ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

目录

输出结果

设计思路

核心代码

更多输出


输出结果

正在更新……

设计思路

正在更新……

核心代码

from sklearn.grid_search import GridSearchCVparam_test = { 'n_estimators': range(1, 51, 1)}
clf = GridSearchCV(estimator = bst, param_grid = param_test, cv=5)
clf.fit(X_train, y_train)
clf.grid_scores_, clf.best_params_, clf.best_score_grid_scores_mean= [0.90542,  0.94749,  0.90542,  0.94749,  0.90573,  0.94718, 0.90542,  0.94242,  0.94473,  0.97482,  0.94887,  0.97850, 0.97298,  0.97850,  0.97298,  0.97850,  0.97850,  0.97850, 0.97850,  0.97850,  0.97850,  0.97850,  0.97850,  0.97850, 0.97850,  0.97804,  0.97774,  0.97835,  0.98296,  0.98419,    0.98342,  0.98372,  0.98419,  0.98419,  0.98419,  0.98419, 0.98419,  0.98419,  0.98419,  0.98419,  0.98419,  0.98419, 0.98419,  0.98419,  0.98419,  0.98419,  0.98419,  0.98419, 0.98419 ]grid_scores_std = [0.08996,  0.07458,  0.08996,  0.07458,  0.09028,  0.07436,  0.08996,  0.07331,  0.07739,  0.02235,  0.07621,  0.02387,  0.03186,  0.02387,  0.03186,  0.02387,  0.02387,  0.02387,  0.02387,  0.02387,  0.02387,  0.02387,  0.02387,  0.02387,  0.02387,  0.02365,  0.02337,  0.02383,  0.01963,  0.02040,  0.01988,  0.02008,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040,  0.02040  ]#7-CrVa交叉验证曲线可视化
import matplotlib.pyplot as pltx = range(0,len(grid_scores_mean))
y1 = grid_scores_mean
y2 = grid_scores_std
Xlabel = 'n_estimators'
Ylabel = 'value'
title = 'mushroom datase: xgboost(sklearn+GridSearchCV) model'plt.plot(x,y1,'r',label='Mean')                      #绘制mean曲线
plt.plot(x,y2,'g',label='Std')                       #绘制std曲线plt.rcParams['font.sans-serif']=['Times New Roman']  #手动添加中文字体,或者['font.sans-serif'] = ['FangSong']   SimHei
#myfont = matplotlib.font_manager.FontProperties(fname='C:/Windows/Fonts/msyh.ttf')  #也可以指定win系统字体路径
plt.rcParams['axes.unicode_minus'] = False  #对坐标轴的负号进行正常显示plt.xlabel(Xlabel)
plt.ylabel(Ylabel)
plt.title(title)plt.legend(loc=1)
plt.show()

更多输出

GridSearchCV time: 79.7655139499154
clf.grid_scores_: [mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4}, mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8}, mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10}, mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26}, mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28}, mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30}, mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 50}]
clf.best_params_: {'n_estimators': 30}
clf.best_score_: 0.9841854752034392
[mean: 0.90542, std: 0.08996, params: {'n_estimators': 1}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 2}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 3}, mean: 0.94749, std: 0.07458, params: {'n_estimators': 4}, mean: 0.90573, std: 0.09028, params: {'n_estimators': 5}, mean: 0.94718, std: 0.07436, params: {'n_estimators': 6}, mean: 0.90542, std: 0.08996, params: {'n_estimators': 7}, mean: 0.94242, std: 0.07331, params: {'n_estimators': 8}, mean: 0.94473, std: 0.07739, params: {'n_estimators': 9}, mean: 0.97482, std: 0.02235, params: {'n_estimators': 10}, mean: 0.94887, std: 0.07621, params: {'n_estimators': 11}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 12}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 13}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 14}, mean: 0.97298, std: 0.03186, params: {'n_estimators': 15}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 16}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 17}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 18}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 19}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 20}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 21}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 22}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 23}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 24}, mean: 0.97850, std: 0.02387, params: {'n_estimators': 25}, mean: 0.97804, std: 0.02365, params: {'n_estimators': 26}, mean: 0.97774, std: 0.02337, params: {'n_estimators': 27}, mean: 0.97835, std: 0.02383, params: {'n_estimators': 28}, mean: 0.98296, std: 0.01963, params: {'n_estimators': 29}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 30}, mean: 0.98342, std: 0.01988, params: {'n_estimators': 31}, mean: 0.98372, std: 0.02008, params: {'n_estimators': 32}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 33}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 34}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 35}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 36}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 37}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 38}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 39}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 40}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 41}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 42}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 43}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 44}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 45}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 46}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 47}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 48}, mean: 0.98419, std: 0.02040, params: {'n_estimators': 49}]grid_scores_ = [mean: 0.90542, std: 0.08996, mean: 0.94749, std: 0.07458, mean: 0.90542, std: 0.08996, mean: 0.94749, std: 0.07458, mean: 0.90573, std: 0.09028, mean: 0.94718, std: 0.07436,mean: 0.90542, std: 0.08996, mean: 0.94242, std: 0.07331, mean: 0.94473, std: 0.07739,  mean: 0.97482, std: 0.02235,mean: 0.94887, std: 0.07621, mean: 0.97850, std: 0.02387, mean: 0.97298, std: 0.03186,  mean: 0.97850, std: 0.02387, mean: 0.97298, std: 0.03186,  mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387,  mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387,mean: 0.97850, std: 0.02387, mean: 0.97850, std: 0.02387,mean: 0.97804, std: 0.02365,  mean: 0.97774, std: 0.02337, mean: 0.97835, std: 0.02383, mean: 0.98296, std: 0.01963, mean: 0.98419, std: 0.02040,  mean: 0.98342, std: 0.01988, mean: 0.98372, std: 0.02008, mean: 0.98419, std: 0.02040,  mean: 0.98419, std: 0.02040,  mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040, mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040,mean: 0.98419, std: 0.02040  ]

