本学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:添加链接描述

学习知识点概要

1.了解 逻辑回归 的理论
2.掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测

学习主要内容

1.逻辑回归的介绍和应用

逻辑回归的介绍

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。
而对于逻辑回归而且,最为突出的两点就是其模型简单模型的可解释性强
逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高。

逻辑回归的应用

逻辑回归模型广泛用于各个领域,包括机器学习,大多数医学领域和社会科学。例如,最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归 基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。
逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。

2.鸢尾花数据集预测

Demo实践

  • 库函数导入
##  基础函数库
import numpy as np
## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression
  • 模型训练
##Demo演示LogisticRegression分类
## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])
## 调用逻辑回归模型
lr_clf = LogisticRegression()
## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
  • 模型参数查看
## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)
## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
  • 数据和模型可视化
## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

效果如下:

# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()

输出:

### 可视化预测新样本plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()

输出:

  • 模型预测
## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

输出结果:

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。
基于鸢尾花(iris)数据集的逻辑回归分类实践

  • 数据提取和查看
##  基础函数库
import numpy as np
import pandas as pd## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式
## 利用.info()查看数据的整体信息
iris_features.info()
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()
iris_features.tail()
iris_target
## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()
## 对于特征进行一些统计描述
iris_features.describe()

该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。从统计描述中我们可以看到不同数值特征的变化范围。

  • 可视化分析
## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()
## 绘制箱线图
for col in iris_features.columns:sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)plt.title(col)plt.show()
# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')
iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()
plt.show()

可视化结果:

从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。

  • 利用逻辑回归模型在二分类上进行训练和预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)
## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()


我们可以发现其准确度为1,代表所有的样本都预测正确了。

  • 利用逻辑回归模型在三分类(多分类)上进行训练和预测
## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

结果如下:


通过结果我们可以发现,其在三分类的结果的预测准确度上有所下降,其在测试集上的准确度为: 86.67 % 86.67\% 86.67%,这是由于’versicolor’(1)和 ‘virginica’(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。

学习思考与总结

思考

  • 对于特征的边界模糊的情况,我们要考虑怎样实现各类样本在特征空间维度上的线性可分度。面对具有更高维度特征的样本分类问题,我们该怎么改进我们的算法,或者尝试新的算法,如SVM。
  • 当我们构建一个较复杂的模型时,为了防止模型出现过拟合的情况,我们需要进行正则化,其中正则项中的惩罚因子该如何选取。

总结

逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+e−z1​,当 z = > 0 z=>0 z=>0时, y = > 0.5 y=>0.5 y=>0.5,分类为1,当 z < 0 z<0 z<0时, y < 0.5 y<0.5 y<0.5,分类为0,其对应的 y y y值我们可以视为类别1的概率预测值.对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的 w w w。从而得到一个针对于当前数据的特征逻辑回归模型。而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。
怎么改进模型性能,提高精准度,学习更高效的模型,是我们后面要学习的内容。

龙珠机器学习训练营机器学习基础知识笔记相关推荐

  1. 笔记|李沐-动手学习机器学习|CNN基础知识(视频19-23)

    李沐-动手学习机器学习|CNN基础知识 卷积层(视频19) 从全连接到卷积(卷积算子) 进行图像识别的两个原则 如何从全连接层出发,应用以上两个原则,得到卷积 卷积层 二维交叉相关 二维卷积层 交叉相 ...

  2. 机器学习算法的基础知识

    机器学习算法的基础知识 1.评估指标 2.偏差与方差(过拟合与欠拟合) 3.正则化(解决过拟合) 4.梯度下降算法(算法优化方式) 5.数据不平衡 1.评估指标 预测值 0 1 实际 0 TN FP ...

  3. 机器学习入门:准备知识笔记(pandas)之一

    参考教学笔记:2021年Python人工智能,13天机器学习入门到精通,精讲+14大案例分析(数据来源参考) pandas的优势  增强图表可读性 便捷的数据处理能力 读取文件方便 封装了Matplo ...

  4. 机器学习需要哪些基础知识?

    机器学习需要一些基础知识,包括以下几个方面: 机器学习需要哪些基础知识? 数学基础:机器学习涉及到很多数学知识,如线性代数.微积分.概率论和统计学等.这些数学知识是理解和应用机器学习算法的基础. 编程 ...

