1. 线性组合

接下来我们要换一个角度来看向量。以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量。那么坐标平面上的其他向量,例如 [ 3  -2 ] [3−与 i, j 是什么关系呢?

将向量 i 沿水平向右的方向拉升 3 倍,向量 j 沿竖直向下的方向拉升 2 倍

这样,我们可以将向量 [ 3  -2 ] [3−2] 看成是将向量 i, j 缩放后再相加的结果

向量 i, j 称为基向量,其他向量都可以通过对基向量缩放再相加的方法构造出来。基向量缩放的倍数对应向量的各个分量,即向量对应的坐标。

我们可以通过选择不同的基向量来构造新的坐标系。例如,我们可以选择指向右上方的向量 v 和 指向右下方的向量 w 作为基向量。

对这组新的基向量进行缩放再相加,同样也能构造出其他的向量

一组基向量就对应一个坐标系,选择不同的基向量就构造出了不同的坐标系。同一个向量,在不同的坐标系下(即采用不同的基向量),其坐标值也要相应地发生变化。后面,咪博士会进一步谈到具体如何变换。

上面,反复出现 “将向量进行缩放再相加” 的操作,这样的操作,我们称之为 线性组合

2. 向量张成的空间

在二维平面中,选取 2 个向量,然后考虑它们所有可能的线性组合,我们会得到什么呢?这取决于我们选择的 2 个向量。

通常情况下,我们会得到整个平面

如果选择的 2 个向量,恰好共线的话,那它们的线性组合就被局限在一条过原点的直线上了

最极端的情况是,选择的 2  个向量都是零向量,那么它们的线性组合就只可能是零向量了

向量 v, w 的 全部线性组合 所构成的向量集合称为向量 v, w 所 张成的空间

还记得前面的教程中,咪博士谈到数乘和加法是向量 2 个最基础的运算吗?当我们谈论向量所张成的空间时,我们实际上就是在问,仅仅通过数乘和加法 2 种基础运算,你能获得的所有可能的向量集合是什么。

在线性代数中,向量的起点始终固定在原点的位置,因此 向量的终点就唯一确定了向量本身。这样,我们便可以将向量看成是空间中的点(即向量的终点)

3. 线性相关、线性无关

将线性组合的想法扩展到 3 维空间中。想象 3 个 3 维向量,它们所张成的空间会是什么样的呢?这取决于我们选择的 3 个向量。

  • a. 通常情况下,我们会得到整个 3 维空间
  • b. 当选择的 3 个向量共面时,它们所张成的空间是一个过原点的平面
  • c. 当 3 个向量共线时,它们所张成的空间是一条过原点的直线
  • d. 当 3 个向量都是零向量时,它们所张成的空间只包含零向量

显然,在考虑向量所张成的空间时,有些向量是多余的。例如,情况 b ,确定一个平面只需要 2 个向量,而我们却用了 3 个向量,这意味着,有 1 个向量是多余的;情况 c,确定一条直线只需要 1 个向量就够了,而我们用了 3 个向量,其中有 2 个向量是多余的。数学上,我们用线性相关来描述这样的现象。

当我们说几个向量所构成的向量组线性相关时,意思是向量组中的(任意)一个向量都可以用向量组中其他向量的线性组合来表示出来。换句话讲,这个向量已经落在其他向量所张成的空间中,它对整个向量组张成的空间是没有贡献的,把它从向量组中拿掉,并不会影响向量组所张成的空间。

线性无关指的是,向量组中的(任意)一个向量无法用向量组中其他向量的线性组合表示出来。换句话说,向量组中的每一个向量都为向量组所张成的空间贡献了一个维度,每一个向量都缺一不可,少了任何一个向量,都会改变向量组所张成的空间。

4. 基的严格定义

最后,我们把本节相关的概念串起来,形成基的严格定义:

向量空间的一组 张成 该空间的一个 线性无关 向量集

原文链接:http://www.ipaomi.com/2017/11/21/线性代数的本质与几何意义-02-线性组合、张成的空/

转载于:https://www.cnblogs.com/ipaomi/p/7919065.html

线性代数的本质与几何意义 02. 线性组合、张成的空间、基(3blue1brown 咪博士 图文注解版)...相关推荐

  1. 线性代数的本质(二)——线性组合、张成空间和基

    基 在讨论向量的时候,我们可以知道一个二维向量的两个分量代表一个箭头的终点坐标.但是我们还有一种更有趣的方式来看这些分量. 先看下面这个向量 在xy坐标系中,有两个非常特殊的向量,分别就是在x轴正方向 ...

