数

pd.crosstab(train_cp['逾期30-59天笔数'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['逾期30-59天笔数'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

逾期90天笔数

#逾期90天笔数

pd.crosstab(train_cp['逾期90天笔数'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['逾期90天笔数'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

逾期60-89天笔数

#逾期60-89天笔数

pd.crosstab(train_cp['逾期60-89天笔数'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['逾期60-89天笔数'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

信贷数量

#信贷数量

cut=[-1,0,1,2,3,4,5,10,15,100]

train_cp['信贷数量_cut']=pd.cut(train_cp['月收入'],bins=cut)

pd.crosstab(train_cp['信贷数量_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['信贷数量_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

固定资产贷款量

#固定资产贷款量

pd.crosstab(train_cp['固定资产贷款量'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['固定资产贷款量'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

家属数量

#家属数量

pd.crosstab(train_cp['家属数量'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['家属数量'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()

3.变量之间的相关性:

#变量之间的相关性

train_cp.corr()['好坏客户'].sort_values(ascending = False).plot(kind='bar')

plt.figure(figsize=(20,16))

corr=train_cp.corr()

sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns,

linewidths=0.2, cmap="YlGnBu",annot=True)

四、特征选择

1.woe分箱

#woe分箱

cut1=pd.qcut(train_cp["可用额度比值"],4,labels=False)

cut2=pd.qcut(train_cp["年龄"],8,labels=False)

bins3=[-1,0,1,3,5,13]

cut3=pd.cut(train_cp["逾期30-59天笔数"],bins3,labels=False)

cut4=pd.qcut(train_cp["负债率"],3,labels=False)

cut5=pd.qcut(train_cp["月收入"],4,labels=False)

cut6=pd.qcut(train_cp["信贷数量"],4,labels=False)

bins7=[-1, 0, 1, 3,5, 20]

cut7=pd.cut(train_cp["逾期90天笔数"],bins7,labels=False)

bins8=[-1, 0,1,2, 3, 33]

cut8=pd.cut(train_cp["固定资产贷款量"],bins8,labels=False)

bins9=[-1, 0, 1, 3, 12]

cut9=pd.cut(train_cp["逾期60-89天笔数"],bins9,labels=False)

bins10=[-1, 0, 1, 2, 3, 5, 21]

cut10=pd.cut(train_cp["家属数量"],bins10,labels=False)

2.WOE值计算

当前这个组中坏客户和好客户的比值,和所有样本中这个比值的差异

#woe计算

rate=train_cp["好坏客户"].sum()/(train_cp["好坏客户"].count()-train_cp["好坏客户"].sum()) #rate=坏/(总-坏)

defget_woe_data(cut):

grouped=train_cp["好坏客户"].groupby(cut,as_index =True).value_counts()

woe=np.log(grouped.unstack().iloc[:,1]/grouped.unstack().iloc[:,0]/rate)returnwoe

cut1_woe=get_woe_data(cut1)

cut2_woe=get_woe_data(cut2)

cut3_woe=get_woe_data(cut3)

cut4_woe=get_woe_data(cut4)

cut5_woe=get_woe_data(cut5)

cut6_woe=get_woe_data(cut6)

cut7_woe=get_woe_data(cut7)

cut8_woe=get_woe_data(cut8)

cut9_woe=get_woe_data(cut9)

cut10_woe=get_woe_data(cut10)

可视化一下:

l=[cut1_woe,cut2_woe,cut3_woe,cut4_woe,cut5_woe,cut6_woe,cut7_woe,cut8_woe,cut9_woe,cut10_woe]for i,col inenumerate(l):

col.plot()

3.iv值计算

iv值其实就等于woe*(当前分组中坏客户占所有坏客户的比例 - 当前分组中好客户占所有好客户的比例)

#iv值计算

defget_IV_data(cut,cut_woe):

grouped=train_cp["好坏客户"].groupby(cut,as_index =True).value_counts()

cut_IV=((grouped.unstack().iloc[:,1]/train_cp["好坏客户"].sum()-grouped.unstack().iloc[:,0]/(train_cp["好坏客户"].count()-train_cp["好坏客户"].sum()))*cut_woe).sum()returncut_IV#计算各分组的IV值

cut1_IV=get_IV_data(cut1,cut1_woe)

cut2_IV=get_IV_data(cut2,cut2_woe)

cut3_IV=get_IV_data(cut3,cut3_woe)

cut4_IV=get_IV_data(cut4,cut4_woe)

cut5_IV=get_IV_data(cut5,cut5_woe)

cut6_IV=get_IV_data(cut6,cut6_woe)

cut7_IV=get_IV_data(cut7,cut7_woe)

cut8_IV=get_IV_data(cut8,cut8_woe)

cut9_IV=get_IV_data(cut9,cut9_woe)

cut10_IV=get_IV_data(cut10,cut10_woe)

