音乐推荐引擎

数据集

百万歌曲数据库

百万歌曲数据量可以在https://labrosa.ee.columbia.edu/millionsong/ 上下载。原始的数据包含了多年间上百万首歌曲的量化音频特征。它实际上是The Echonest和LABRosa的一个合作项目。
这里我们不会使用整个数据集,而只会使用它们中的一部分。
基于这个数据库,还衍生出了一些其他的数据集。其中一个就是The Echonest喜好画像子集。这个数据包含了匿名用户的歌曲播放次数的记录。这个数据集即使只是百万歌曲数据库的一个子集,但它的数据量也非常庞大,因为它包含了4800万行三元组信息:

这个数据大概包含了100万用户对384,000首歌的播放记录。
大家可以通过http://labrosa.ee.columbia.edu/millionsong/sites/default/files/challenge/train_triplets.txt.zip来下载。这个压缩文件大约500MB,解压后大约3.5GB。

数据探索

加载&裁剪数据

对于我们单机工作而言,这个数据太大了。但是如果是商用服务器,即使是单台机器,它能处理的数据量也要比这大得多,更不用说如果拥有集群计算能力的大型公司了。
不过,对于我们在现实工作中,我们也是常常从大数据量中抽取一些数据来在单机上进行分析、建模,这样做主要是数据量小的时候各种操作都非常快,同时也能验证我们想要做的事情是不是可行。
所以,在这里,我们也需要把数据进行一定的裁剪:

In [1]:

import pandas as pd
import numpy as np
import time
import sqlite3import datetime
import math
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab%matplotlib inlineplt.rcParams['font.sans-serif']=['SimHei']     #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False       #用来正常显示负号

In [2]:

triplet_dataset = pd.read_csv(filepath_or_buffer='./data/train_triplets.txt', nrows=10000,sep='\t', header=None, names=['user','song','play_count'])     # 数据本身没有表头

In [3]:

triplet_dataset.head()

Out[3]:

  user song play_count
0 b80344d063b5ccb3212f76538f3d9e43d87dca9e SOAKIMP12A8C130995 1
1 b80344d063b5ccb3212f76538f3d9e43d87dca9e SOAPDEY12A81C210A9 1
2 b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBBMDR12A8C13253B 2
3 b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBFNSP12AF72A0E22 1
4 b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBFOVM12A58A7D494 1

对于这样规模大小的数据集,我们首先要做的是有多少用户(或者歌曲)是我们应该要考虑的。在原始数据集中,有大约100万的用户,但是这里面是不是所有用户我们都需要纳入考虑呢?比如说,如果20%的用户的歌曲播放了占了80%的总体播放量,那么其实我们只需要考虑这20%用户就差不多了。

一般来说,我们统计一下播放量的累积求和就可以知道多少用户占了80%的总体播放量。不过鉴于数据量如此之大,pandas提供的累积求和功能会出问题。所以我们必须自己一行行地读取这个文件,一部分一部分地来完成这项工作:

In [4]:

output_dict = {}
with open('./data/train_triplets.txt') as f:for line_number, line in enumerate(f):user = line.split('\t')[0]play_count = int(line.split('\t')[2])if user in output_dict:play_count +=output_dict[user]output_dict.update({user:play_count})output_dict.update({user:play_count})
output_list = [{'user':k,'play_count':v} for k,v in output_dict.items()]
play_count_df = pd.DataFrame(output_list)
play_count_df = play_count_df.sort_values(by = 'play_count', ascending = False)play_count_df.to_csv(path_or_buf='./data/user_playcount_df.csv', index = False)

In [5]:

play_count_df = pd.read_csv('./data/user_playcount_df.csv')
play_count_df.head()

Out[5]:

  play_count user
0 13132 093cb74eb3c517c5179ae24caf0ebec51b24d2a2
1 9884 119b7c88d58d0c6eb051365c103da5caf817bea6
2 8210 3fa44653315697f42410a30cb766a4eb102080bb
3 7015 a2679496cd0af9779a92a13ff7c6af5c81ea8c7b
4 6494 d7d2d888ae04d16e994d6964214a1de81392ee04

