在高频开关系统中,通过并联电阻测量电流时,您可能会观察到正弦波电流纹波幅值过大、方波纹波或快速转换电流过冲或过高的高频噪声等问题。这些问题是由并联的分流电感引起的,当并联电阻值较低时,尤其是在1mΩ以下时,分流电感就变得更为明显。

图1:这是分流电感问题的等效电路图

开关稳压器的方波输出被L1和C1滤波,使得电流纹波是正弦波。H1捕获实际电流波形(由ROUT1探测),E1捕获并联电阻的精确电压及电感(由Rout探测),就像电流检测放大器(20V电源有助于方便地偏置和缩放以同时查看输出波形)。

您可能遇到不正确的正弦波波纹信号幅度和波形的问题。这里建模的一个实例中,波纹信号太大,使人怀疑整个测量的准确性。电路图中显示了一个神秘的三角波,在并联电阻附近,在我对电路进行仿真时才注意到。

图2:绿色曲线代表实际的纹波电流;黄色曲线代表并联电阻的压降,跟不带输入滤波器的电流检测放大器输出的信号是一样的。请注意,三角波的幅值比正弦波大得多(源E和H被缩放,当一切正常时,它们将匹配)。

图3:绘出了我们在应用中看到的问题。它有一个输入滤波器,所以放大器输出的波形是正弦的,但幅值过大。这只不过是滤波电容器太小的问题。

图4:此应用电路图显示滤波器在RFILT和CFILT处的初始值不正确,产生了图3的波形。将CFILT修正为0.3µF后将提供正确的波形和幅值,如图5所示。

图5:纹波有正确的滤波值,波形互相重叠

正弦波纹波在并联电阻有足够的分流电感时确实会变成三角波形。放大器最初有一个正弦波输出,因为设计人员明智地在放大器输入处使用了一个低通滤波器,但是它没有被正确地“调整”。在这种情况下,需要调整的有电容值,直到纹波符合正确的计算值。实际应用中的分流问题是,由于电感规格的不确定,它们不遵守规则的分析方法。您可能会在数据表中看到“0.5到5nH”这样的标注,但是却没有具体的值,这就看您是否幸运了。所以您需要使用一个电流探头,通过反复调整电容器来确定正确的值(很明显,如果幅值太大,就增加电容值,幅值太小的话就减小电容值)。
事实上,如果您有一个真正的电流方波,您可能可以很幸运地以同样的方式“调出”一个过冲。一旦找到正确的滤波值,就可用于生产,甚至在不得不更换并联电阻供应商时,它仍可能有用。构建低于1mΩ并联电阻的方法不多。我是不是提到过,由于分流电感的影响,瞬态响应问题会随着并联电阻的变小(通常小于1mΩ)而变得更糟?在输入前完成滤波的重要性
滤波应在电流检测IC输入之前完成,这很重要。对没有前端滤波的系统长期收集的数据显示,在电流和功率值的数据图中不明原因地偶然(但频率已足以引起问题)出现了大的尖峰。并联电阻的高频响应上升,引起电流检测前端混叠,从而产生尖峰。不管是斩波稳定放大器、delta-sigma转换器还是平均SAR,只要是采样系统,那么它们都是脆弱的。与任何混叠问题一样,正确的解决方法是在电流检测IC输入前进行模拟滤波。离开那些说您不需要滤波器的供应商。如果它是一个采样系统并且您正在收集数据,您的电流检测IC就需要一个干净的信号。还请记住,混叠不是唯一可能存在的问题,若是不对输入进行滤波,高频输入很可能使前端过载。
最后,如果您需要进一步抑制噪音,当然可以调到更低的频率。在输入进入第一个放大器之前进行滤波总是有益的。大多数电流检测IC在单极输入处会限制实际滤波,但还是应该使用,如果需要,在放大器的输出处还可实施更高阶的滤波。
虽然本文讨论的问题存在于瞬态域,但任何敏感的读者都会意识到它可看作一个简单的一阶带宽问题。在欧姆值极低的并联电阻上的分流电感产生了几百kHz的转角频率,有时出奇地低。无论怎样,作为带宽问题、时间常数问题或瞬态响应问题,最佳滤波器的时间常数都将等于并联电阻及其电感的时间常数(或补偿并联零频率的极点频率):

电流检测IC将始终使用差分滤波器,RFILT将是两个电阻之和。从数学的角度,最难的部分是得到一个实际的LSHUNT值。

图6:频率响应曲线(绿色)显示有3nH电感的500µΩ并联电阻的上升频率响应,以及有一对10Ω电阻和0.3µF电容的输入滤波器的互补响应。请注意,并联电阻显示出约为30kHz的转角频率。

作者:Jerry Steele

双电阻差分电流采样_并联电阻的分流电感很重要相关推荐

  1. 双电阻差分电流采样_矢量控制中的常见电流检测方式

    矢量控制技术中,一个关键的技术环节是相电流的采集和重构.电流采集方式有多种,但是鉴于成本和易用性的考虑,目前应用较多的电流采集方式只有三种.单电阻法.双电阻法以及三电阻法. 1 单电阻采集方案,成本低 ...