IV=pd.DataFrame([cut1_IV,cut2_IV,cut3_IV,cut4_IV,cut5_IV,cut6_IV,cut7_IV,cut8_IV,cut9_IV,cut10_IV],index=['可用额度比值','年龄','逾期30-59天笔数','负债率','月收入','信贷数量','逾期90天笔数','固定资产贷款量','逾期60-89天笔数','家属数量'],columns=['IV'])

iv=IV.plot.bar(color='b',alpha=0.3,rot=30,figsize=(10,5),fontsize=(10))

iv.set_title('特征变量与IV值分布图',fontsize=(15))

iv.set_xlabel('特征变量',fontsize=(15))

iv.set_ylabel('IV',fontsize=(15))

一般选取IV大于0.02的特征变量进行后续训练,从以上可以看出所有变量均满足,所以选取全部的

4.woe转换

df_new=pd.DataFrame() #新建df_new存放woe转换后的数据

defreplace_data(cut,cut_woe):

a=[]for i incut.unique():

a.append(i)

a.sort()for m inrange(len(a)):

cut.replace(a[m],cut_woe.values[m],inplace=True)returncut

df_new["好坏客户"]=train_cp["好坏客户"]

df_new["可用额度比值"]=replace_data(cut1,cut1_woe)

df_new["年龄"]=replace_data(cut2,cut2_woe)

df_new["逾期30-59天笔数"]=replace_data(cut3,cut3_woe)

df_new["负债率"]=replace_data(cut4,cut4_woe)

df_new["月收入"]=replace_data(cut5,cut5_woe)

df_new["信贷数量"]=replace_data(cut6,cut6_woe)

df_new["逾期90天笔数"]=replace_data(cut7,cut7_woe)

df_new["固定资产贷款量"]=replace_data(cut8,cut8_woe)

df_new["逾期60-89天笔数"]=replace_data(cut9,cut9_woe)

df_new["家属数量"]=replace_data(cut10,cut10_woe)

df_new.head()

五、模型训练

信用评分卡主要使用的算法模型是逻辑回归。logistic模型客群变化的敏感度不如其他高复杂度模型,因此稳健更好,鲁棒性更强。另外,模型直观,系数含义好阐述、易理解,使用逻辑回归优点是可以得到一个变量之间的线性关系式和对应的特征权值,方便后面将其转成一一对应的分数形式

模型训练

#模型训练

from sklearn.linear_model importLogisticRegressionfrom sklearn.model_selection importtrain_test_split

x=df_new.iloc[:,1:]

y=df_new.iloc[:,:1]

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.6,random_state=0)

model=LogisticRegression()

clf=model.fit(x_train,y_train)print('测试成绩:{}'.format(clf.score(x_test,y_test)))

测试成绩:0.9427326816829579,看似很高,其实是由于数据倾斜太严重导致,最终结果还要看auc

求特征权值系数coe,后面训练结果转分值时会用到:

coe=clf.coef_ #特征权值系数,后面转换为打分规则时会用到

coe'''array([[0.62805638, 0.46284749, 0.54319513, 1.14645109, 0.42744108,

0.2503357 , 0.59564263, 0.81828033, 0.4433141 , 0.23788103]])'''

六、模型评估

模型评估主要看AUC和K-S值

#模型评估

from sklearn.metrics importroc_curve, auc

fpr, tpr, threshold=roc_curve(y_test, y_pred)

roc_auc=auc(fpr, tpr)

plt.plot(fpr, tpr, color='darkorange',label='ROC curve (area = %0.2f)' %roc_auc)

plt.plot([0,1], [0, 1], color='navy', linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.0])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC_curve')

plt.legend(loc="lower right")

plt.show()

roc_auc#0.5756615527156178

ks

#ks

fig, ax =plt.subplots()

ax.plot(1 - threshold, tpr, label='tpr') #ks曲线要按照预测概率降序排列,所以需要1-threshold镜像

ax.plot(1 - threshold, fpr, label='fpr')

ax.plot(1 - threshold, tpr-fpr,label='KS')

plt.xlabel('score')

plt.title('KS Curve')

plt.ylim([0.0, 1.0])

plt.figure(figsize=(20,20))

legend= ax.legend(loc='upper left')

plt.show()

max(tpr-fpr) #0.1513231054312355

ROC0.58, K-S值0.15左右,建模效果一般

为什么分数这么高但是auc和ks很低,那是样本不均衡导致的

七、模型结果转评分

假设好坏比为20的时候分数为600分,每高20分好坏比翻一倍

现在我们求每个变量不同woe值对应的分数刻度可得:

