小编说:将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。为了加速训练过程,本文将介绍如何如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一些常用参数。通过这些参数可以使调试更加方便而且程序的可扩展性更好。本文选自《TensorFlow:实战Google深度学习框架(第2版)》。

TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。但在本文中只关心本地的设备。TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备。比如CPU在TensorFlow中的名称为/cpu:0。在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称。而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。

TensorFlow提供了一个快捷的方式来查看运行每一个运算的设备。在生成会话时,可以通过设置log_device_placement参数来打印运行每一个运算的设备。以下程序展示了如何使用log_device_placement这个参数。

import tensorflow as tfa = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
c = a + b
# 通过log_device_placement参数来输出运行每一个运算的设备。
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)'''
在没有GPU的机器上运行以上代码可以得到类似以下的输出:
Device mapping: no known devices.add: (Add): /job:localhost/replica:0/task:0/cpu:0
b: (Const): /job:localhost/replica:0/task:0/cpu:0
a: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2.  4.  6.]
'''

在以上代码中,TensorFlow程序生成会话时加入了参数log_device_placement=True,所以程序会将运行每一个操作的设备输出到屏幕。于是除了可以看到最后的计算结果,还可以看到类似“add: /job:localhost/replica:0/task:0/cpu:0”这样的输出。这些输出显示了执行每一个运算的设备。比如加法操作add是通过CPU来运行的,因为它的设备名称中包含了/cpu:0。

在配置好GPU环境的TensorFlow中,如果操作没有明确地指定运行设备,那么TensorFlow会优先选择GPU。比如将以上代码在亚马逊(Amazon Web Services, AWS)的 g2.8xlarge实例上运行时,会得到类似以下的运行结果。

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0add: (Add): /job:localhost/replica:0/task:0/gpu:0
b: (Const): /job:localhost/replica:0/task:0/gpu:0
a: (Const): /job:localhost/replica:0/task:0/gpu:0
[ 2.  4.  6.]

从以上输出可以看到在配置好GPU环境的TensorFlow中,TensorFlow会自动优先将运算放置在GPU上。不过,尽管g2.8xlarge实例有4个GPU,在默认情况下,TensorFlow只会将运算优先放到/gpu:0上。于是可以看见在以上程序中,所有的运算都被放在了/gpu:0上。如果需要将某些运算放到不同的GPU或者CPU上,就需要通过tf.device来手工指定。以下程序给出了一个通过tf.device手工指定运行设备的样例。

import tensorflow as tf# 通过tf.device将运算指定到特定的设备上。
with tf.device('/cpu:0'):a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')with tf.device('/gpu:1'):c = a + bsess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)'''
在AWS g2.8xlarge实例上运行上述代码可以得到以下结果:
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0add: (Add): /job:localhost/replica:0/task:0/gpu:1
b: (Const): /job:localhost/replica:0/task:0/cpu:0
a: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2.  4.  6.]
'''

在以上代码中可以看到生成常量a和b的操作被加载到了CPU上,而加法操作被放到了第二个GPU“/gpu:1”上。在TensorFlow中,不是所有的操作都可以被放在GPU上,如果强行将无法放在GPU上的操作指定到GPU上,那么程序将会报错。以下代码给出了一个报错的样例。

import tensorflow as tf# 在CPU上运行tf.Variable
a_cpu = tf.Variable(0, name="a_cpu")with tf.device('/gpu:0'):# 将tf.Variable强制放在GPU上。a_gpu = tf.Variable(0, name="a_gpu")sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
sess.run(tf.initialize_all_variables())'''
运行以上程序将会报出以下错误:
tensorflow.python.framework.errors.InvalidArgumentError: Cannot assign a device to node 'a_gpu': Could not satisfy explicit device specification '/device:GPU:0' because no supported kernel for GPU devices is available.
Colocation Debug Info:
Colocation group had the following types and devices:
Identity: CPU
Assign: CPU
Variable: CPU
[[Node: a_gpu = Variable[container="", dtype=DT_INT32, shape=[], shared_ name="", _device="/device:GPU:0"]()]]
'''

不同版本的TensorFlow对GPU的支持不一样,如果程序中全部使用强制指定设备的方式会降低程序的可移植性。在TensorFlow的kernel中定义了哪些操作可以跑在GPU上。比如可以在variable_ops.cc程序中找到以下定义。

