背景

垃圾邮件的问题一直困扰着人们,传统的垃圾邮件分类的方法主要有"关键词法"和"校验码法"等,然而这两种方法效果并不理想。其中,如果使用的是“关键词”法,垃圾邮件中如果这个关键词被拆开则可能识别不了,比如,“中奖”如果被拆成“中 ~~~ 奖”可能会识别不了。后来,直到提出了使用“贝叶斯”的方法才使得垃圾邮件的分类达到一个较好的效果,而且随着邮件数目越来越多,贝叶斯分类的效果会更加好。

我们想采用的分类方法是通过多个词来判断是否为垃圾邮件,但这个概率难以估计,通过贝叶斯公式,可以转化为求垃圾邮件中这些词出现的概率。

贝叶斯公式的介绍

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。

(1)条件概率公式

设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率为:

P(A|B) = P(AB)/P(B)

(2)由条件概率公式得出乘法公式: P(AB)=P(A|B)P(B)=P(B|A)P(A)

P(A|B) = P(AB)/P(B)可变形为:

可以这样来看贝叶斯公式:

  • P(A) 称为”先验概率”,即在B事件发生之前,我们对A事件概率的一个判断。如:正常收到一封邮件,该邮件为垃圾邮件的概率就是“先验概率”
  • P(A|B)称为”后验概率”, 即在B事件发生之后,我们对A事件概率的重新评估。如:邮件中含有“中奖”这个词,该邮件为垃圾邮件的概率就是“后验概率”

(3)全概率公式:

全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi), P(A|Bi) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。

下面给出《概率论与数理统计》浙大四版对于全概率公式和贝叶斯公式的详细讲述:

本次分类任务的主要思路:

分类标准:当 P(垃圾邮件|文字内容)> P(正常邮件|文字内容)时,我们认为该邮件为垃圾邮件,但是单凭单个词而做出判断误差肯定相当大,因此我们可以将所有的词一起进行联合判断。

这里假设:所有词语彼此之间是不相关的(严格说这个假设不成立;实际上各词语之间不可能完全没有相关性,但可以忽略)。

假如我们进行判断的词有“中奖”、“免费”、“无套路”,则需要判断P(垃圾邮件|中奖,免费,无套路)与P(正常|中奖,免费,无套路),使用贝叶斯公式,可以变为

同理,P(正常|中奖,免费,无套路)可以变为:

因此,对P(垃圾邮件|中奖,免费,无套路)与P(正常|中奖,免费,无套路)的比较,只需要对分子进行对比。

但是如果对多个词的P(内容|正常/垃圾)进行相乘时,可能会因为某个词的概率很小从而导致最后的结果为0(超出计算机的精度),因此可以对P(内容|正常/垃圾)取自然对数,即ln P(内容|正常/垃圾)。

因此可以变为

但是还有一个要注意的问题,如果某个词只出现在垃圾邮件中,而没有出现在正常的邮件中,这就会导致P(内容|正常)为0,从而导致整个分子都变为0,这会让上面的判别失效,为此,可以采取拉普拉斯平滑(laplace smoothing)。

拉普拉斯平滑(laplace smoothing)

主要的思想是对词的个数+1,对训练数据进行平滑处理。当训练样本很大时,每个词的个数+1造成的概率变化并不大,在误差允许的范围之内。

数据集的介绍:

本次实验中,所采用的数据集为Enron Email Dataset。该数据集已经对正常邮件和垃圾邮件进行了分类。由于该数据集是真实的电子邮件数据集,因此它包含真实的垃圾邮件,杀毒软件可能会对其中部分的邮件进行删除,因此进行本次实验时请暂时关闭杀毒软件。

代码实现:

1.需要导入的包:

import os
import re
import string
import math

2.数据的读入:

DATA_DIR = 'enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):subfolders = ['enron%d' % i for i in range(1,7)]data = []target = []for subfolder in subfolders:# spamspam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))for spam_file in spam_files:with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:data.append(f.read())target.append(1)# hamham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))for ham_file in ham_files:with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:data.append(f.read())target.append(0)return data, targetX, y = get_data(DATA_DIR)#读取数据