In [ ]:

output_dict = {}
with open('./data/train_triplets.txt') as f:for line_number, line in enumerate(f):song = line.split('\t')[1]play_count = int(line.split('\t')[2])if song in output_dict:play_count +=output_dict[song]output_dict.update({song:play_count})output_dict.update({song:play_count})
output_list = [{'song':k,'play_count':v} for k,v in output_dict.items()]
song_count_df = pd.DataFrame(output_list)
song_count_df = song_count_df.sort_values(by = 'play_count', ascending = False)song_count_df.to_csv(path_or_buf='./data/song_playcount_df.csv', index = False)

In [6]:

song_count_df = pd.read_csv(filepath_or_buffer='./data/song_playcount_df.csv')
song_count_df.head()

Out[6]:

  play_count song
0 726885 SOBONKR12A58A7A7E0
1 648239 SOAUWYT12A81C206F1
2 527893 SOSXLTC12AF72A7F54
3 425463 SOFRQTD12A81C233C0
4 389880 SOEGIYH12A6D4FC0E3

有了这两份数据,我们首要的就是要找到前多少用户占了40%的总体播放量。这个"40%"是我们随机选的一个值,大家在实际的工作中可以自己选择这个数值,重点是控制数据集的大小。当然,如果有高效的Presto(支持HiveQL,但纯内存计算)集群的话,在整体数据集上统计这样的数据也会很快。

就我们这个数据集,大约前100,000用户的播放量占据了总体的40%。

In [7]:

total_play_count = sum(song_count_df.play_count)
print (float(play_count_df.head(n=100000).play_count.sum())/total_play_count)*100play_count_subset = play_count_df.head(n=100000)
40.8807280501

同样的,我们发现大约30,000首歌占据了总体80%的播放量。这个信息就很有价值:10%的歌曲占据了80%的播放量。
那么,通过这样一些条件,我们就可以从原始的数据集中抽取出最具代表性的数据出来,从而使得需要处理的数据量在一个可控的范围内。

In [8]:

print (float(song_count_df.head(n=30000).play_count.sum())/total_play_count)*100song_count_subset = song_count_df.head(n=30000)
78.3931536665

In [9]:

# 目标用户集和目标歌曲集
user_subset = list(play_count_subset.user)
song_subset = list(song_count_subset.song)

In [11]:

triplet_dataset = pd.read_csv(filepath_or_buffer='./data/train_triplets.txt',sep='\t', header=None, names=['user','song','play_count'])# 抽取目标用户
triplet_dataset_sub = triplet_dataset[triplet_dataset.user.isin(user_subset) ]
del(triplet_dataset)# 过滤非目标歌曲
triplet_dataset_sub_song = triplet_dataset_sub[triplet_dataset_sub.song.isin(song_subset)]
del(triplet_dataset_sub)triplet_dataset_sub_song.to_csv('./data/triplet_dataset_sub_song.csv', index=False)

In [12]:

triplet_dataset_sub_song = pd.read_csv(filepath_or_buffer='./data/triplet_dataset_sub_song.csv')

In [13]:

triplet_dataset_sub_song.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10775200 entries, 0 to 10775199
Data columns (total 3 columns):
user          object
song          object
play_count    int64
dtypes: int64(1), object(2)
memory usage: 246.6+ MB

额外信息

我们前面加载的数据仅仅是三元组数据,我们既不知道歌曲的名称,也不知道歌手的名字,连专辑的名字都不知道。不过这份数据集其实也额外提供了这些歌曲相关的其他信息,比如歌曲名称、演唱者的名称、专辑名称等等。这份数据以SQLite数据库文件形式提供。原始的下载链接为:http://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/track_metadata.db

In [14]:

conn = sqlite3.connect('./data/track_metadata.db')
cur = conn.cursor()
cur.execute("SELECT name FROM sqlite_master WHERE type='table'")
cur.fetchall()

Out[14]:

[(u'songs',)]

In [15]:

track_metadata_df = pd.read_sql(con=conn, sql='select * from songs')
track_metadata_df_sub = track_metadata_df[track_metadata_df.song_id.isin(song_subset)]

In [16]:

track_metadata_df_sub.shape

Out[16]:

(30447, 14)

In [17]:

track_metadata_df_sub.head()