#模型结果转评分

factor = 20 / np.log(2)

offset= 600 - 20 * np.log(20) / np.log(2)defget_score(coe,woe,factor):

scores=[]for w inwoe:

score=round(coe*w*factor,0)

scores.append(score)returnscores

x1=get_score(coe[0][0], cut1_woe, factor)

x2= get_score(coe[0][1], cut2_woe, factor)

x3= get_score(coe[0][2], cut3_woe, factor)

x4= get_score(coe[0][3], cut4_woe, factor)

x5= get_score(coe[0][4], cut5_woe, factor)

x6= get_score(coe[0][5], cut6_woe, factor)

x7= get_score(coe[0][6], cut7_woe, factor)

x8= get_score(coe[0][7], cut8_woe, factor)

x9= get_score(coe[0][8], cut9_woe, factor)

x10= get_score(coe[0][9], cut10_woe, factor)print("可用额度比值对应的分数:{}".format(x1))print("年龄对应的分数:{}".format(x2))print("逾期30-59天笔数对应的分数:{}".format(x3))print("负债率对应的分数:{}".format(x4))print("月收入对应的分数:{}".format(x5))print("信贷数量对应的分数:{}".format(x6))print("逾期90天笔数对应的分数:{}".format(x7))print("固定资产贷款量对应的分数:{}".format(x8))print("逾期60-89天笔数对应的分数:{}".format(x9))print("家属数量对应的分数:{}".format(x10))

可用额度比值对应的分数:[-22.0, -21.0, -5.0, 19.0]

年龄对应的分数:[7.0, 5.0, 3.0, 2.0, -0.0, -5.0, -11.0, -14.0]

逾期30-59天笔数对应的分数:[-7.0, 14.0, 27.0, 37.0, 41.0]

负债率对应的分数:[-5.0, -2.0, 6.0]

月收入对应的分数:[4.0, 1.0, -2.0, -4.0]

信贷数量对应的分数:[2.0, -2.0, -1.0, 0.0]

逾期90天笔数对应的分数:[-6.0, 34.0, 48.0, 56.0, 57.0]

固定资产贷款量对应的分数:[5.0, -6.0, -3.0, 2.0, 16.0]

逾期60-89天笔数对应的分数:[-3.0, 23.0, 35.0, 38.0]

家属数量对应的分数:[-1.0, 1.0, 1.0, 2.0, 3.0, 5.0]

可以看出分数越高,成为坏客户的可能性越大。像年龄越大坏客率越低,可用额度比值、逾期笔数这几个变量的分数跨度较大对最后的总分有更大的影响,这些都印证了前面探索分析的结果。

八、计算用户总得分

1.取自动分箱的边界分割点

cu1=pd.qcut(train_cp["可用额度比值"],4,labels=False,retbins=True)

bins1=cu1[1]

cu2=pd.qcut(train_cp["年龄"],8,labels=False,retbins=True)

bins2=cu2[1]#bins3=[-1,0,1,3,5,13]#cut3=pd.cut(train_cp["逾期30-59天笔数"],bins3,labels=False)

cu4=pd.qcut(train_cp["负债率"],3,labels=False,retbins=True)

bins4=cu4[1]

cu5=pd.qcut(train_cp["月收入"],4,labels=False,retbins=True)

bins5=cu5[1]

cu6=pd.qcut(train_cp["信贷数量"],4,labels=False,retbins=True)

bins6=cu6[1]

2.各变量对应的分数求和,算出每个用户的总分

#.各变量对应的分数求和,算出每个用户的总分

defcompute_score(series,bins,score):

list=[]

i=0while i

value=series[i]

j= len(bins) - 2m= len(bins) - 2

while j >=0:if value >=bins[j]:

j= -1

else:

j-= 1m-= 1list.append(score[m])

i+= 1

returnlist

path2=r'F:\\python\\Give-me-some-credit-master\\data\\cs-test.csv'test1=pd.read_csv(path2)

test1['x1'] = pd.Series(compute_score(test1['RevolvingUtilizationOfUnsecuredLines'], bins1, x1))

test1['x2'] = pd.Series(compute_score(test1['age'], bins2, x2))

test1['x3'] = pd.Series(compute_score(test1['NumberOfTime30-59DaysPastDueNotWorse'], bins3, x3))

test1['x4'] = pd.Series(compute_score(test1['DebtRatio'], bins4, x4))

test1['x5'] = pd.Series(compute_score(test1['MonthlyIncome'], bins5, x5))

test1['x6'] = pd.Series(compute_score(test1['NumberOfOpenCreditLinesAndLoans'], bins6, x6))