在这个代码段中,我们读入了所有邮件内容和标签,其中邮件内容存储在data中,标签存储在target当中,“1”表示为垃圾邮件,“0”表示为正常邮件。

3.数据的预处理

下面我们定义一个类对数据进行预处理

class SpamDetector_1(object):#清除标点符号def clean(self, s):translator = str.maketrans("", "", string.punctuation)return s.translate(translator)#将字符串标记为单词def tokenize(self, text):text = self.clean(text).lower()return re.split("\W+", text)#计算某个单词出现的次数def get_word_counts(self, words):word_counts = {}for word in words:word_counts[word] = word_counts.get(word, 0.0) + 1.0return word_counts

4.数据处理阶段

在我们开始实际算法之前,我们需要做三件事:计算(对数)类先验,即计算P(垃圾邮件)和P(正常邮件);词汇表(即正常邮件和垃圾邮件中出现的所有单词,方便进行拉普拉斯平滑);垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。

class SpamDetector_2(SpamDetector_1):# X:data,Y:target标签(垃圾邮件或正常邮件)def fit(self, X, Y):self.num_messages = {}self.log_class_priors = {}self.word_counts = {}# 建立一个集合存储所有出现的单词self.vocab = set()# 统计spam和ham邮件的个数self.num_messages['spam'] = sum(1 for label in Y if label == 1)self.num_messages['ham'] = sum(1 for label in Y if label == 0)# 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例self.log_class_priors['spam'] = math.log(self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))self.log_class_priors['ham'] = math.log(self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))self.word_counts['spam'] = {}self.word_counts['ham'] = {}for x, y in zip(X, Y):c = 'spam' if y == 1 else 'ham'# 构建一个字典存储单封邮件中的单词以及其个数counts = self.get_word_counts(self.tokenize(x))for word, count in counts.items():if word not in self.vocab:self.vocab.add(word)#确保self.vocab中含有所有邮件中的单词# 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。# c是0或1,垃圾邮件的标签if word not in self.word_counts[c]:self.word_counts[c][word] = 0.0self.word_counts[c][word] += count

可以利用下面的语句进行debug,判断是否运行正确,若正确,log_class_priors of spam应该为-0.6776,log_class_priors of ham应该为-0.7089。

我们选取了第100封之后的邮件作为训练集,前面一百封邮件作为测试集。

MNB = SpamDetector_2()
# 选取了第100封之后的邮件作为训练集,前面一百封邮件作为测试集
MNB.fit(X[100:], y[100:])# print("log_class_priors of spam", MNB.log_class_priors['spam']) #-0.6776
# print("log_class_priors of ham", MNB.log_class_priors['ham']) #-0.7089

5.测试阶段

下面定义一个类 SpamDetector对测试集进行测试。主要的思路是对

进行比较,从而判断是垃圾邮件还是正常邮件

class SpamDetector(SpamDetector_2):def predict(self, X):result = []flag_1 = 0# 遍历所有的测试集for x in X:counts = self.get_word_counts(self.tokenize(x))  # 生成可以记录单词以及该单词出现的次数的字典spam_score = 0ham_score = 0flag_2 = 0for word, _ in counts.items():if word not in self.vocab: continue#下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑else:# 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():log_w_given_spam = math.log((self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))log_w_given_ham = math.log((self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(self.vocab)))# 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():log_w_given_spam = math.log((self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))log_w_given_ham = math.log( 1 / (sum(self.word_counts['ham'].values()) + len(self.vocab)))# 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():log_w_given_spam = math.log( 1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))log_w_given_ham = math.log((self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(self.vocab)))# 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来spam_score += log_w_given_spamham_score += log_w_given_hamflag_2 += 1# 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)spam_score += self.log_class_priors['spam']ham_score += self.log_class_priors['ham']# 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件if spam_score > ham_score:result.append(1)else:result.append(0)flag_1 += 1return result
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]accuracy = 0
for i in range(100):if pred[i] == true[i]:accuracy += 1
print(accuracy) # 0.98