Out[17]:

  track_id title song_id release artist_id artist_mbid artist_name duration artist_familiarity artist_hotttnesss year track_7digitalid shs_perf shs_work
115 TRMMGCB128E079651D Get Along (Feat: Pace Won) (Instrumental) SOHNWIM12A67ADF7D9 Charango ARU3C671187FB3F71B 067102ea-9519-4622-9077-57ca4164cfbb Morcheeba 227.47383 0.819087 0.533117 2002 185967 -1 0
123 TRMMGTX128F92FB4D9 Viejo SOECFIW12A8C144546 Caraluna ARPAAPH1187FB3601B f69d655c-ffd6-4bee-8c2a-3086b2be2fc6 Bacilos 307.51302 0.595554 0.400705 0 6825058 -1 0
145 TRMMGDP128F933E59A I Say A Little Prayer SOGWEOB12AB018A4D0 The Legendary Hi Records Albums_ Volume 3: Ful... ARNNRN31187B9AE7B7 fb7272ba-f130-4f0a-934d-6eeea4c18c9a Al Green 133.58975 0.779490 0.599210 1978 5211723 -1 11898
172 TRMMHBF12903CF6E59 At the Ball_ That's All SOJGCRL12A8C144187 Best of Laurel & Hardy - The Lonesome Pine AR1FEUF1187B9AF3E3 4a8ae4fd-ad6f-4912-851f-093f12ee3572 Laurel & Hardy 123.71546 0.438709 0.307120 0 8645877 -1 0
191 TRMMHKG12903CDB1B5 Black Gold SOHNFBA12AB018CD1D Total Life Forever ARVXV1J1187FB5BF88 6a65d878-fcd0-42cf-aff9-ca1d636a8bcc Foals 386.32444 0.842578 0.514523 2010 9007438 -1 0

In [18]:

# merge数据
del(track_metadata_df_sub['track_id'])
del(track_metadata_df_sub['artist_mbid'])
track_metadata_df_sub = track_metadata_df_sub.drop_duplicates(['song_id'])
triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song, track_metadata_df_sub, how='left', left_on='song', right_on='song_id')
triplet_dataset_sub_song_merged.rename(columns={'play_count':'listen_count'},inplace=True)

In [19]:

# 删除无用字段
del(triplet_dataset_sub_song_merged['song_id'])
del(triplet_dataset_sub_song_merged['artist_id'])
del(triplet_dataset_sub_song_merged['duration'])
del(triplet_dataset_sub_song_merged['artist_familiarity'])
del(triplet_dataset_sub_song_merged['artist_hotttnesss'])
del(triplet_dataset_sub_song_merged['track_7digitalid'])
del(triplet_dataset_sub_song_merged['shs_perf'])
del(triplet_dataset_sub_song_merged['shs_work'])

In [20]:

triplet_dataset_sub_song_merged.head()

Out[20]:

  user song listen_count title release artist_name year
0 d6589314c0a9bcbca4fee0c93b14bc402363afea SOADQPP12A67020C82 12 You And Me Jesus Tribute To Jake Hess Jake Hess 2004
1 d6589314c0a9bcbca4fee0c93b14bc402363afea SOAFTRR12AF72A8D4D 1 Harder Better Faster Stronger Discovery Daft Punk 2007
2 d6589314c0a9bcbca4fee0c93b14bc402363afea SOANQFY12AB0183239 1 Uprising Uprising Muse 0
3 d6589314c0a9bcbca4fee0c93b14bc402363afea SOAYATB12A6701FD50 1 Breakfast At Tiffany's Home Deep Blue Something 1993
4 d6589314c0a9bcbca4fee0c93b14bc402363afea SOBOAFP12A8C131F36 7 Lucky (Album Version) We Sing. We Dance. We Steal Things. Jason Mraz & Colbie Caillat 0

In [78]:

# 为后面重复使用
triplet_dataset_sub_song_merged.to_csv('./data/triplet_dataset_sub_song_merged.csv',encoding='utf-8', index=False)

最流行的歌曲

In [28]:

popular_songs = triplet_dataset_sub_song_merged[['title','listen_count']].groupby('title').sum().reset_index()
popular_songs_top_20 = popular_songs.sort_values('listen_count', ascending=False).head(n=20)objects = (list(popular_songs_top_20['title']))
y_pos = np.arange(len(objects))
performance = list(popular_songs_top_20['listen_count'])plt.figure(figsize=(16,8))
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical',fontsize=12)
plt.ylabel(u'播放次数')
plt.title(u'最流行歌曲')plt.show()

In [26]:

popular_release = triplet_dataset_sub_song_merged[['release','listen_count']].groupby('release').sum().reset_index()
popular_release_top_20 = popular_release.sort_values('listen_count', ascending=False).head(n=20)objects = (list(popular_release_top_20['release']))
y_pos = np.arange(len(objects))
performance = list(popular_release_top_20['listen_count'])plt.figure(figsize=(16,8))
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical',fontsize=12)
plt.ylabel(u'播放次数')
plt.title(u'最流行专辑')plt.show()

