深度神经网络是如何训练的?

Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。

反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。

后来看了LiFeiFei的StanfordUniversityCS231n:ConvolutionalNeuralNetworksforVisualRecognition,我的感觉是对CNN的理解有了很大的提升。

沉下心来推推公式,多思考,明白了反向传播本质上是链式法则(虽然之前也知道,但是当时还是理解的迷迷糊糊的)。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。

当然同时也学到了许多其他的关于cnn的。并且建议你不仅要完成练习,最好能自己也写一个cnn,这个过程可能会让你学习到许多更加细节和可能忽略的东西。

这样的网络可以使用中间层构建出多层的抽象,正如我们在布尔线路中做的那样。

例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。第三层将能够识别更加复杂的形状。依此类推。

这些多层的抽象看起来能够赋予深度网络一种学习解决复杂模式识别问题的能力。然后,正如线路的示例中看到的那样,存在着理论上的研究结果告诉我们深度网络在本质上比浅层网络更加强大。

谷歌人工智能写作项目:神经网络伪原创

如何训练神经网络

1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始好文案。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。

获得准确度等衡量模型的标准,用模型进行预测。这个阶段的技巧有:·固定随机种子使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。·简单化在此阶段不要有任何幻想,不要扩增数据。

扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

·在评估中添加有效数字在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。·在初始阶段验证损失函数验证函数是否从正确的损失值开始。

例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。·初始化正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。

如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。·人类基线监控除人为可解释和可检查的损失之外的指标。

尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

·设置一个独立于输入的基线最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。·过拟合一个batch增加了模型的容量并验证我们可以达到的最低损失。

·验证减少训练损失尝试稍微增加数据容量。

深度学习有哪些本质性特征

深度学习》一书论述了深度学习的五个特征,其内容很有进一步思考和研究的价值。一、联想与结构:经验与知识的相互转化学习学科的基本结构,以联想的、结构的方式去学习,是深度学习的重要特征。

(p50)实现深度学习,需要联结学生的经验,并且要实现经验的系统化、结构化,让经验转化为知识,实现经验的增殖。这是一个具体经验抽象化的过程,让经验具有普遍意义。

同时也要让抽象的、符号化的知识联结具体化经验,让知识具体化,从而活化知识。二、活动与体验:学生学习的机制活动与体验是深度学习的核心特征,回答的是深度学习的运作机制问题。

学生要成为学习的主体,就得有“活动”的机会,有“亲身经历”知识发现、形成、发展的过程和机会。

(p51)学生的“活动”“亲身经历”既不可能也不必要像人类最初发现知识那样,而是要典型地、简约地经历结构性的关键过程与关键内容。(p52)通过活动,让学生“亲身经历”知识的发现、形成、发展的过程。

这个过程不是完整地重复人类知识产生的全过程,而是以典型化、简约化来复演知识的形成过程,在这一过程中,教师应该是编剧和导演。在这个过程中,学生既要体验“发现的过程”,也要体悟发现过程中的精神和意义。

三、本质与变式:对学习对象进行深度加工发生深度学习的学生能够抓住教学内的本质属性、全面把握知识的内存联系,并能够由本质推出若干变式。

(p56)把握学习内容的本质属性,把握知识的内在联系,是深度学习的重要指标。给予变式,帮助学生更全面、更深入地理解知识,可以促使学生形成“透过现象看本质”的思维方式。

四、迁移与运用:在教学活动中模拟社会实践“迁移”是经验的扩展与提升,“应用”是将内化的知识外显化、操作化,也是将间接经验直接化、将符号转化为实体、从抽象到具体的过程,是知识活化的标志,也是学生学习成果的体现。