测试集的分类的正确率达到98%,效果还是挺好的。

所有的代码:

import os
import re
import string
import math
DATA_DIR = 'enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):subfolders = ['enron%d' % i for i in range(1,7)]data = []target = []for subfolder in subfolders:# spamspam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))for spam_file in spam_files:with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:data.append(f.read())target.append(1)# hamham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))for ham_file in ham_files:with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:data.append(f.read())target.append(0)return data, targetX, y = get_data(DATA_DIR)class SpamDetector_1(object):"""Implementation of Naive Bayes for binary classification"""#清除空格def clean(self, s):translator = str.maketrans("", "", string.punctuation)return s.translate(translator)#分开每个单词def tokenize(self, text):text = self.clean(text).lower()return re.split("\W+", text)#计算某个单词出现的次数def get_word_counts(self, words):word_counts = {}for word in words:word_counts[word] = word_counts.get(word, 0.0) + 1.0return word_countsclass SpamDetector_2(SpamDetector_1):# X:data,Y:target标签(垃圾邮件或正常邮件)def fit(self, X, Y):self.num_messages = {}self.log_class_priors = {}self.word_counts = {}# 建立一个集合存储所有出现的单词self.vocab = set()# 统计spam和ham邮件的个数self.num_messages['spam'] = sum(1 for label in Y if label == 1)self.num_messages['ham'] = sum(1 for label in Y if label == 0)# 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例self.log_class_priors['spam'] = math.log(self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))self.log_class_priors['ham'] = math.log(self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))self.word_counts['spam'] = {}self.word_counts['ham'] = {}for x, y in zip(X, Y):c = 'spam' if y == 1 else 'ham'# 构建一个字典存储单封邮件中的单词以及其个数counts = self.get_word_counts(self.tokenize(x))for word, count in counts.items():if word not in self.vocab:self.vocab.add(word)#确保self.vocab中含有所有邮件中的单词# 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。# c是0或1,垃圾邮件的标签if word not in self.word_counts[c]:self.word_counts[c][word] = 0.0self.word_counts[c][word] += countMNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])class SpamDetector(SpamDetector_2):def predict(self, X):result = []flag_1 = 0# 遍历所有的测试集for x in X:counts = self.get_word_counts(self.tokenize(x))  # 生成可以记录单词以及该单词出现的次数的字典spam_score = 0ham_score = 0flag_2 = 0for word, _ in counts.items():if word not in self.vocab: continue#下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑else:# 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():log_w_given_spam = math.log((self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))log_w_given_ham = math.log((self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(self.vocab)))# 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():log_w_given_spam = math.log((self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))log_w_given_ham = math.log( 1 / (sum(self.word_counts['ham'].values()) + len(self.vocab)))# 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():log_w_given_spam = math.log( 1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))log_w_given_ham = math.log((self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(self.vocab)))# 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来spam_score += log_w_given_spamham_score += log_w_given_hamflag_2 += 1# 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)spam_score += self.log_class_priors['spam']ham_score += self.log_class_priors['ham']# 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件if spam_score > ham_score:result.append(1)else:result.append(0)flag_1 += 1return resultMNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]accuracy = 0
for i in range(100):if pred[i] == true[i]:accuracy += 1
print(accuracy) # 0.98

其他说明:

Enron Email Dataset数据集可以点击下面链接下载

链接:https://pan.baidu.com/s/1qYrIXxP4gaja19uHjrm1xA 
提取码:1234

下载后解压到.py文件的目录下即可使用

基于朴素贝叶斯的垃圾邮件分类Python实现相关推荐

  1. Python实现基于朴素贝叶斯的垃圾邮件分类 标签: python朴素贝叶斯垃圾邮件分类 2016-04-20 15:09 2750人阅读 评论(1) 收藏 举报 分类: 机器学习(19) 听说

    Python实现基于朴素贝叶斯的垃圾邮件分类 标签: python朴素贝叶斯垃圾邮件分类 2016-04-20 15:09 2750人阅读 评论(1) 收藏 举报  分类: 机器学习(19)  听说朴 ...

  2. 基于朴素贝叶斯的垃圾邮件分类-着重理解拉普拉斯变换

    1. 引言 在正式学习朴素贝叶斯之前,需要明确的是机器学习所要实现的是基于有限的训练样本集尽可能准确地估计出后验概率P(c|x),即根据特征得到所属类别的概率,首先引入两个概念. 判别式模型(disc ...

  3. 基于朴素贝叶斯的垃圾邮件分类系统(包含黑白名单和特征库功能)

    目录 一.数据预处理 二.训练 三.测试 四.全部代码及数据集 一.数据预处理 经过常用的数据预处理,如删除停用词等后,统计所有训练集中垃圾邮件的内容,经分词后输出频次,得到垃圾邮件的特征库并画出词云 ...

