文章目录

  • 1 网络层提供的两种服务
  • 2 网际协议 IP
  • 3 划分子网和构造超网
  • 4 网际控制报文协议 ICMP
  • 5 互联网的路由选择协议
  • 6 IPv6
  • 7 IP 多播
  • 8 虚拟专用网 VPN 和网络地址转换 NAT
  • 9 多协议标记交换 MPLS

1 网络层提供的两种服务

在计算机网络领域,网络层应该向运输层提供怎样的服务(“面向连接”还是“无连接”)曾引起了长期的争论。
争论焦点的实质就是:在计算机通信中,可靠交付应当由谁来负责?是网络还是端系统

互联网的先驱者提出了一种崭新的网络设计思路。
网络层向上只提供简单灵活的、无连接的、尽最大努力交付的数据报服务。
网络在发送分组时不需要先建立连接。每一个分组(即 IP 数据报)独立发送,与其前后的分组无关(不进行编号)。
网络层不提供服务质量的承诺。即所传送的分组可能出错、丢失、重复和失序(不按序到达终点),当然也不保证分组传送的时限。
由于传输网络不提供端到端的可靠传输服务,这就使网络中的路由器可以做得比较简单,而且价格低廉(与电信网的交换机相比较)。
如果主机(即端系统)中的进程之间的通信需要是可靠的,那么就由网络的主机中的运输层负责可靠交付(包括差错处理、流量控制等) 。
采用这种设计思路的好处是:网络的造价大大降低,运行方式灵活,能够适应多种应用。
互连网能够发展到今日的规模,充分证明了当初采用这种设计思路的正确性。

2 网际协议 IP

网际协议 IP 是 TCP/IP 体系中两个最主要的协议之一。
与 IP 协议配套使用的还有三个协议:
地址解析协议 ARP
(Address Resolution Protocol)
网际控制报文协议 ICMP
(Internet Control Message Protocol)
网际组管理协议 IGMP
(Internet Group Management Protocol)


将网络互相连接起来要使用一些中间设备。
中间设备又称为中间系统或中继 (relay)系统。
有以下五种不同的中间设备:
物理层中继系统:转发器 (repeater)。
数据链路层中继系统:网桥 或 桥接器 (bridge)。
网络层中继系统:路由器 (router)。
网桥和路由器的混合物:桥路器 (brouter)。
网络层以上的中继系统:网关 (gateway)。

我们把整个因特网看成为一个单一的、抽象的网络。
IP 地址就是给每个连接在互联网上的主机(或路由器)分配一个在全世界范围是唯一的 32 位的标识符。
IP 地址现在由互联网名字和数字分配机构ICANN (Internet Corporation for Assigned Names and Numbers)进行分配。


IP 地址与硬件地址是不同的地址。
从层次的角度看,
硬件地址(或物理地址)是数据链路层和物理层使用的地址。
IP 地址是网络层和以上各层使用的地址,是一种逻辑地址(称 IP 地址是逻辑地址是因为 IP 地址是用软件实现的)。



根据目的网络地址就能确定下一跳路由器,这样做的结果是:
IP 数据报最终一定可以找到目的主机所在目的网络上的路由器(可能要通过多次的间接交付)。
只有到达最后一个路由器时,才试图向目的主机进行直接交付。

虽然互联网所有的分组转发都是基于目的主机所在的网络,但在大多数情况下都允许有这样的特例,即为特定的目的主机指明一个路由。
采用特定主机路由可使网络管理人员能更方便地控制网络和测试网络,同时也可在需要考虑某种安全问题时采用这种特定主机路由。

路由器还可采用默认路由以减少路由表所占用的空间和搜索路由表所用的时间。
这种转发方式在一个网络只有很少的对外连接时是很有用的。
默认路由在主机发送 IP 数据报时往往更能显示出它的好处。
如果一个主机连接在一个小网络上,而这个网络只用一个路由器和互联网连接,那么在这种情况下使用默认路由是非常合适的。