test1['x7'] = pd.Series(compute_score(test1['NumberOfTimes90DaysLate'], bins7, x7))

test1['x8'] = pd.Series(compute_score(test1['NumberRealEstateLoansOrLines'], bins8, x8))

test1['x9'] = pd.Series(compute_score(test1['NumberOfTime60-89DaysPastDueNotWorse'], bins9, x9))

test1['x10'] = pd.Series(compute_score(test1['NumberOfDependents'], bins10, x10))

test1['Score'] = test1['x1']+test1['x2']+test1['x3']+test1['x4']+test1['x5']+test1['x6']+test1['x7']+test1['x8']+test1['x9']+test1['x10']+600test1.to_csv(r'F:\\python\\Give-me-some-credit-master\\data\\ScoreData.csv', index=False)

全部代码:

#-*- coding: utf-8 -*-

"""Created on Tue Aug 11 14:09:20 2020

@author: Admin"""

#导入模块

importpandas as pdimportnumpy as npfrom scipy importstatsimportseaborn as snsimportmatplotlib.pyplot as plt%matplotlib inline

plt.rc("font",family="SimHei",size="12") #解决中文无法显示的问题

#导入数据

train=pd.read_csv('F:\\python\\Give-me-some-credit-master\\data\\cs-training.csv')#简单查看数据

train.info()#头三行和尾三行数据查看

b=train.head(3).append(train.tail(3))#shape

train.shape #(150000, 11)

#将各英文字段转为中文字段名方便理解

states={'Unnamed: 0':'id','SeriousDlqin2yrs':'好坏客户','RevolvingUtilizationOfUnsecuredLines':'可用额度比值','age':'年龄','NumberOfTime30-59DaysPastDueNotWorse':'逾期30-59天笔数','DebtRatio':'负债率','MonthlyIncome':'月收入','NumberOfOpenCreditLinesAndLoans':'信贷数量','NumberOfTimes90DaysLate':'逾期90天笔数','NumberRealEstateLoansOrLines':'固定资产贷款量','NumberOfTime60-89DaysPastDueNotWorse':'逾期60-89天笔数','NumberOfDependents':'家属数量'}

train.rename(columns=states,inplace=True)#设置索引

train=train.set_index('id',drop=True)#描述性统计

train.describe()#查看每列缺失情况

train.isnull().sum()#查看缺失占比情况

train.isnull().sum()/len(train)#缺失值可视化

missing=train.isnull().sum()

missing[missing>0].sort_values().plot.bar() #将大于0的拿出来并排序

#保留原数据

train_cp=train.copy()#月收入使用平均值填补缺失值

train_cp.fillna({'月收入':train_cp['月收入'].mean()},inplace=True)

train_cp.isnull().sum()#家属数量缺失的行去掉

train_cp=train_cp.dropna()

train_cp.shape#(146076, 11)

#查看异常值#画箱型图

for col intrain_cp.columns:

plt.boxplot(train_cp[col])

plt.title(col)

plt.show()#异常值处理

train_cp=train_cp[train_cp['可用额度比值']<1]

train_cp=train_cp[train_cp['年龄']>0]

train_cp=train_cp[train_cp['逾期30-59天笔数']<80]

train_cp=train_cp[train_cp['逾期60-89天笔数']<80]

train_cp=train_cp[train_cp['逾期90天笔数']<80]

train_cp=train_cp[train_cp['固定资产贷款量']<50]

train_cp=train_cp[train_cp['负债率']<5000]

train_cp.shape#(141180, 11)

#单变量分析#好坏用户

train_cp.info()

train_cp['好坏客户'].value_counts()

train_cp['好坏客户'].value_counts()/len(train_cp)

train_cp['好坏客户'].value_counts().plot.bar()#可用额度比值和负债率

train_cp['可用额度比值'].plot.hist()

train_cp['负债率'].plot.hist()#负债率大于1的数据影响太大了

a=train_cp['负债率']

a[a<=1].plot.hist()#逾期30-59天笔数,逾期90天笔数,逾期60-89天笔数

for i,col in enumerate(['逾期30-59天笔数','逾期90天笔数','逾期60-89天笔数']):

plt.subplot(1,3,i+1)

train_cp[col].value_counts().plot.bar()

plt.title(col)

train_cp['逾期30-59天笔数'].value_counts().plot.bar()

train_cp['逾期90天笔数'].value_counts().plot.bar()

train_cp['逾期60-89天笔数'].value_counts().plot.bar()#年龄

train_cp['年龄'].plot.hist()#月收入

train_cp['月收入'].plot.hist()