# define REGISTER_GPU_KERNELS(type)                                       \REGISTER_KERNEL_BUILDER(                                                 \Name("Variable").Device(DEVICE_GPU).TypeConstraint<type>("dtype"),\VariableOp);                                                                 \…
TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_KERNELS);

在这段定义中可以看到GPU只在部分数据类型上支持tf.Variable操作。如果在TensorFlow代码库中搜索调用这段代码的宏TF_CALL_GPU_NUMBER_TYPES,可以发现在GPU上,tf.Variable操作只支持实数型(float16、float32和double)的参数。而在报错的样例代码中给定的参数是整数型的,所以不支持在GPU上运行。为避免这个问题,TensorFlow在生成会话时可以指定allow_soft_placement参数。当allow_soft_placement参数设置为True时,如果运算无法由GPU执行,那么TensorFlow会自动将它放到CPU上执行。以下代码给出了一个使用allow_soft_placement参数的样例。

import tensorflow as tfa_cpu = tf.Variable(0, name="a_cpu")
with tf.device('/gpu:0'):a_gpu = tf.Variable(0, name="a_gpu")# 通过allow_soft_placement参数自动将无法放在GPU上的操作放回CPU上。
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_ placement=True))
sess.run(tf.initialize_all_variables())'''
运行上面这段程序可以得到以下结果:
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0
a_gpu: /job:localhost/replica:0/task:0/cpu:0
a_gpu/read: /job:localhost/replica:0/task:0/cpu:0
a_gpu/Assign: /job:localhost/replica:0/task:0/cpu:0
init/NoOp_1: /job:localhost/replica:0/task:0/gpu:0
a_cpu: /job:localhost/replica:0/task:0/cpu:0
a_cpu/read: /job:localhost/replica:0/task:0/cpu:0
a_cpu/Assign: /job:localhost/replica:0/task:0/cpu:0
init/NoOp: /job:localhost/replica:0/task:0/gpu:0
init: /job:localhost/replica:0/task:0/gpu:0
a_gpu/initial_value: /job:localhost/replica:0/task:0/gpu:0
a_cpu/initial_value: /job:localhost/replica:0/task:0/cpu:0从输出的日志中可以看到在生成变量a_gpu时,无法放到GPU上的运算被自动调整到了CPU上(比如a_gpu和a_gpu/read),而可以被GPU执行的命令(比如a_gpu/initial_value)依旧由GPU执行。
'''

虽然GPU可以加速TensorFlow的计算,但一般来说不会把所有的操作全部放在GPU上。一个比较好的实践是将计算密集型的运算放在GPU上,而把其他操作放到CPU上。GPU是机器中相对独立的资源,将计算放入或者转出GPU都需要额外的时间。而且GPU需要将计算时用到的数据从内存复制到GPU设备上,这也需要额外的时间。TensorFlow可以自动完成这些操作而不需要用户特别处理,但为了提高程序运行的速度,用户也需要尽量将相关的运算放在同一个设备上。

TensorFlow默认会占用设备上的所有GPU以及每个GPU的所有显存。如果在一个TensorFlow程序中只需要使用部分GPU,可以通过设置CUDA_VISIBLE_DEVICES环境变量来控制。以下样例介绍了如何在运行时设置这个环境变量。

# 只使用第二块GPU(GPU编号从0开始)。在demo_code.py中,机器上的第二块GPU的
# 名称变成/gpu:0,不过在运行时所有/gpu:0的运算将被放在第二块GPU上。
CUDA_VISIBLE_DEVICES=1 python demo_code.py
# 只使用第一块和第二块GPU。
CUDA_VISIBLE_DEVICES=0,1 python demo_code.py

TensorFlow也支持在程序中设置环境变量,以下代码展示了如何在程序中设置这些环境变量。

import os# 只使用第三块GPU。
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

虽然TensorFlow默认会一次性占用一个GPU的所有显存,但是TensorFlow也支持动态分配GPU的显存,使得一块GPU上可以同时运行多个任务。下面给出了TensorFlow动态分配显存的方法。

config = tf.ConfigProto()# 让TensorFlow按需分配显存。config.gpu_options.allow_growth = True# 或者直接按固定的比例分配。以下代码会占用所有可使用GPU的40%显存。
# config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)

本文选自《TensorFlow:实战Google深度学习框架(第2版)》

用GPU进行TensorFlow计算加速相关推荐

  1. 深入浅出TensorFlow(七)TensorFlow计算加速

    2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着 ...