3 划分子网和构造超网

当没有划分子网时,IP 地址是两级结构。
划分子网后 IP 地址就变成了三级结构。
划分子网只是把 IP 地址的主机号 host-id 这部分进行再划分,而不改变 IP 地址原来的网络号 net-id。


从一个 IP 数据报的首部并无法判断源主机或目的主机所连接的网络是否进行了子网划分。
使用子网掩码 (subnet mask) 可以找出 IP 地址中的子网部分。
规则:
子网掩码长度 = 32 位
某位 = 1:IP地址中的对应位为网络号和子网号
某位 = 0:IP地址中的对应位为主机号

前缀长度不超过 23 位的 CIDR 地址块都包含了多个 C 类地址。
这些 C 类地址合起来就构成了超网。
CIDR 地址块中的地址数一定是 2 的整数次幂。
网络前缀越短,其地址块所包含的地址数就越多。而在三级结构的IP地址中,划分子网是使网络前缀变长。
CIDR 的一个好处是:可以更加有效地分配 IPv4 的地址空间,可根据客户的需要分配适当大小的 CIDR 地址块。

4 网际控制报文协议 ICMP

为了更有效地转发 IP 数据报和提高交付成功的机会,在网际层使用了网际控制报文协议 ICMP (Internet Control Message Protocol)。
ICMP 是互联网的标准协议。
ICMP 允许主机或路由器报告差错情况和提供有关异常情况的报告。
但 ICMP 不是高层协议(看起来好像是高层协议,因为 ICMP 报文是装在 IP 数据报中,作为其中的数据部分),而是 IP 层的协议。
ICMP 的应用举例

PING (Packet InterNet Groper)
PING 用来测试两个主机之间的连通性。
PING 使用了 ICMP 回送请求与回送回答报文。
PING 是应用层直接使用网络层 ICMP 的例子,它没有通过运输层的 TCP 或UDP。

5 互联网的路由选择协议

一个 BGP 发言人与其他自治系统中的 BGP 发言人要交换路由信息,就要先建立 TCP 连接,然后在此连接上交换 BGP 报文以建立 BGP 会话(session),利用 BGP 会话交换路由信息。
使用 TCP 连接能提供可靠的服务,也简化了路由选择协议。
使用 TCP 连接交换路由信息的两个 BGP 发言人,彼此成为对方的邻站(neighbor)或对等站(peer) 。

转发”(forwarding) 就是路由器根据转发表将用户的 IP 数据报从合适的端口转发出去。
“路由选择”(routing) 则是按照分布式算法,根据从各相邻路由器得到的关于网络拓扑的变化情况,动态地改变所选择的路由。
路由表是根据路由选择算法得出的。而转发表是从路由表得出的。
在讨论路由选择的原理时,往往不去区分转发表和路由表的区别。

6 IPv6

IP 是互联网的核心协议。
互联网经过几十年的飞速发展,到 2011 年 2 月,IPv4 的 32 位地址已经耗尽。
ISP 已经不能再申请到新的 IP 地址块了。
我国在 2014 – 2015 年也逐步停止了向新用户和应用分配 IPv4 地址。
解决 IP 地址耗尽的根本措施就是采用具有更大地址空间的新版本的 IP,即 IPv6。

IPv6 数据报的目的地址可以是以下三种基本类型地址之一:
(1) 单播 (unicast):传统的点对点通信。
(2) 多播 (multicast):一点对多点的通信。
(3) 任播 (anycast):这是 IPv6 增加的一种类型。任播的目的站是一组计算机,但数据报在交付时只交付其中的一个,通常是距离最近的一个。

7 IP 多播

IP 多播 (multicast,以前曾译为组播) 已成为互联网的一个热门课题。
目的:更好第支持一对多通信。
一对多通信:一个源点发送到许多个终点。
例如,实时信息的交付(如新闻、股市行情等),软件更新,交互式会议及其他多媒体通信。