最流行歌手

In [29]:

popular_artist = triplet_dataset_sub_song_merged[['artist_name','listen_count']].groupby('artist_name').sum().reset_index()
popular_artist_top_20 = popular_artist.sort_values('listen_count', ascending=False).head(n=20)objects = (list(popular_artist_top_20['artist_name']))
y_pos = np.arange(len(objects))
performance = list(popular_artist_top_20['listen_count'])plt.figure(figsize=(16,8))
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical',fontsize=12)
plt.ylabel(u'播放次数')
plt.title(u'最流行歌手')plt.show()

不过如果大家对这些音乐熟悉的话,可能会发现,虽然酷玩乐队(Coldplay)是最流行的乐队,但最热门的单曲中却没有他们的单曲。
如果仔细研究一下的话,会发现他们每首单曲的播放量都很平均,因此他们的总播放量可以排名第一,但每首单曲都没有进前20。

用户单曲分布

In [30]:

# 这里我们使用的是`count`,而不是`sum`,所以得到的结果是用户听过的单曲数
user_song_count_distribution = triplet_dataset_sub_song_merged[['user','title']].groupby('user').count().reset_index().sort_values(
by='title',ascending = False)
user_song_count_distribution.title.describe()

Out[30]:

count    99996.000000
mean       107.756310
std         79.737279
min          1.000000
25%         53.000000
50%         89.000000
75%        141.000000
max       1189.000000
Name: title, dtype: float64

In [34]:

x = user_song_count_distribution.title
plt.figure(figsize=(12,6))
n, bins, patches = plt.hist(x, 50, facecolor='green', alpha=0.75)
plt.xlabel(u'播放的单曲数')
plt.ylabel(u'用户量')
plt.grid(True)

我们在这个数据集上还可以进行更多的可视化操作,比如按照发布年份来分析、分析一下歌手专辑的流行度之类的。
相信大家现在已经有了足够的能力来对这些数据进行各种可视化操作,得到更多有意思的信息。

推荐引擎

推荐引擎要做的事情其实已经很明显了:推荐!
推荐的办法有很多,最长被讨论的有如下三种:

  1. 基于用户的推荐引擎
    这种推荐引擎中,用户是最为重要的实体。它的基本逻辑是寻找用户间的相似性,然后以此作为推荐的基础。
  2. 基于内容的推荐引擎
    在这种引擎中,很自然,内容是最为重要的实体,比如在我们这个案例中,歌曲就是核心。这种算法会去寻找内容的特征,然后建立内容间的相似性,基于这些相似性再做推荐
  3. 混合推荐引擎
    这种其实也被称为协同过滤。

我们接下来的代码中会引用https://github.com/llSourcell中的代码。

基于热度的推荐引擎

这种推荐引擎是最容易开发的。它的逻辑非常朴素:如果一样东西被很多人喜欢,那么推荐给更多的人一般来说也不会太坏。

In [36]:

import Recommenders as Recommenders                       # 改编自https://github.com/llSourcell
from sklearn.model_selection import train_test_split

In [41]:

train_data, test_data = train_test_split(triplet_dataset_sub_song_merged, test_size = 0.40, random_state=0)

In [42]:

train_data.head()

Out[42]:

  user song listen_count title release artist_name year
8742296 8272a3530646a31ef5e49ea894f928d0d6b9b31b SOBTVDE12AF72A3DE5 1 Wish You Were Here Morning View Incubus 2001
4911823 74d54aded8585b89ef5e3d86f73bf4ce15a46e44 SOBBCWG12AF72AB9CB 1 Brothers One Life Stand Hot Chip 2010
5503975 a85cbab8153c5d9ef3dc40496602f2f6aa500acb SOWYYUQ12A6701D68D 3 It's My Life Crush Bon Jovi 2000
7775708 6d24ea4af5d394408f2dbcc977bbb29d356e000d SOXNFHG12A8C135C55 2 Drop Labcabincalifornia The Pharcyde 1995
3343780 3931fe199c4c42920ed84d72f57196d6c6046878 SOUGACV12A6D4F84E0 1 Mysteries Show Your Bones Yeah Yeah Yeahs 2006