sns.distplot(train_cp['月收入'])#超级离群值影响太大了,我们取小于5w的数据画图

a=train_cp['月收入']

a[a<=50000].plot.hist()#发现小于5万的也不多,那就取2w

a=train_cp['月收入']

a[a<=20000].plot.hist()#信贷数量

train_cp['信贷数量'].value_counts().plot.bar()

sns.distplot(train_cp['信贷数量'])#固定资产贷款量

train_cp['固定资产贷款量'].value_counts().plot.bar()

sns.distplot(train_cp['固定资产贷款量'])#家属数量

train_cp['家属数量'].value_counts().plot.bar()

sns.distplot(train_cp['家属数量'])#单变量与y值可视化#可用额度比值、负债率、年龄、月收入,这些需要分箱#可用额度比值

train_cp['可用额度比值_cut']=pd.cut(train_cp['可用额度比值'],5)

pd.crosstab(train_cp['可用额度比值_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['可用额度比值_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#负债率

cut=[-1,0.2,0.4,0.6,0.8,1,1.5,2,5,10,5000]

train_cp['负债率_cut']=pd.cut(train_cp['负债率'],bins=cut)

pd.crosstab(train_cp['负债率_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['负债率_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#年龄

cut=[0,30,40,50,60,100]

train_cp['年龄_cut']=pd.cut(train_cp['年龄'],bins=cut)

pd.crosstab(train_cp['年龄_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['年龄_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#月收入

cut=[0,3000,5000,7000,10000,15000,30000,1000000]

train_cp['月收入_cut']=pd.cut(train_cp['月收入'],bins=cut)

pd.crosstab(train_cp['月收入_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['月收入_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#逾期30-59天笔数,逾期90天笔数,逾期60-89天笔数 \信贷数量\固定资产贷款量\家属数量#逾期30-59天笔数

pd.crosstab(train_cp['逾期30-59天笔数'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['逾期30-59天笔数'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#逾期90天笔数

pd.crosstab(train_cp['逾期90天笔数'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['逾期90天笔数'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#逾期60-89天笔数

pd.crosstab(train_cp['逾期60-89天笔数'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['逾期60-89天笔数'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#信贷数量

cut=[-1,0,1,2,3,4,5,10,15,100]

train_cp['信贷数量_cut']=pd.cut(train_cp['月收入'],bins=cut)

pd.crosstab(train_cp['信贷数量_cut'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['信贷数量_cut'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#固定资产贷款量

pd.crosstab(train_cp['固定资产贷款量'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['固定资产贷款量'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#家属数量

pd.crosstab(train_cp['家属数量'],train_cp['好坏客户']).plot(kind="bar")

a=pd.crosstab(train_cp['家属数量'],train_cp['好坏客户'])

a['坏用户占比']=a[1]/(a[0]+a[1])

a['坏用户占比'].plot()#变量之间的相关性

train_cp.corr()['好坏客户'].sort_values(ascending = False).plot(kind='bar')

plt.figure(figsize=(20,16))

corr=train_cp.corr()

sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns,

linewidths=0.2, cmap="YlGnBu",annot=True)#woe分箱

cut1=pd.qcut(train_cp["可用额度比值"],4,labels=False)

cut2=pd.qcut(train_cp["年龄"],8,labels=False)

bins3=[-1,0,1,3,5,13]

cut3=pd.cut(train_cp["逾期30-59天笔数"],bins3,labels=False)

cut4=pd.qcut(train_cp["负债率"],3,labels=False)

cut5=pd.qcut(train_cp["月收入"],4,labels=False)

cut6=pd.qcut(train_cp["信贷数量"],4,labels=False)

bins7=[-1, 0, 1, 3,5, 20]

cut7=pd.cut(train_cp["逾期90天笔数"],bins7,labels=False)

bins8=[-1, 0,1,2, 3, 33]

cut8=pd.cut(train_cp["固定资产贷款量"],bins8,labels=False)

bins9=[-1, 0, 1, 3, 12]

cut9=pd.cut(train_cp["逾期60-89天笔数"],bins9,labels=False)

bins10=[-1, 0, 1, 2, 3, 5, 21]

cut10=pd.cut(train_cp["家属数量"],bins10,labels=False)#woe计算

rate=train_cp["好坏客户"].sum()/(train_cp["好坏客户"].count()-train_cp["好坏客户"].sum()) #rate=坏/(总-坏)

defget_woe_data(cut):

grouped=train_cp["好坏客户"].groupby(cut,as_index =True).value_counts()

woe=np.log(grouped.unstack().iloc[:,1]/grouped.unstack().iloc[:,0]/rate)returnwoe

cut1_woe=get_woe_data(cut1)

cut2_woe=get_woe_data(cut2)