多播路由选择协议在转发多播数据报时使用三种方法:
(1) 洪泛与剪除
(2) 隧道技术 (tunneling)
(3) 基于核心的发现技术

8 虚拟专用网 VPN 和网络地址转换 NAT

问题:在内部使用的本地地址就有可能和互联网中某个 IP 地址重合,这样就会出现地址的二义性问题。
解决:RFC 1918 指明了一些专用地址 (private address)。专用地址只能用作本地地址而不能用作全球地址。在互联网中的所有路由器,对目的地址是专用地址的数据报一律不进行转发。

由于 IP 地址的紧缺,一个机构能够申请到的IP地址数往往远小于本机构所拥有的主机数。
考虑到互联网并不很安全,一个机构内也并不需要把所有的主机接入到外部的互联网。
假定在一个机构内部的计算机通信也是采用 TCP/IP 协议,那么从原则上讲,对于这些仅在机构内部使用的计算机就可以由本机构自行分配其 IP 地址。

利用公用的互联网作为本机构各专用网之间的通信载体,这样的专用网又称为虚拟专用网VPN (Virtual Private Network)。
“专用网”是因为这种网络是为本机构的主机用于机构内部的通信,而不是用于和网络外非本机构的主机通信。
“虚拟”表示“好像是”,但实际上并不是,因为现在并没有真正使用通信专线,而VPN只是在效果上和真正的专用网一样。

远程接入 VPN (remote access VPN)可以满足外部流动员工访问公司网络的需求。
在外地工作的员工拨号接入互联网,而驻留在员工 PC 机中的 VPN 软件可在员工的 PC 机和公司的主机之间建立 VPN 隧道,因而外地员工与公司通信的内容是保密的,员工们感到好像就是使用公司内部的本地网络。

问题:在专用网上使用专用地址的主机如何与互联网上的主机通信(并不需要加密)?
解决:
(1) 再申请一些全球 IP 地址。但这在很多情况下是不容易做到的。
(2)采用网络地址转换 NAT。这是目前使用得最多的方法。

网络地址转换 NAT (Network Address Translation) 方法于1994年提出。
需要在专用网连接到互联网的路由器上安装 NAT 软件。装有 NAT 软件的路由器叫做 NAT路由器,它至少有一个有效的外部全球IP地址。
所有使用本地地址的主机在和外界通信时,都要在 NAT 路由器上将其本地地址转换成全球 IP 地址,才能和互联网连接。

9 多协议标记交换 MPLS

IETF于1997年成立了 MPLS 工作组,开发出一种新的协议——多协议标记交换 MPLS (MultiProtocol Label Switching)。
“多协议”表示在 MPLS 的上层可以采用多种协议,例如:IP,IPX;可以使用多种数据链路层协议,例如:PPP,以太网,ATM 等。
“标记”是指每个分组被打上一个标记,根据该标记对分组进行转发。

【408预推免复习】计算机网络(谢希仁第七版)第四章——网络层相关推荐

  1. (最新合集)计算机网络谢希仁第七版 第四章课后答案

    1.网络层向上提供的服务有哪两种?是比较其优缺点. 网络层向运输层提供 "面向连接"虚电路(Virtual Circuit)服务或"无连接"数据报服务前者预约了 ...

  2. (~最新合集~)计算机网络谢希仁第七版 第五章课后答案

    5-01 试说明运输层在协议栈中的地位和作用,运输层的通信和网络层的通信有什么重要区别?为什么运输层是必不可少的? 答:运输层处于面向通信部分的最高层,同时也是用户功能中的最低层,向它上面的应用层提供 ...

  3. (最新合集)计算机网络谢希仁第七版 第三章课后答案

    3-01数据链路(即逻辑链路)与链路(即物理链路)有何区别? "电路接通了"与"数据链路接通了"的区别何在? 答案:数据链路与链路的区别在于数据链路出链路外,还 ...

  4. 考研408 笔记 计算机网络【谢希仁第七版】第二章【物理层】几种复用方式 信道复用技术,频分复用FDM,时分复用TDM,波分复用WDM,码分复用CDM

    2.1物理层基本概念 目的:启动.维护和关闭数据链路实体之间进行比特传输的物理连接. 一些特性: 机械特性:指明接口所用接线器的形状和尺寸.引线数目和排列.固定和锁定装置等等. 电气特性:指明在接口电 ...

