点击上方蓝色“程序猿DD”,选择“设为星标”

回复“资源”获取独家整理的学习资料!

来源 | draveness.me/redis-io-multiplexing

最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。

几种 I/O 模型

为什么 Redis 中要使用 I/O 多路复用这种技术呢?

首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。

Blocking I/O

先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个**文件描述符(File Descriptor 以下简称 FD)**进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。

这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:

blocking-io

阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。

I/O 多路复用

虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。

阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:

I:O-Multiplexing-Mode

在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。

关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;

与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。

Reactor 设计模式

Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)

redis-reactor-pattern

文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 acceptreadwrite 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。

虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。

I/O 多路复用模块

I/O 多路复用模块封装了底层的 selectepollavport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。

ae-module

在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:

  • static int aeApiCreate(aeEventLoop *eventLoop)

  • static int aeApiResize(aeEventLoop *eventLoop, int setsize)

  • static void aeApiFree(aeEventLoop *eventLoop)

  • static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)

  • static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)

  • static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)

同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:

// select
typedef struct aeApiState {fd_set rfds, wfds;fd_set _rfds, _wfds;
} aeApiState;// epoll
typedef struct aeApiState {int epfd;struct epoll_event *events;
} aeApiState;

这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。

封装 select 函数

select 可以监控 FD 的可读、可写以及出现错误的情况。

在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:

int fd = /* file descriptor */fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds)for ( ; ; ) {select(fd+1, &rfds, NULL, NULL, NULL);if (FD_ISSET(fd, &rfds)) {/* file descriptor `fd` becomes readable */}
}
  1. 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;

  2. 使用 FD_SET 将 fd 加入 rfds

  3. 调用 select 方法监控 rfds 中的 FD 是否可读;

  4. 当 select 返回时,检查 FD 的状态并完成对应的操作。

而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds

static int aeApiCreate(aeEventLoop *eventLoop) {aeApiState *state = zmalloc(sizeof(aeApiState));if (!state) return -1;FD_ZERO(&state->rfds);FD_ZERO(&state->wfds);eventLoop->apidata = state;return 0;
}

而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {aeApiState *state = eventLoop->apidata;if (mask & AE_READABLE) FD_SET(fd,&state->rfds);if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);return 0;
}

整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {aeApiState *state = eventLoop->apidata;int retval, j, numevents = 0;memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));retval = select(eventLoop->maxfd+1,&state->_rfds,&state->_wfds,NULL,tvp);if (retval > 0) {for (j = 0; j <= eventLoop->maxfd; j++) {int mask = 0;aeFileEvent *fe = &eventLoop->events[j];if (fe->mask == AE_NONE) continue;if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))mask |= AE_READABLE;if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))mask |= AE_WRITABLE;eventLoop->fired[numevents].fd = j;eventLoop->fired[numevents].mask = mask;numevents++;}}return numevents;
}

封装 epoll 函数

Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd

static int aeApiCreate(aeEventLoop *eventLoop) {aeApiState *state = zmalloc(sizeof(aeApiState));if (!state) return -1;state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);if (!state->events) {zfree(state);return -1;}state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */if (state->epfd == -1) {zfree(state->events);zfree(state);return -1;}eventLoop->apidata = state;return 0;
}

在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {aeApiState *state = eventLoop->apidata;struct epoll_event ee = {0}; /* avoid valgrind warning *//* If the fd was already monitored for some event, we need a MOD* operation. Otherwise we need an ADD operation. */int op = eventLoop->events[fd].mask == AE_NONE ?EPOLL_CTL_ADD : EPOLL_CTL_MOD;ee.events = 0;mask |= eventLoop->events[fd].mask; /* Merge old events */if (mask & AE_READABLE) ee.events |= EPOLLIN;if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;ee.data.fd = fd;if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;return 0;
}

由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:

typedef union epoll_data {void    *ptr;int      fd; /* 文件描述符 */uint32_t u32;uint64_t u64;
} epoll_data_t;struct epoll_event {uint32_t     events; /* Epoll 事件 */epoll_data_t data;
};

其中保存了发生的 epoll 事件(EPOLLINEPOLLOUTEPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。

aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {aeApiState *state = eventLoop->apidata;int retval, numevents = 0;retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);if (retval > 0) {int j;numevents = retval;for (j = 0; j < numevents; j++) {int mask = 0;struct epoll_event *e = state->events+j;if (e->events & EPOLLIN) mask |= AE_READABLE;if (e->events & EPOLLOUT) mask |= AE_WRITABLE;if (e->events & EPOLLERR) mask |= AE_WRITABLE;if (e->events & EPOLLHUP) mask |= AE_WRITABLE;eventLoop->fired[j].fd = e->data.fd;eventLoop->fired[j].mask = mask;}}return numevents;
}

子模块的选择

因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:

#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else#ifdef HAVE_EPOLL#include "ae_epoll.c"#else#ifdef HAVE_KQUEUE#include "ae_kqueue.c"#else#include "ae_select.c"#endif#endif
#endif

因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:

redis-choose-io-function

Redis 会优先选择时间复杂度为  的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 ,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

总结

Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。

整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。

往期推荐

必须了解的 MySQL 三大日志

说了低调...这下百度知道了...