cut3_woe=get_woe_data(cut3)

cut4_woe=get_woe_data(cut4)

cut5_woe=get_woe_data(cut5)

cut6_woe=get_woe_data(cut6)

cut7_woe=get_woe_data(cut7)

cut8_woe=get_woe_data(cut8)

cut9_woe=get_woe_data(cut9)

cut10_woe=get_woe_data(cut10)

l=[cut1_woe,cut2_woe,cut3_woe,cut4_woe,cut5_woe,cut6_woe,cut7_woe,cut8_woe,cut9_woe,cut10_woe]for i,col inenumerate(l):

col.plot()#iv值计算

defget_IV_data(cut,cut_woe):

grouped=train_cp["好坏客户"].groupby(cut,as_index =True).value_counts()

cut_IV=((grouped.unstack().iloc[:,1]/train_cp["好坏客户"].sum()-grouped.unstack().iloc[:,0]/(train_cp["好坏客户"].count()-train_cp["好坏客户"].sum()))*cut_woe).sum()returncut_IV#计算各分组的IV值

cut1_IV=get_IV_data(cut1,cut1_woe)

cut2_IV=get_IV_data(cut2,cut2_woe)

cut3_IV=get_IV_data(cut3,cut3_woe)

cut4_IV=get_IV_data(cut4,cut4_woe)

cut5_IV=get_IV_data(cut5,cut5_woe)

cut6_IV=get_IV_data(cut6,cut6_woe)

cut7_IV=get_IV_data(cut7,cut7_woe)

cut8_IV=get_IV_data(cut8,cut8_woe)

cut9_IV=get_IV_data(cut9,cut9_woe)

cut10_IV=get_IV_data(cut10,cut10_woe)

IV=pd.DataFrame([cut1_IV,cut2_IV,cut3_IV,cut4_IV,cut5_IV,cut6_IV,cut7_IV,cut8_IV,cut9_IV,cut10_IV],index=['可用额度比值','年龄','逾期30-59天笔数','负债率','月收入','信贷数量','逾期90天笔数','固定资产贷款量','逾期60-89天笔数','家属数量'],columns=['IV'])

iv=IV.plot.bar(color='b',alpha=0.3,rot=30,figsize=(10,5),fontsize=(10))

iv.set_title('特征变量与IV值分布图',fontsize=(15))

iv.set_xlabel('特征变量',fontsize=(15))

iv.set_ylabel('IV',fontsize=(15))#woe转换

df_new=pd.DataFrame() #新建df_new存放woe转换后的数据

defreplace_data(cut,cut_woe):

a=[]for i incut.unique():

a.append(i)

a.sort()for m inrange(len(a)):

cut.replace(a[m],cut_woe.values[m],inplace=True)returncut

df_new["好坏客户"]=train_cp["好坏客户"]

df_new["可用额度比值"]=replace_data(cut1,cut1_woe)

df_new["年龄"]=replace_data(cut2,cut2_woe)

df_new["逾期30-59天笔数"]=replace_data(cut3,cut3_woe)

df_new["负债率"]=replace_data(cut4,cut4_woe)

df_new["月收入"]=replace_data(cut5,cut5_woe)

df_new["信贷数量"]=replace_data(cut6,cut6_woe)

df_new["逾期90天笔数"]=replace_data(cut7,cut7_woe)

df_new["固定资产贷款量"]=replace_data(cut8,cut8_woe)

df_new["逾期60-89天笔数"]=replace_data(cut9,cut9_woe)

df_new["家属数量"]=replace_data(cut10,cut10_woe)

df_new.head()#模型训练

from sklearn.linear_model importLogisticRegressionfrom sklearn.model_selection importtrain_test_split

x=df_new.iloc[:,1:]

y=df_new.iloc[:,:1]

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.6,random_state=0)

model=LogisticRegression()

clf=model.fit(x_train,y_train)print('测试成绩:{}'.format(clf.score(x_test,y_test)))#系数

coe=clf.coef_ #特征权值系数,后面转换为打分规则时会用到

coe#测试集的分数

y_pred=clf.predict(x_test)#模型评估

from sklearn.metrics importroc_curve, auc

fpr, tpr, threshold=roc_curve(y_test, y_pred)

roc_auc=auc(fpr, tpr)

plt.plot(fpr, tpr, color='darkorange',label='ROC curve (area = %0.2f)' %roc_auc)

plt.plot([0,1], [0, 1], color='navy', linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.0])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC_curve')

plt.legend(loc="lower right")

plt.show()

roc_auc#0.5756615527156178

#ks

fig, ax =plt.subplots()