  4. 朴素贝叶斯法 - 垃圾邮件分类

    本文基于朴素贝叶斯构建一个分类垃圾邮件的模型,研究对象是英文的垃圾邮件. 邮件内容保存在txt文件中,其中分为训练样本train和测试样本test. 在训练样本中正常邮件命名为:pos:垃圾邮件命名为 ...

  5. AI基础:朴素贝叶斯与垃圾邮件分类

    来,继续回顾基础算法 文章目录 背景&贝叶斯原理 贝叶斯分类器 朴素贝叶斯分类器 西瓜数据集下的朴素贝叶斯示例 朴素贝叶斯分类的优缺点 朴素贝叶斯关键问题 朴素贝叶斯企业中的应用案例 基于朴素 ...

  6. 机器学习--使用朴素贝叶斯进行垃圾邮件分类

    一.学习背景 垃圾邮件的问题一直困扰着人们,传统的垃圾邮件分类的方法主要有"关键词法"和"校验码法"等,然而这两种方法效果并不理想.其中,如果使用的是" ...

  7. [CS229学习笔记] 5.判别学习算法与生成学习算法,高斯判别分析,朴素贝叶斯,垃圾邮件分类,拉普拉斯平滑

    本文对应的是吴恩达老师的CS229机器学习的第五课.这节课介绍了判别学习算法和生成学习算法,并给出了生成学习算法的一个实例:利用朴素贝叶斯进行垃圾邮件分类. 判别学习(Discriminative L ...

  8. 朴素贝叶斯(垃圾邮件分类)

    一.基于贝叶斯决策理论的分类方法 朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比 ...

  9. 基于朴素贝叶斯的垃圾邮件分类器Java实现和讲解

    朴素贝叶斯算法最典型的应用就是垃圾邮件的识别,在数据量非常大的情况下,识别的正确率可以达到接近100%,同时实现起来思路并不复杂.本文介绍的就是基于朴素贝叶斯算法的垃圾邮件识别的实现.如果之前对贝叶斯 ...

  10. Python微调文本顺序对抗朴素贝叶斯算法垃圾邮件分类机制

    封面图片:<Python可以这样学>,ISBN:9787302456469,董付国,清华大学出版社 图书详情(京东): ================= 关于朴素贝叶斯算法中文垃圾邮件分 ...

最新文章

  1. windows下多进程加协程并发模式
  2. 【Android 逆向】整体加固脱壳 ( DEX 优化流程分析 | DexPrepare.cpp 中 dvmOptimizeDexFile() 方法分析 | /bin/dexopt 源码分析 )
  3. 设置Adobe Air应用程序属性
  4. CodeChef March Lunchtime 2018 div2
  5. Lua中的模块和使用
  6. SpringBoot 自带工具类~FileCopyUtils
  7. idea 创建 spring 配置文件
  8. Hadoop_10_HDFS 的 DataNode工作机制
  9. leancloud 怎么绑定域名_云引擎支持绑定加速域名 | LeanCloud 八月变化
  10. Android模拟地图gps定位
  11. 分情况分析消防应急照明灯具是否可以两者兼备
  12. DisplayTag的使用方法
  13. 常用路由器的帐号和密码大全
  14. 期货日内短线交易技巧
  15. asp.net identity 基础概念篇-理解什么是声明
  16. 华为路由器:ospf协议入门介绍
  17. 一般硬盘读取速度和写入速度是多少
  18. MFC之CFile读取和写入文件
  19. fibos开发踩坑集合
  20. 【综述阅读】Pre-trained Language Models for Text Generation: A Survey

热门文章

  1. python求根公式_python与代数
  2. Kanban in Action 免积分下载
  3. vs2012中将图片放到resource中进行调用
  4. 盛大文学云中书城zz
  5. 前端技术之SVG图片(图标)创建
  6. 强化学习Q learning算法最简单的入门(含java实现的小例子)
  7. 中企海外周报 | 宁德时代与大众拉美卡客车达成合作;亿航与沃达丰共建欧洲城市空中交通生态...
  8. Hbuider H5+App获取手机状态栏高度
  9. BAT都怎么泡区块链?假醉网易,炮灰百度,闷骚腾讯,假正经阿里
  10. 什么是集群?什么又是负载均衡?你未必说的清楚