In [43]:

def create_popularity_recommendation(train_data, user_id, item_id):train_data_grouped = train_data.groupby([item_id]).agg({user_id: 'count'}).reset_index()train_data_grouped.rename(columns = {user_id: 'score'},inplace=True)train_data_sort = train_data_grouped.sort_values(['score', item_id], ascending = [0,1])train_data_sort['Rank'] = train_data_sort['score'].rank(ascending=0, method='first')popularity_recommendations = train_data_sort.head(20)return popularity_recommendations

In [44]:

recommendations = create_popularity_recommendation(triplet_dataset_sub_song_merged,'user','title')
recommendations

Out[44]:

  title score Rank
19580 Sehr kosmisch 18628 1.0
5780 Dog Days Are Over (Radio Edit) 17638 2.0
27314 You're The One 16083 3.0
19542 Secrets 15136 4.0
18636 Revelry 14943 5.0
25070 Undo 14681 6.0
7531 Fireflies 13084 7.0
9641 Hey_ Soul Sister 12996 8.0
25216 Use Somebody 12791 9.0
9922 Horn Concerto No. 4 in E flat K495: II. Romanc... 12343 10.0
24291 Tive Sim 11829 11.0
3629 Canada 11592 12.0
23468 The Scientist 11538 13.0
4194 Clocks 11360 14.0
12136 Just Dance 11061 15.0
26974 Yellow 10922 16.0
16438 OMG 10818 17.0
9845 Home 10513 18.0
3296 Bulletproof 10381 19.0
4760 Creep (Explicit) 10242 20.0

基于内容相似的推荐

刚才我们开发了一个最简单的热榜推荐。现在我们来稍微开发一个更复杂一点的算法。
我们要开发的这个算法是基于计算歌曲相似度的。我们这里采用的相似度也很简单:

那么向用户k推荐歌曲的话,我们要做的是:

  1. 找出用户k听过的歌曲
  2. 针对他听过的每首歌计算一下跟所有歌曲的相似度
  3. 以相似度为准,找出相似度最高的歌曲并向用户推荐

显然,这个算法的第2条是计算密集型的任务,当歌曲数目较多时,显然计算量非常大。所以这里我们再一次缩减曲库:

In [45]:

song_count_subset = song_count_df.head(n=5000) # 选择最流行的5000首歌
user_subset = list(play_count_subset.user)
song_subset = list(song_count_subset.song)
triplet_dataset_sub_song_merged_sub = triplet_dataset_sub_song_merged[triplet_dataset_sub_song_merged.song.isin(song_subset)]

In [46]:

triplet_dataset_sub_song_merged_sub.head()

Out[46]:

  user song listen_count title release artist_name year
0 d6589314c0a9bcbca4fee0c93b14bc402363afea SOADQPP12A67020C82 12 You And Me Jesus Tribute To Jake Hess Jake Hess 2004
1 d6589314c0a9bcbca4fee0c93b14bc402363afea SOAFTRR12AF72A8D4D 1 Harder Better Faster Stronger Discovery Daft Punk 2007
2 d6589314c0a9bcbca4fee0c93b14bc402363afea SOANQFY12AB0183239 1 Uprising Uprising Muse 0
3 d6589314c0a9bcbca4fee0c93b14bc402363afea SOAYATB12A6701FD50 1 Breakfast At Tiffany's Home Deep Blue Something 1993
4 d6589314c0a9bcbca4fee0c93b14bc402363afea SOBOAFP12A8C131F36 7 Lucky (Album Version) We Sing. We Dance. We Steal Things. Jason Mraz & Colbie Caillat 0

In [47]:

train_data, test_data = train_test_split(triplet_dataset_sub_song_merged_sub, test_size = 0.30, random_state=0)
is_model = Recommenders.item_similarity_recommender_py()
is_model.create(train_data, 'user', 'title')

In [45]:

# 向用户推荐,即使5000篇,计算量也不小,大约需要1小时
user_id = list(train_data.user)[7]
user_items = is_model.get_user_items(user_id)
is_model.recommend(user_id)
No. of unique songs for the user: 82
no. of unique songs in the training set: 4879
Non zero values in cooccurence_matrix :378241

Out[45]:

  user_id song score rank
0 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Halo 0.046176 1
1 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Use Somebody 0.045396 2
2 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Secrets 0.043963 3
3 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 I Kissed A Girl 0.043809 4
4 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Marry Me 0.043104 5
5 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 The Only Exception (Album Version) 0.042511 6
6 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Fireflies 0.042496 7
7 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Billionaire [feat. Bruno Mars] (Explicit Albu... 0.042447 8
8 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Drop The World 0.042319 9
9 8ffa9a13c6fa5a3c04a95c449b148183dd51ebb7 Clocks 0.042271 10