  2. 双电阻差分电流采样_小小的采样电阻,还真有点门道!

    电流检测电阻的基本原理 根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比.当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的.然而如果电流达到10-20A,情况就完全不同,因为在电 ...

  3. 双电阻差分电流采样_电流检测技术综述

    一.欧姆定律 (1) 分流电阻 这种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰:高端检测,电阻与运放的选择要求高. 检测电阻是最简单的电流测量方法,既可用于测量交流电流也可用于测量直流 ...

  4. 双电阻差分电流采样_和顺海科技一起来了解采样电阻的用途和选型

    采样电阻是用于参考的电阻,通常在反馈电路中,调节电源的电路是例如,为了使输出电压保持恒定状态,从输出电压中取一部分电压作为参考(以共同采样电阻器的形式),如果输出较高,则输入端自动降低电压以减少输出. ...

  5. 双电阻差分电流采样_差分信号和差分电路讲解 差分放大电路应用

    1.什么是差分信号?为什么要用差分信号? 两个芯片要通信,我们把它们用一根导线连接起来,一个传输 1,另一个接受 1,一个传输 0,另一个接受 0,不是很好吗?为什么还要搞其他的花花肠子. 因为有干扰 ...

  6. 双电阻差分电流采样_合金采样电阻的特点及作用

    合金采样电阻的作用 采样电阻分类两种,一种是电流采样电阻,另一种是电压采样电阻,我们在电流设计的时候所说的采样电阻,一般是电流采样电阻. 采样电阻在工程实际电流的应用中有不同的说法,一般通俗的说法都是 ...

  7. 双电阻差分电流采样_合金取样电阻的作用特点及应用

    合金采样电阻的作用采样电阻分类两种,一种是电流采样电阻,另一种是电压采样电阻,我们在电流设计的时候所说的采样电阻,一般是电流采样电阻. 采样电阻在工程实际电流的应用中有不同的说法,一般通俗的说法都是电 ...

  8. 双电阻差分电流采样_利用采样保持放大器和RF ADC从根本上扩展带宽以突破X波段频率...

    摘要 模拟带宽的重要性高于其他一切在越来越多的应用中得到体现.随着GSPS或RF ADC的出现,奈奎斯特域在短短几年内增长了10倍,达到多GHz范围.这帮助上述应用进一步拓宽了视野,但为了达到X波段( ...

  9. 双电阻差分电流采样_模拟电路-差分放大电路

    1.典型的差分放大电路如下图 特点: 电路左右两侧对称 两管公用发射极电阻 具有两个信号输入端 信号既可以双端输出 ,也可以单端输出(输出电压既可以是 也可以是 ) 两个输入端信号电压的差值是有用的, ...

最新文章

  1. 印度孟买机器人餐厅_宝莱坞机器人2.0:重生归来一起来看印度神片!
  2. 包r语言_R语言入门之寻找你的R包
  3. Sprint2-3.0
  4. java集合总结_java集合小总结
  5. mysql 查询商品列表 显示tag_让前台页面商品列表显示后台数据库中的商品
  6. HTML 基本知识点(草稿)
  7. mysql查询2个isbn数据,数据库实验二 数据查询
  8. 注册名字英文name域名_关于域名和备案,你想知道的都在这里
  9. python做动画的库_用matplotlib动画库制作等分法动画
  10. POJ3178 计算几何+DP
  11. qtouch跨平台组态软件
  12. DBeaver——一款替代Navicat的数据库可视化工具
  13. 信息学奥赛一本通知识集锦+往年真题
  14. 用户体验测试之专家评估
  15. EDA技术与市场分析
  16. 基于51单片机三路温湿度语音LCD1602液晶显示报警
  17. 乐橙机器人的价格_乐橙育儿机器人app-大华乐橙机器人app(乐橙宝宝)下载V1.00.001-西西软件下载...
  18. FME中的栅格数据操作之十二——矢量数据栅格化
  19. 微信公众号授权登陆流程
  20. 计算机网络学习笔记一

热门文章

  1. ORACLE 开发中常用到得命令
  2. 流程图怎么制作?常见方式介绍
  3. 我去微信找师弟,问他的「编程能力」从什么时候开始突飞猛进的?
  4. Java编程思想 第四版 读书笔记巩固基础,完善知识框架。
  5. Android 4权威专家撰写,经典作品最新升级版(内附部分章节试读下载地址)
  6. QApplication和QCoreApplication
  7. Coursera-Internet_History
  8. 汇千网-360——挣最庸俗的广告钱,投入于安全技术研发
  9. 牛客--2019招商银行信用卡中心--员工考勤记录
  10. 曾经一年有6个月在考核绩效,谷歌最终放弃使用了20多年的“内卷神器”OKR