  5. b站唐老师人工智能基础知识笔记

    b站唐老师人工智能基础知识笔记 0.机器学习(常用科学计算库的使用)基础定位.目标定位 1.机器学习概述 1.1.人工智能概述 1.2.人工智能发展历程 1.3.人工智能主要分支 1.4.机器学习工作 ...

  6. access2013数据库实验笔记_医学科研实验基础知识笔记(十):甲基化

    往期回顾 医学科研实验基础知识笔记(一):细胞增殖 医学科研实验基础知识笔记(二):细胞凋亡检测 医学科研实验基础知识笔记(三):细胞周期检测 医学科研实验基础知识笔记(四):细胞自噬研究策略 医学科 ...

  7. Java基础知识笔记-11_2-Swing用户界面组件

    Java基础知识笔记-11_2-Swing用户界面组件 这章教程两个版本,一个语法是非lambda表达式版本,另一个是lambda表达式版本 非lambda表达式版本 1 Java Swing概述 J ...

  8. 6-DoF问题相关基础知识笔记

    6-DoF问题相关基础知识笔记 一.什么是6-DoF,即6个自由度是什么? 二.PnP算法 三.BOP挑战与官方数据集简介 BOP数据集 BOP toolkit BOP挑战的介绍页面 四.相关论文 C ...

  9. 二代测序之SNV基础知识笔记总结

    二代测序之SNV基础知识笔记总结 文章目录 二代测序之SNV基础知识笔记总结 SNV基础知识 SNVs Mutation vs. Variant[变异和突变] 不同层次的突变 DNA: 1.编码DNA ...

  10. python详细基础知识笔记

    详细基础知识笔记 注: ·第一章 学习准备 1.1高级语言.机器语言.汇编语言 1.2 汇编.解释 1.3 静态语言.脚本语言 1.4 Python的历史 1.5 Python语言的优点.缺点 1.6 ...

最新文章

  1. lab_2 Selenium
  2. 干货:阅读跟踪 Java 源码的几个小技巧!
  3. 【CV秋季划】人脸算法那么多,如何循序渐进地学习好?
  4. 服务器和linux知识,每天学知识:Windows和Linux服务器差异
  5. java Linux icepdf,ICEpdf 6.1.1发布,Java的PDF类库
  6. sql创建表主键gui_在SQL Server中使用主数据服务快速创建最终用户可以维护的GUI
  7. ThinkPHP删除指定文件(物理删除) 点击链接可查看详情(对学习可有很大的帮助的...
  8. Android Support Library更新到v22.1之AppCompat新特性
  9. RTT设置删除空闲钩子函数想到函数指针和回调函数
  10. QGIS安装与使用教程
  11. 微信小程序开发常用方法
  12. Java实时获取基金收益项目源码分享
  13. VisualBasic程序设计第二章的学习与自测
  14. 服务器4通道内存性能测评,【华擎X99评测】两代多频对比 看DDR3/DDR4内存性能实测(全文)_华擎 X99-WS_主板评测-中关村在线...
  15. 怎么把ppt弄成链接的形式_怎么把ppt改成pptx_把pptx转换成ppt的方法
  16. 日志收集之--将Kafka数据导入elasticsearch
  17. PHP判断字符串是否含有特殊字符(亲测有效)
  18. SQL 取数值小数后两位,但不四舍五入。
  19. 网上购车平台低首付购车噱头的运作模式
  20. html 无缝拼接,用jQuery写一个无缝衔接轮播图,超精简又详细

热门文章

  1. 排障:服务器直连路由Trunk口
  2. dede php语句调用,织梦DEDE万能标签{dede:php}{dede:sql}调用办法
  3. decimal类型怎么算字节数
  4. mbr、gpt、grub4、efi 形象理解
  5. ProxyPool 爬虫代理IP池安装与使用(附官方文档)
  6. vue项目中使用echarts完成图表类的开发之饼图,环形图
  7. 英语四级真题作文 计算机,2015年6月大学英语四级真题作文:人与电脑
  8. php 身份认证 claim,asp.net core cookie身份认证view视图中读取/读取User.Claims中的值实例...
  9. 挖掘长尾关键词的关键是什么?怎么选长尾关键词?
  10. imagemagick基本操作