注意到,我们这里仅仅将歌曲的听众作为特征,并没有使用任何歌曲自身的特征,而实际上这些特征都可以用来定义歌曲之间的相似度。
在现实的工业界场景中,相似度的衡量其实都是包含了非常多的各种各样的特征。

基于矩阵分解的推荐引擎

我们通过迭代的方式来求得内容的特征矩阵  和用户对这些特征兴趣的矩阵  。

  张三(1) 李四(2) 王二(3) 麻子(4)
泰坦尼克号 5 5 0 0
乱世佳人 5 ? ? 0
罗马假日 ? 4 0 ?
无间道 0 0 5 4
指环王 0 0 5 ?

预测评分:

所以,

既然得到了这个式子,那么我们其实可以利用线性代数的知识来直接求解,而不去迭代的来求解  和 。当然了,考虑到矩阵分解的计算复杂度,我们在实际应用中其实更倾向于在理论课上讨论的迭代式的求解方式。

这里我们作为扩展的内容,使用矩阵分解直接来试试。 对我们而言,我们目前所知道的矩阵分解其实只有在PCA降维的时候简单学习到的 SVD 分解。如果我们还记得使用 S 矩阵的前 K 个元素来挑选最重要的投影方向的话,我们其实也可以理解前 K 个元素对应的也是最重要的隐层特征。所以,我们可以借助 SVD 来构造这里的两个分解。那么基本的步骤是:

  1. 将用户播放矩阵进行分解,得到矩阵
  2. 选择  的前  个元素(对角线)
  3. 计算  的平方根得到 
  4. 分别计算  和  作为用户喜好矩阵和内容特征矩阵

因为内存限制的原因,在运行下面的代码前最好 "Restart"一下Kernel

In [2]:

triplet_dataset_sub_song_merged = pd.read_csv('./data/triplet_dataset_sub_song_merged.csv',encoding='utf-8')

In [3]:

# 因为我们没有用户评分,只有用户播放的记录,因此我们使用用户播百分比作为评分
triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index()
triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True)
triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df)
triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count']

In [3]:

triplet_dataset_sub_song_merged[triplet_dataset_sub_song_merged.user =='d6589314c0a9bcbca4fee0c93b14bc402363afea'][['user','song','listen_count','fractional_play_count']].head()

Out[3]:

  user song listen_count fractional_play_count
0 d6589314c0a9bcbca4fee0c93b14bc402363afea SOADQPP12A67020C82 12 0.036474
1 d6589314c0a9bcbca4fee0c93b14bc402363afea SOAFTRR12AF72A8D4D 1 0.003040
2 d6589314c0a9bcbca4fee0c93b14bc402363afea SOANQFY12AB0183239 1 0.003040
3 d6589314c0a9bcbca4fee0c93b14bc402363afea SOAYATB12A6701FD50 1 0.003040
4 d6589314c0a9bcbca4fee0c93b14bc402363afea SOBOAFP12A8C131F36 7 0.021277

In [4]:

# 准备好 用户-歌曲 "评分"矩阵
from scipy.sparse import coo_matrixsmall_set = triplet_dataset_sub_song_merged
user_codes = small_set.user.drop_duplicates().reset_index()
song_codes = small_set.song.drop_duplicates().reset_index()
user_codes.rename(columns={'index':'user_index'}, inplace=True)
song_codes.rename(columns={'index':'song_index'}, inplace=True)
song_codes['so_index_value'] = list(song_codes.index)
user_codes['us_index_value'] = list(user_codes.index)
small_set = pd.merge(small_set,song_codes,how='left')
small_set = pd.merge(small_set,user_codes,how='left')
mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']]
data_array = mat_candidate.fractional_play_count.values
row_array = mat_candidate.us_index_value.values
col_array = mat_candidate.so_index_value.valuesdata_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float)

In [5]:

data_sparse

Out[5]:

<99996x30000 sparse matrix of type '<type 'numpy.float64'>'with 10775200 stored elements in COOrdinate format>

In [6]:

user_codes[user_codes.user =='2a2f776cbac6df64d6cb505e7e834e01684673b6']