(p60)迁移和应用发展的是学生的综合实践能力。迁移和应用是学生重要的学习方式,需要教师有意识地、精心地设计任务,引导学生学会“迁移”和“应用”。

五、价值与评价:“人”的成长的隐性要素“价值与评价”不是教学的某个独立的阶段或环节,却是萦绕在各个阶段、各个环节的所有活动之中。

(p61)这方面最重要的是质疑、批判、反思,从而发展理性精神和正确价值观。让学生学会价值审视与自我评价,是对于深度学习非常重要的能力。

Hopfield 神经网络有哪几种训练方法

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。

这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。

Hopfield网络、波耳兹曼机均属于这种类型。学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。

一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

MATLAB中BP神经网络的训练算法具体是怎么样的

先用newff函数建立网络,再用train函数训练即可。

1)正向传播:输入样本->输入层->各隐层(处理)->输出层注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。

BP算法实现步骤(软件):1)初始化2)输入训练样本对,计算各层输出3)计算网络输出误差4)计算各层误差信号5)调整各层权值6)检查网络总误差是否达到精度要求满足,则训练结束;不满足,则返回步骤2)注:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子。

什么是神经网络学习呢

神经网络的学习,也就是训练过程,指的是输入层神经元接收输入信息,传递给中间层神经元,最后传递到输出层神经元,由输出层输出信息处理结果的过程。

在这个过程中,神经网络通过不断调整网络的权值和阈值,达到学习、训练的目的,当网络输出的误差减少到可以接受的程度,或者预先设定的学习次数后,学习就可以停止了。

什么是神经网络学习

神经网络学习由称为神经元的基本处理单元互连而成的平行工作的复杂网络系统,简称神经网络。当已知训练样本的数据加到网络输入端时,网络的学习机制一遍又一遍地调整各神经元的权值,使其输出端达到预定的目标。

这就是训练(学习、记忆)过程。

目前已有多种神经网络训练方法用

如何训练深度神经网络

deeplearinig就是神经网络的一类,就是解决的训练问题的深层神经网络,所以你这问题“深度学习会代替神经网络‘就不对,BP么,BP有自己的优势,也是很成熟的算法,做手写识别等等效果已经商用化了,不会被轻易替代。

deeplearning远比BP要复杂,用来解决的问题也不是一个层面,所以也没有替代的必要。Deeplearning所涉及的问题大多数BP都没法解决的。度学习的概念源于人工神经网络的研究。

含多隐层的多层感知器就是一种深度学习结构,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出,基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

系统地论述了神经网络的基本原理、方法、技术和应用,主要内容包括:神经信息处理的基本原理、感知器、反向传播网络、自组织网络、递归网络、径向基函数网络、核函数方法、神经网络集成、模糊神经网络、概率神经网络、脉冲耦合神经网络、神经场理论、神经元集群以及神经计算机。

每章末附有习题,书末附有详细的参考文献。神经网络是通过对人脑或生物神经网络的抽象和建模,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。

它以脑科学和认知神经科学的研究成果为基础,拓展智能信息处理的方法,为解决复杂问题和智能控制提供有效的途径,是智能科学和计算智能的重要部分。

使用python 深度神经网络,Python神经网络可视化包相关推荐

  1. Python深度学习之神经网络入门

    Deep Learning with Python 这篇文章是我学习<Deep Learning with Python>(第二版,François Chollet 著) 时写的系列笔记之 ...

  2. python神经网络教程16_Python深度学习之神经网络视频

    Python深度学习之神经网络视频 课程简介 该阶段是深度学习的入门课程,主要介绍经典的深度学习框架TensorFlow的使用,IO操作,以及神经网络基础.卷积神经网络的相关知识,并用卷积神经网络原理 ...

  3. python评价指标_[Python人工智能] 六.神经网络的评价指标、特征标准化和特征选择...

    从本系列文章开始,作者正式开始研究Python深度学习.神经网络及人工智能相关知识.前五篇文章讲解了神经网络基础概念.Theano库的安装过程及基础用法.theano实现回归神经网络.theano实现 ...

  4. [Python人工智能] 八.卷积神经网络CNN原理详解及TensorFlow编写CNN

    从本专栏开始,作者正式开始研究Python深度学习.神经网络及人工智能相关知识.前一篇文章介绍了什么是过拟合,并采用droput解决神经网络中过拟合的问题,以TensorFlow和sklearn的lo ...