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)相关推荐

  1. ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 目录 输出结果 设计思路 核心 ...

  2. ML之xgboost:利用xgboost算法(sklearn+3Split+调参曲线+EarlyStop)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(sklearn+3Spli+调参曲线+EarlyStop)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) ...

  3. ML之xgboost:利用xgboost算法(sklearn+3Split+调参曲线)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(sklearn+3Split+调参曲线)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 目录 输出结果 设 ...

  4. ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(sklearn+3Split)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 目录 输出结果 设计思路 核 ...

  5. ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 目录 输出结果 设计思路 核心代码 输 ...

  6. ML之xgboost:利用xgboost算法(自带,特征重要性可视化+且作为阈值训练模型)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(自带,特征重要性可视化+且作为阈值训练模型)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 目录 输出结果 ...

  7. ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

    ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 目录 输出结果 设计思路 核心代码 输出结果 1 ...

  8. ML之LoRDTRF:基于LoRDT(CART)RF算法对mushrooms蘑菇数据集(22+1,6513+1611)训练来预测蘑菇是否毒性(二分类预测)

    ML之LoR&DT&RF:基于LoR&DT(CART)&RF算法对mushrooms蘑菇数据集(22+1,6513+1611)训练来预测蘑菇是否毒性(二分类预测) 目录 ...

  9. ML之xgboost:利用xgboost算法对breast_cancer数据集实现二分类预测并进行graphviz二叉树节点图可视化

    ML之xgboost:利用xgboost算法对breast_cancer数据集实现二分类预测并进行graphviz二叉树节点图可视化 目录 实现结果 实现代码 实现结果

最新文章

  1. MySQL连接问题: MySQLNonTransientConnectionException:Communications link failure during rollback()
  2. (52 90) 简答 什么叫计算机网络,计算机网络期末复习试卷.doc
  3. 再说 Spring AOP
  4. 模块化数据中心有什么优势?
  5. Apache中access_log日志分析
  6. Spring Boot集成JPA的Column注解命名字段无效的问题
  7. mysql strcmp s1 s2_mysql常用函数
  8. 奉献给你:《Visual C# 2005程序开发与界面设计秘诀》
  9. VS2017编译UE4.19.2报错
  10. 阿里云:构建全球企业内外安全网络最佳实践
  11. matlab 信号处理 教程,MATLAB信号处理仿真 实验_教程-学习文件.pdf
  12. Access访问错误集锦:Access关键字
  13. 30岁,我从前端转型管理成功了
  14. 电子信息工程专业概论_本科专业介绍 | 电子信息工程
  15. 云笔记使用的感受!(有道云, 印象云, 未知云)
  16. Java面向对象(下)课后习题编程题
  17. Java数据结构-Set
  18. Splay Tree
  19. 概率论——随机变量的函数分布
  20. k8s跑一个nginx-app体验

热门文章

  1. nodejs全局变量第一次没赋值要第二次才有是为什么_【NodeJS】async 和 await 的本质...
  2. a股历史30年的大盘价_[最新]回顾A股历史上的大井喷行情
  3. 如何利用OpenSSL生成证书
  4. JS获取当前日期时间并定时刷新
  5. Python 的电子邮件编程
  6. 45个案例一一破解win32k.sys蓝屏
  7. python中的operator库
  8. 你的“苦劳”,真的不值钱!
  9. 可怜的Java EE,这次会不会劫数难逃?
  10. Java 8 中处理日期和时间示例