Out[6]:

  user_index user us_index_value
27514 2981481 2a2f776cbac6df64d6cb505e7e834e01684673b6 27514

In [7]:

import math as mt
from scipy.sparse.linalg import * #used for matrix multiplication
from scipy.sparse.linalg import svds
from scipy.sparse import csc_matrix

In [8]:

def compute_svd(urm, K):U, s, Vt = svds(urm, K)dim = (len(s), len(s))S = np.zeros(dim, dtype=np.float32)for i in range(0, len(s)):S[i,i] = mt.sqrt(s[i]) # 求平方根U = csc_matrix(U, dtype=np.float32)S = csc_matrix(S, dtype=np.float32)Vt = csc_matrix(Vt, dtype=np.float32)return U, S, Vtdef compute_estimated_matrix(urm, U, S, Vt, uTest, K):rightTerm = S*Vt max_recommendation = 250estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16)recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16)for userTest in uTest:prod = U[userTest, :]*rightTermestimatedRatings[userTest, :] = prod.todense()recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation]return recomendRatings

In [9]:

K=50
urm = data_sparse
MAX_PID = urm.shape[1]
MAX_UID = urm.shape[0]U, S, Vt = compute_svd(urm, K)

In [10]:

uTest = [4,5,6,7,8,873,23]uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K)

In [11]:

for user in uTest:print u"Recommendation for user with user id {}". format(user)rank_value = 1for i in uTest_recommended_items[user,0:10]:song_details = small_set[small_set.so_index_value == i].drop_duplicates('so_index_value')[['title','artist_name']]print u"The number {} recommended song is {} BY {}".format(rank_value, list(song_details['title'])[0],list(song_details['artist_name'])[0])rank_value+=1
Recommendation for user with user id 4
The number 1 recommended song is Fireflies BY Charttraxx Karaoke
The number 2 recommended song is Hey_ Soul Sister BY Train
The number 3 recommended song is OMG BY Usher featuring will.i.am
The number 4 recommended song is Lucky (Album Version) BY Jason Mraz & Colbie Caillat
The number 5 recommended song is Vanilla Twilight BY Owl City
The number 6 recommended song is Crumpshit BY Philippe Rochard
The number 7 recommended song is Billionaire [feat. Bruno Mars]  (Explicit Album Version) BY Travie McCoy
The number 8 recommended song is Love Story BY Taylor Swift
The number 9 recommended song is TULENLIEKKI BY M.A. Numminen
The number 10 recommended song is Use Somebody BY Kings Of Leon
Recommendation for user with user id 5
The number 1 recommended song is Sehr kosmisch BY Harmonia
The number 2 recommended song is Dog Days Are Over (Radio Edit) BY Florence + The Machine
The number 3 recommended song is Ain't Misbehavin BY Sam Cooke
The number 4 recommended song is Revelry BY Kings Of Leon
The number 5 recommended song is Undo BY Björk
The number 6 recommended song is Cosmic Love BY Florence + The Machine
The number 7 recommended song is Home BY Edward Sharpe & The Magnetic Zeros
The number 8 recommended song is You've Got The Love BY Florence + The Machine
The number 9 recommended song is Bring Me To Life BY Evanescence
The number 10 recommended song is Tighten Up BY The Black Keys
Recommendation for user with user id 6
The number 1 recommended song is Crumpshit BY Philippe Rochard
The number 2 recommended song is Marry Me BY Train
The number 3 recommended song is Hey_ Soul Sister BY Train
The number 4 recommended song is Lucky (Album Version) BY Jason Mraz & Colbie Caillat
The number 5 recommended song is One On One BY the bird and the bee
The number 6 recommended song is I Never Told You BY Colbie Caillat
The number 7 recommended song is Canada BY Five Iron Frenzy
The number 8 recommended song is Fireflies BY Charttraxx Karaoke
The number 9 recommended song is TULENLIEKKI BY M.A. Numminen
The number 10 recommended song is Bring Me To Life BY Evanescence
Recommendation for user with user id 7
The number 1 recommended song is Behind The Sea [Live In Chicago] BY Panic At The Disco
The number 2 recommended song is The City Is At War (Album Version) BY Cobra Starship
The number 3 recommended song is Dead Souls BY Nine Inch Nails
The number 4 recommended song is Una Confusion BY LU
The number 5 recommended song is Home BY Edward Sharpe & The Magnetic Zeros
The number 6 recommended song is Climbing Up The Walls BY Radiohead
The number 7 recommended song is Tighten Up BY The Black Keys
The number 8 recommended song is Tive Sim BY Cartola
The number 9 recommended song is West One (Shine On Me) BY The Ruts
The number 10 recommended song is Cosmic Love BY Florence + The Machine
Recommendation for user with user id 8
The number 1 recommended song is Undo BY Björk
The number 2 recommended song is Canada BY Five Iron Frenzy
The number 3 recommended song is Better To Reign In Hell BY Cradle Of Filth
The number 4 recommended song is Unite (2009 Digital Remaster) BY Beastie Boys
The number 5 recommended song is Behind The Sea [Live In Chicago] BY Panic At The Disco
The number 6 recommended song is Rockin' Around The Christmas Tree BY Brenda Lee
The number 7 recommended song is Tautou BY Brand New
The number 8 recommended song is Revelry BY Kings Of Leon
The number 9 recommended song is 16 Candles BY The Crests
The number 10 recommended song is Catch You Baby (Steve Pitron & Max Sanna Radio Edit) BY Lonnie Gordon
Recommendation for user with user id 873
The number 1 recommended song is The Scientist BY Coldplay
The number 2 recommended song is Yellow BY Coldplay
The number 3 recommended song is Clocks BY Coldplay
The number 4 recommended song is Fix You BY Coldplay
The number 5 recommended song is In My Place BY Coldplay
The number 6 recommended song is Shiver BY Coldplay
The number 7 recommended song is Speed Of Sound BY Coldplay
The number 8 recommended song is Creep (Explicit) BY Radiohead
The number 9 recommended song is Sparks BY Coldplay
The number 10 recommended song is Use Somebody BY Kings Of Leon
Recommendation for user with user id 23
The number 1 recommended song is Garden Of Eden BY Guns N' Roses
The number 2 recommended song is Don't Speak BY John Dahlbäck
The number 3 recommended song is Master Of Puppets BY Metallica
The number 4 recommended song is TULENLIEKKI BY M.A. Numminen
The number 5 recommended song is Bring Me To Life BY Evanescence
The number 6 recommended song is Kryptonite BY 3 Doors Down
The number 7 recommended song is Make Her Say BY Kid Cudi / Kanye West / Common
The number 8 recommended song is Night Village BY Deep Forest
The number 9 recommended song is Better To Reign In Hell BY Cradle Of Filth
The number 10 recommended song is Xanadu BY Olivia Newton-John;Electric Light Orchestra