ax.plot(1 - threshold, tpr, label='tpr') #ks曲线要按照预测概率降序排列,所以需要1-threshold镜像

ax.plot(1 - threshold, fpr, label='fpr')

ax.plot(1 - threshold, tpr-fpr,label='KS')

plt.xlabel('score')

plt.title('KS Curve')

plt.ylim([0.0, 1.0])

plt.figure(figsize=(20,20))

legend= ax.legend(loc='upper left')

plt.show()

max(tpr-fpr) #0.1513231054312355

#模型结果转评分

factor = 20 / np.log(2)

offset= 600 - 20 * np.log(20) / np.log(2)defget_score(coe,woe,factor):

scores=[]for w inwoe:

score=round(coe*w*factor,0)

scores.append(score)returnscores

x1=get_score(coe[0][0], cut1_woe, factor)

x2= get_score(coe[0][1], cut2_woe, factor)

x3= get_score(coe[0][2], cut3_woe, factor)

x4= get_score(coe[0][3], cut4_woe, factor)

x5= get_score(coe[0][4], cut5_woe, factor)

x6= get_score(coe[0][5], cut6_woe, factor)

x7= get_score(coe[0][6], cut7_woe, factor)

x8= get_score(coe[0][7], cut8_woe, factor)

x9= get_score(coe[0][8], cut9_woe, factor)

x10= get_score(coe[0][9], cut10_woe, factor)print("可用额度比值对应的分数:{}".format(x1))print("年龄对应的分数:{}".format(x2))print("逾期30-59天笔数对应的分数:{}".format(x3))print("负债率对应的分数:{}".format(x4))print("月收入对应的分数:{}".format(x5))print("信贷数量对应的分数:{}".format(x6))print("逾期90天笔数对应的分数:{}".format(x7))print("固定资产贷款量对应的分数:{}".format(x8))print("逾期60-89天笔数对应的分数:{}".format(x9))print("家属数量对应的分数:{}".format(x10))#1.取自动分箱的边界分割点

cu1=pd.qcut(train_cp["可用额度比值"],4,labels=False,retbins=True)

bins1=cu1[1]

cu2=pd.qcut(train_cp["年龄"],8,labels=False,retbins=True)

bins2=cu2[1]#bins3=[-1,0,1,3,5,13]#cut3=pd.cut(train_cp["逾期30-59天笔数"],bins3,labels=False)

cu4=pd.qcut(train_cp["负债率"],3,labels=False,retbins=True)

bins4=cu4[1]

cu5=pd.qcut(train_cp["月收入"],4,labels=False,retbins=True)

bins5=cu5[1]

cu6=pd.qcut(train_cp["信贷数量"],4,labels=False,retbins=True)

bins6=cu6[1]#.各变量对应的分数求和,算出每个用户的总分

defcompute_score(series,bins,score):

list=[]

i=0while i

value=series[i]

j= len(bins) - 2m= len(bins) - 2

while j >=0:if value >=bins[j]:

j= -1

else:

j-= 1m-= 1list.append(score[m])

i+= 1

returnlist

path2=r'F:\\python\\Give-me-some-credit-master\\data\\cs-test.csv'test1=pd.read_csv(path2)

test1['x1'] = pd.Series(compute_score(test1['RevolvingUtilizationOfUnsecuredLines'], bins1, x1))

test1['x2'] = pd.Series(compute_score(test1['age'], bins2, x2))

test1['x3'] = pd.Series(compute_score(test1['NumberOfTime30-59DaysPastDueNotWorse'], bins3, x3))

test1['x4'] = pd.Series(compute_score(test1['DebtRatio'], bins4, x4))

test1['x5'] = pd.Series(compute_score(test1['MonthlyIncome'], bins5, x5))

test1['x6'] = pd.Series(compute_score(test1['NumberOfOpenCreditLinesAndLoans'], bins6, x6))

test1['x7'] = pd.Series(compute_score(test1['NumberOfTimes90DaysLate'], bins7, x7))

test1['x8'] = pd.Series(compute_score(test1['NumberRealEstateLoansOrLines'], bins8, x8))

test1['x9'] = pd.Series(compute_score(test1['NumberOfTime60-89DaysPastDueNotWorse'], bins9, x9))

test1['x10'] = pd.Series(compute_score(test1['NumberOfDependents'], bins10, x10))

test1['Score'] = test1['x1']+test1['x2']+test1['x3']+test1['x4']+test1['x5']+test1['x6']+test1['x7']+test1['x8']+test1['x9']+test1['x10']+600test1.to_csv(r'F:\\python\\Give-me-some-credit-master\\data\\ScoreData.csv', index=False)

View Code

信用评分python_信用评分卡(python)相关推荐

  1. 金融数据分析 实验七 信用评分与行为评分

    目录 实验原理 实验内容 实验心得 实验原理 信用风险:信用风险是银行业务发展面临的主要风险,是指因持卡人信用不良或信用状况恶化,不能按照发卡行的信用卡章程及领用合约的规定偿还信用卡透支消费和预借现金 ...