  5. 计算机网络总复习(谢希仁第七版)

    计算机网络(谢希仁第七版) 文章目录 计算机网络(谢希仁第七版) 第一章 1.2 互联网概述 1.2.1 网络的网络 1.2.2 互联网的发展(略) 1.3 互联网的组成 1.3.1 边缘部分 1.3 ...

  6. (~最新合集~)计算机网络谢希仁第七版 第二章课后答案

    2-01 物理层要解决哪些问题?物理层的主要特点是什么? 答案:物理层要解决的主要问题: (1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的 ...

  7. 计算机网络(第7版)谢希仁著 学习笔记 第四章网络层

    计算机网络(第7版)谢希仁著 学习笔记 第四章网络层 第四章 网络层 4.3划分子网和构造超网 p134 4.3.1划分子网 4.3.2使用子网时分组的转发 4.3.3无分类编址CIDR(构建超网) ...

  8. 计算机网络-谢希仁-第7版 第6章 应用层

    计算机网络-谢希仁-第7版 第6章 应用层 6-01 6-02 6-03 6-04 6-05 6-06 6-07 6-08 6-10 6-14 6-15 6-16 6-19 6-20 6-21 6-2 ...

  9. 【计算机网络 (谢希仁) 习题题解】第4章 网络层 (1)

    本章最重要的内容是: 虚拟互连网络的概念. IP 地址与物理地址的关系. 传统的分类的 IP 地址 (包括子网掩码) 和无分类域间路由选择 CIDR. 路由选择协议的工作原理. ARP 协议 网络层使 ...

  10. 【计算机网络 (谢希仁) 习题题解】第4章 网络层 (2)——划分子网;CIDR

    划分子网 在 ARPANET 的早期,IP 地址的设计不够合理: IP 地址空间的利用率有时很低. 给每一个物理网络分配一个网络号会使路由表变得太大而使网络性能变坏. 两级 IP 地址不够灵活. 为解 ...

最新文章

  1. Ubuntu 10.10 安装 libx11-dev
  2. 你只使用到了 VS Code 20% 的功能?听听 VS Code 首著作者怎么说
  3. mysql show slave status 无记录_Mysql show slave status 的研究
  4. 浅谈数据结构-二叉排序树
  5. bzoj3631: [JLOI2014]松鼠的新家(LCA+差分)
  6. SpringMVC入门(一)Dispatcher
  7. 容器和泛型 容器重点掌握
  8. CCS 6.0 下载
  9. MotoSimEG-VRC软件:安川机器人弧焊焊接离线编程与虚拟仿真
  10. 如何构建一个低成本、高效、准确的身份认证体系
  11. LaTeX 008:比较方便的键入下划线的方式
  12. java 打印对象大小_如何获取一个Java对象所占内存大小
  13. 谷歌、华盛顿大学联合研究:为什么在标准数据集上刷榜有问题
  14. html arm音频播放器,web页面播放arm格式音频
  15. DevOps自动化测试的原则和实践
  16. ECCV2020 TIDE: A General Toolbox for Identifying Object Detection Errors
  17. 关于4G物联网卡的使用
  18. AWS攻略——Peering连接VPC
  19. KONG管理界面KONGA安装使用
  20. Anaconda matplotlib中文乱码解决

热门文章

  1. CVPR 2021 论文大盘点-行人技术篇
  2. 深度学习框架 通道顺序
  3. pybind 传递指针
  4. python内积 卷积
  5. ubuntu 搭建webrtc环境
  6. typedef 多文件引用
  7. opencv中伪彩色applyColorMap函数(C++ / Python)
  8. 青龙羊毛——灰兔掌赚吹牛逼
  9. 金猪钱罐——青龙羊毛
  10. 【5】青龙面板系列教程之Nolanjdc的安装【1月17作者删库,不用尝试了】