  2. 【线性代数的本质|笔记】线性组合、张成的空间、基

    向量组&线性组合&线性相关性&向量空间 讲到向量组的时候往往要等价类比向量空间的相关概念与描述,这一块的知识串联得特别紧密,遂先整理如下. <线性代数的本质>视频中 ...

  3. 线性代数的本质(3Blue1Brown线代笔记)

    01:向量究竟是什么? 从物理专业学生视角看,向量是空间中的箭头,向量可在空间中自由落脚,决定向量的是它的长度和所指的方向. 从计算机专业学生的视角看,向量是有序的数字列表,例如研究房价,你会用二维向 ...

  4. 3Blue1Brown【线性代数的本质】— 个人笔记

    [线性代数的本质]- 个人笔记 00 序言 01 向量 02 张成的空间与基 03 矩阵与线性变换 04 矩阵乘法与线性变换的联系 05 行列式 06 逆矩阵.列空间.秩与零空间 补充:非方阵 不同维 ...

  5. 00. 线性代数的本质

    写在前面 此分类为b站视频<线性代数的本质>系列的个人笔记,也可以供大家参考.视频很通俗,但是需要高中以上水平,最好学过大学线性代数,以便用一个"新的"角度看待线代,当 ...

  6. 3blue1brown线性代数的本质笔记

    3blue1brown线性代数的本质视频 目录 1.向量究竟是什么? 2.线性组合.张成空间与基 3.矩阵与线性变换 4.矩阵乘法与线性变换复合 5.行列式 6.逆矩阵.列空间和零空间 7.点积与对偶 ...

  7. 线性代数的本质--笔记整理

    线性代数的本质--笔记 00 序言 尽管一批教授和教科书编者用关于矩阵的荒唐至极的计算内容掩盖了线性代数的简明性,但是鲜有与之相较更为初等的理论.            一一让.迪厄多内 线性代数不仅 ...

  8. 线性代数的本质,附手打公式

    文章目录 什么是向量 1. 物理视角:向量就是空间中的箭头 2. 计算机视角:向量是有序的数字列表,根据顺序定义属性或抽象含义 3. 计算机学生视角 4. 数学系学生视角 5. 二维向量 6. 三维向 ...

  9. 【线性代数的本质|笔记】从线性变换的角度看向量的点积和叉积

    点积与叉积 引入点积的标准方法 定义:对于给定的两个同维度的向量求解点积,就是将向量相对应的维度的分量相乘再相加. 几何意义:两个向量w和v的点积,可以看成是向量w在v方向的投影和v长度的乘积:或者是 ...

最新文章

  1. Tab Bar Animation
  2. 网络访问:本地账号的共享和安全模式设置身份验证后自动更改其他验证的处理方法 ...
  3. Android应用屏幕适应问题的解决
  4. BLE-NRF51822教程11-手机动态修改设备名
  5. 计算机相关专业学习经验总结
  6. pypypy python_聊聊Python中的pypy
  7. 对话阿里巴巴贾扬清:如何成为一名优秀的 AI 架构师?
  8. WebView性能优化--独立进程
  9. django使用mysql原始语句,Django中使用mysql数据库并使用原生sql语句操作
  10. python scapy sniffer停止抓包_如果没有收到数据包,如何告诉scapy sniff()停止?
  11. 华为RH2288v3服务器安装ESXI 6.7U3(转载)
  12. 华为中兴OLT-ONU上线单播组播配置常用命令及TestCenter测试组播和PPPoE
  13. geotools将shp数据存入postgres
  14. 记录一次Tx_LCN连接失败的问题( There is no normal TM )
  15. 瑞芯微读取寄存器_RK3326 RK3399 GPIO寄存器操作指南
  16. 管理计算机找不到应用程序,Win7计算机管理提示找不到文件或没有关联的程序问题解决方法...
  17. 地球系统模式(CESM)技术
  18. 云计算机教学,云计算机网络实验室,多媒体教室,
  19. ubuntu16.04下,man: nothing appropriate.问题解决
  20. Android实战:CoolWeather酷欧天气(加强版数据接口)代码详解(上)

热门文章

  1. 最短路算法总结(入门版)
  2. vs2008打开aspx设计界面无响应问题解决方法
  3. SilverLight学习笔记--Silverlight之数据绑定初探
  4. Nginx处理请求的11个阶段
  5. JS解决在提交form表单时某个值不存在 alter弹窗点确定不刷新界面
  6. 基于svg.js实现可编辑的图像
  7. 撩课-Java每天5道面试题第11天
  8. 20172319 实验二《树》实验报告
  9. jQuery案例(底部导航图片切换)
  10. Linux的IPC机制(一):共享内存