  5. [Python人工智能] 七.加速神经网络、激励函数和过拟合

    从本系列文章开始,作者正式开始研究Python深度学习.神经网络及人工智能相关知识.前六篇文章讲解了神经网络基础概念.Theano库的安装过程及基础用法.theano实现回归神经网络.theano实现 ...

  6. 《Python 深度学习》刷书笔记 Chapter 5 Part-4 卷积神经网络的可视化(Fillter)

    文章目录 可视化卷积神经网络 2-25 读入模组 5-26 观察图像 观察卷积层特征提取 5-27 建立多输出模型观察输出 5-28 显示图像 5-29 打印全部的识别图 5-32 为过滤器的可视化定 ...

  7. Python深度学习之搭建小型卷积神经网络(Kaggle网站Dogs-vs-Cats数据集)

    完全来源与<Python深度学习>中的例子,仅供学习只用. Cats vs. Dogs(猫狗大战)是Kaggle大数据竞赛的数据集,数据集由训练数据和测试数据组成,训练数据包含猫和狗各12 ...

  8. 深度学习(神经网络) —— BP神经网络原理推导及python实现

    深度学习(神经网络) -- BP神经网络原理推导及python实现 摘要 (一)BP神经网络简介 1.神经网络权值调整的一般形式为: 2.BP神经网络中关于学习信号的求取方法: (二)BP神经网络原理 ...

  9. python神经网络训练_Python深度学习训练神经网络

    我们现在将学习如何训练神经网络.我们还将学习反向传播算法和Python深度学习中的反向传递. 我们必须找到神经网络权重的最佳值以获得所需的输出.为了训练神经网络,我们使用迭代梯度下降法.我们最初从权重 ...

最新文章

  1. 倒计时一天 坚果智能影院让家用投影投出你的新生活主义
  2. 返回子串CF 312A(Whose sentence is it?-strstr(s,p))
  3. Spring Boot 多版本更新,紧急修复 RFD 安全漏洞
  4. mySQL_connect怎么调用_Mysql ConnectC/C++使用
  5. window 内核详尽分析
  6. Python 03 学习内容整理
  7. NOIP2014洛谷P2296:寻找道路(bfs)
  8. 嵌入式Linux入门2:工具掌握(Windows篇)
  9. java解决硬编码_工具类 解决硬编码问题
  10. 更新 FF.PyAdmin v1.2.4
  11. java velocity 语法_Velocity初探小结--velocity使用语法详解
  12. 【十七届恩智浦智能车】平衡单车——控制篇(串级)
  13. git的安装步骤,仅适用于windows-64位系统
  14. 网络共享计算机设置方法,如何设置网络共享(局域网共享如何设置)
  15. js获取浏览器类型及版本
  16. Fusion APP-添加检查软件更新功能
  17. win10有信号没有网络连接到服务器,win10系统显示网络连接正常但没有网络,无法上网的办法介绍...
  18. 【chrome】Chrome源码剖析、上--多线程模型、进程通信、进程模型
  19. apache 问题 You don't have permission to access /test.php on this server 解决方法
  20. 减字 浣溪沙-听歌有感 (清)况周颐

热门文章

  1. Office2016只安装三件套方法(word,ppt,excel)
  2. 优雅的underscore
  3. 学校云计算机中心建设方案,智慧校园云数据中心建设方案.docx
  4. spring-cloud-stream-binder-rabbit 3.1 消费者无法创建队列
  5. oracle固定资产类别改不了,用友u8系统固定资产卡片类别写错了是不是改不了?...
  6. 基于Halcon的多相机拼图软件
  7. 在vue中使用Mock模拟数据
  8. mysql 同步到es_mysql数据实时同步到Elasticsearch
  9. 搜狗和360搜索不收录网站?长期不收录一个月甚至一年
  10. 一号店静态html源代码,一号店html模板