  2. 转 TensorFlow Object Detection API 多GPU 卡平行计算,加速模型训练速度教学

    本篇记录如何使用多张GPU 显示卡,加速TensorFlow Object Detection API 模型训练的过程. 虽然TensorFlow Object Detection API 已经有支援 ...

  3. TensorFlow Object Detection API 多GPU 卡平行计算,加速模型训练速度教学

    本篇记录如何使用多张GPU 显示卡,加速TensorFlow Object Detection API 模型训练的过程. 虽然TensorFlow Object Detection API 已经有支援 ...

  4. TensorFlow XLA加速编译器

    TensorFlow XLA加速编译器 加速线性代数器(Accelerated linear algebra,XLA)是线性代数领域的专用编译器.根据 https://www.tensorflow.o ...

  5. 用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割

    用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割 Accelerating Medical Image Segmentation with NVIDIA Tensor ...

  6. Win10安装GPU版tensorflow和keras

    Win10安装GPU版tensorflow和keras 1.python安装 在此选用python3.7安装见详细教程https://blog.csdn.net/weixin_43545253/art ...

  7. 用Tensorflow计算距离矩阵

    用Tensorflow计算距离矩阵   一般计算距离矩阵,都是用两层循环来做,这样效率太低.在样本维度上,距离矩阵的运算相互没有依赖关系,是可以做并行的.除了开多线程用CPU并行计算以外,还可以用GP ...

  8. 云知声 Atlas 超算平台: 基于 Fluid + Alluxio 的计算加速实践

    Fluid 是云原生基金会 CNCF 下的云原生数据编排和加速项目,由南京大学.阿里云及 Alluxio 社区联合发起并开源.本文主要介绍云知声 Atlas 超算平台基于 Fluid + Alluxi ...

  9. FFmpeg在Intel GPU上的硬件加速与优化

    英特尔提供了一套基于VA-API/Media SDK的硬件加速方案,通过在FFmpeg中集成Intel GPU的媒体硬件加速能力,为用户提供更多的收益.本文来自英特尔资深软件开发工程师赵军在LiveV ...

  10. 边缘计算加速视频直播场景:更清晰、流畅、实时

    随着4G.5G网络技术的发展和智能手机的普及,网络直播逐渐成为了新媒体主要的传播方式,在社交娱乐.产品展示.政务公开.展会发布等领域被广泛使用. 面对全国不同城市.不同运营商的用户,如何保障视频直播清 ...

最新文章

  1. 图文并茂详解iptables 防火墙工作原理及知识点
  2. 【杂谈】2020年有三AI计算机视觉培养计划详解,该不该学怎么学CV的简单讨论...
  3. LeetCode 1550. 存在连续三个奇数的数组
  4. 游戏筑基开发之结构体定义动态数组及常见问题(C语言)
  5. Struts 2 之校验器
  6. 旧版sai笔刷_漂亮的sai笔刷大全(ps笔刷包) 简化中文版
  7. [BScroll warn]: Can not resolve the wrapper DOM.
  8. 2.4g和5g要不要合并_路由器2.4g和5g要不要合并?
  9. 程序员代码中的希腊字母表示
  10. 大佬给总结的单片机看门狗详解很有用
  11. Mac 上必备的常用软件,你值得拥有
  12. MySQL中Lob与JPA映射
  13. 2022东南大学网安916专硕上岸经验帖
  14. 新的篇章:来自鲍尔默和艾洛普的公开信
  15. Linux权限管理练习-->>神仙和妖怪
  16. 文件存储的实现-login登录案例2-sdcard
  17. MyBatis 集成MyBatisPlus
  18. 《Kubernetes与云原生应用》系列之Kubernetes的系统架构与设计理念
  19. python同花顺 财务_同花顺使用帮助之财务分析篇
  20. 解决java多继承问题

热门文章

  1. java day30【数据库连接池 、Spring JDBC : JDBC Template】
  2. 容器系列之虚拟化网络
  3. vue+element tree(树形控件)组件(1)
  4. ElasticStack系列之九 master、data 和 client 节点
  5. VBS基础篇 - 对象(5) - File对象
  6. 两本关于sharepoint 2010的书值得参考
  7. HP数组转JSON函数json_encode和JSON转数组json_decode函数的使用方法
  8. (转)增强学习(二)----- 马尔可夫决策过程MDP
  9. Center OS7网络设置
  10. 《疯狂Java讲义》(七)---- 方法