离职半年了,最近又开始被吐槽输出不够...

面试:InnoDB 中一棵 B+ 树可以存放多少行数据?

用 gson 替换 fastjson 引发的线上问题分析

扫一扫,关注我

一起学习,一起进步

每周赠书,福利不断

深度内容

推荐加入

最近热门内容回顾   #技术人系列

为什么 Redis 单线程能支撑高并发?相关推荐

  1. 为何单线程的 Redis 却能支撑高并发?

    最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的 ...

  2. 为什么单线程的Redis却能支撑高并发? ---------- I/O 多路复用

    几种 I/O 模型 为什么 Redis 中要使用 I/O 多路复用这种技术呢?首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的. 但是由于读写操作等待用户输入或输出都是阻塞的,所以 ...

  3. 缓存数据库面试 - redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?

    缓存数据库面试 - redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试题 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis ...

  4. cpu多核 node 单线程_node单线程支撑高并发原理(node异步I/O)

    一.node单线程实现高并发原理 众所周知nodejs是单线程且支持高并发的脚本语言.可为什么单线程的nodejs可以支持高并发呢?很多人都不明白其原理,下面我来谈谈我的理解: 1. node的优点: ...

  5. 服务器系统怎么做高并发,QPS 高并发 如何设计一个支撑高并发大流量的系统?...

    QPS 高并发 如何设计一个支撑高并发大流量的系统? 高并发架构相关概念 什么是并发? 并发是指并发的访问,也就是某个时间点,有多少个访问同时到来: 通常如果一个系统的日PV在千万以上,有可能是一个高 ...

  6. 猿创征文 | 微服务 Spring Boot 整合Redis 实战开发解决高并发数据缓存

    文章目录 一.什么是 缓存? ⛅为什么用缓存? ⚡如何使用缓存 二.实现一个商家缓存 ⌛环境搭建 ♨️核心源码 ✅测试接口 三.采用 微服务 Spring Boot 注解开启缓存 ✂️@CacheEn ...

  7. SpringBoot、Redis轻松实现Java高并发秒杀系统笔记

    秒杀项目 优极限[完整项目实战]半天带你用SpringBoot.Redis轻松实现Java高并发秒杀系统 文章目录 秒杀项目 技术栈 课程介绍 学习目标 如何设计一个秒杀系统 项目搭建 分布式会话 登 ...

  8. 面试官绝杀:系统是如何支撑高并发的?

    作者 | 中华石杉 责编 | 伍杏玲 很多人面试的时候被问到一个让人特别手足无措的问题:你的系统如何支撑高并发? 大多数同学被问到这个问题压根儿没什么思路去回答,不知道从什么地方说起,其实本质就是没经 ...

  9. 怎么检测并发处理能力达每秒2万次_系统如何支撑高并发

    目录 概述 最简单的系统架构 负载均衡+分库分表 + 读写分离系统架构 负载均衡+分库分表 + 读写分离+缓存集群系统架构 负载均衡+分库分表 + 读写分离+缓存集群+消息中间件集群系统架构 php7 ...

最新文章

  1. 0元力压0.1元,中国电信中标连云港政务云项目
  2. SAP Fiori Launchpad上的错误消息 - User Parameter /UI2/WD_TRKORR_CUST is not maintained
  3. 网络安全:图片防盗链的实现原理
  4. Caffe训练时出现了无数个Train net output #.....
  5. 数组转换为字符串方法
  6. drupal ajax 分页,在drupal中使用Ajax时要保持一个404
  7. Ubuntu下安装CUDA
  8. pycharm编程工具自带python环境吗_pycharm+PyQt5+python最新开发环境配置(踩坑)
  9. poj 1160 Post Office(DP简单题)
  10. 【Spark】Spark是什么
  11. 对 cloudwu 简单的 cstring 进行简单解析
  12. Nodejs 批量检测 Excel 中url链接是否可访问
  13. 自由软件、开源软件、免费软件、共享软件和商业软件
  14. 《我的眼睛--图灵识别》第八章:训练:图像字符切割
  15. 口令红包-利用函数计算构建微信小程序的server端
  16. Go操作Memcached
  17. 本地搭建xxl-job服务及连接验证
  18. webstorm注册码
  19. I am all ears和get cold feet的区别
  20. 非常值得欣赏的15个HTML5网站

热门文章

  1. 微信红包的架构设计简介
  2. clion pycharm goland 设置背景颜色
  3. C发展史:KR C/C89/C99/C11 C++发展史: C++98/C++03/C++11
  4. Navicat For Mysql快捷键
  5. 安装 Windows8 后值得做的十多项简单优化,让Win8速度快上加快!
  6. Android实现手机手电筒
  7. Openstack在controller节点 nova image-list HTTP500
  8. Openstack-mitakaCentos7.2双节点搭建--(一)基础服务搭建
  9. socket 与 vfs
  10. 中的挂起是什么意思_数字博物馆是什么意思?数字博物馆用到了哪些技术?