  2. 【分类算法】Logistic算法原理、标准评分卡开发流程、python代码案例

    [博客地址]:https://blog.csdn.net/sunyaowu315 [博客大纲地址]:https://blog.csdn.net/sunyaowu315/article/details/ ...

  3. 如何用python完成评分功能呢_利用python基于电影评分数据进行

    本文以Movielens 1M数据集为例,利用Python,对电影的各项数据进行分析,分析对于不同的性别的电影评分,以及性别差异对评分的差异 加载python库以及数据: import pandas ...

  4. 【采用】信用风险模型(申请评分、行为评分)与数据准备(违约期限、WOE转化)

    巴塞尔协议定义了金融风险类型:市场风险.作业风险.信用风险.信用风险ABC模型有进件申请评分.行为评分.催收评分. ------------------------------------ 一.数据准 ...

  5. 信用风险模型(申请评分、行为评分)与数据准备(违约期限、WOE转化)

    笔记︱信用风险模型(申请评分.行为评分)与数据准备(违约期限.WOE转化) 原创 2016年06月20日 20:09:51 标签: 申请评分 / 行为评分 / 违约期限 / WOE 14299 巴塞尔 ...

  6. 笔记︱信用风险模型(申请评分、行为评分)与数据准备(违约期限、WOE转化)

    巴塞尔协议定义了金融风险类型:市场风险.作业风险.信用风险.信用风险ABC模型有进件申请评分.行为评分.催收评分. ------------------------------------ 一.数据准 ...

  7. 应用内评分_游戏评分低,怎么办?

    [面试题] 某款手游在应用市场评分相比同类型游戏处于劣势. 请分析可能的原因并给出相关建议. [分析思路] 一.明确问题 1. 明确业务指标 定义:应用市场评分一般指某一应用在某个应用市场上线以来的总 ...

  8. apache评分表的意义_APACHE评分系统及评分表

    <APACHE评分系统及评分表>由会员分享,可在线阅读,更多相关<APACHE评分系统及评分表(2页珍藏版)>请在人人文库网上搜索. 1.APACHE评分系统急性生理学及慢性健 ...

  9. 26 SD配置-主数据-信用管理-指定信用控制区域及信用部分

    业务背景:指定信用控制区域及信用部分 事务码:SPRO SPRO路径:SPRO->财务供应链管理->信用管理->与应收账款模块和销售与分销模块的集成->有销售和分销的集成-&g ...

最新文章

  1. python编程员工资-Python 程序员的工资能有多高?
  2. hdu1.3.7 Crixalis's Equipment
  3. 阅读架构漫谈(三)笔记
  4. Android 再谈handler
  5. 资深数据大牛《教你如何从零开始做大数据底层架构》!(转)
  6. 线程池之ScheduledThreadPoolExecutor线程池源码分析笔记
  7. POJ3278——Catch That Cow
  8. sql两个表查不同数据_产品操作MySQL第6篇 – 数据过滤-WHERE子句
  9. WCF简单教程(5) 用IIS做Host
  10. linux系统下ntp网络时钟服务器(NTP服务器)的搭建和使用
  11. 敏捷开发用户场景分析
  12. 通配符星号(*)和问号(?)的区别
  13. Ubuntu系统配置Java环境
  14. javascript优缺点
  15. 什么样的音乐和呼噜声最配?
  16. 推荐系列:易文档,让接口文档更加给力
  17. Android Studio+SDK+tools下载、安装、配置及应用程序运行(详细,亲测)
  18. python——【1】gzip压缩文件
  19. 基于gibbsLDA的文本分类
  20. 今日头条搜索站长平台(入口)功能简介

热门文章

  1. 一个json格式转xml格式的java实现
  2. 使用代码删除Acquisition contract上指定IP的right scope
  3. SAP UI5页面动画效果的实现,实际借用了jQuery的库文件
  4. Jerry Wang在SAP社区上获得的徽章
  5. 如何在Kubernetes里给PostgreSQL创建secret
  6. 使用Eclipse连接SAP云平台上的HANA数据库实例
  7. wordpress漏洞上传php文件,WordPress wp-admin/includes/file.php任意文件上传漏洞
  8. seo自动发布外链工具_没资源、零经验,如何建立高质量外链?
  9. IO的几种分类(详细)
  10. linux tree命令源码,[转帖]linux tree命令--显示目录的树形结构