开源推荐引擎库

我们这里简单地实现了一个基于矩阵分解的推荐引擎,虽然非常简单,但希望能给大家一个简明的认识。
当然,在python中也有一些开源的推荐引擎库:

  • scikit-surprise
  • lightfm
  • crab
  • rec_sys
  • ...

[Python嗯~机器学习]---对于音乐推荐引擎的基本理解相关推荐

  1. Spotify 每周推荐功能:基于机器学习的音乐推荐

    原文地址:Spotify's Discover Weekly: How machine learning finds your new music 原文作者:Sophia Ciocca 译文出自:掘金 ...

  2. python与开源_Github上Top20 Python与机器学习开源项目推荐

    TensorFlow TensorFlow是一个端到端的机器学习开源平台.由工具.库和社区资源组成的全面.灵活的生态系统,使开发人员能够轻松地构建和部署基于ML的应用程序. TensorFlow最初是 ...

  3. 独家 | 从零开始用python搭建推荐引擎(附代码)

    作者:Pulkit Sharma 翻译:申利彬 校对:付宇帅 本文约10300字,建议阅读10分钟. 本文介绍了各种推荐引擎算法以及使用Python构建它们的基本框架. 简介 当今社会的每个人都面临着 ...

  4. 从零开始用Python搭建推荐引擎(附代码)

    作者 | Pulkit Sharma 来源 | 数据派THU(DatapiTHU) 简介 当今社会的每个人都面临着各种各样的选择.例如,如果我漫无目的想找一本书读,那么关于我如何搜索就会出现很多可能. ...

  5. Spark数据挖掘实例1:基于 Audioscrobbler 数据集音乐推荐

    本实例来源于<Spark高级数据分析>,这是一个很好的spark数据挖掘的实例.从经验上讲,推荐引擎属于大规模机器学习,在日常购物中大家或许深有体会,比如:你在淘宝上浏览了一些商品,或者购 ...

  6. [转载]Scikit Learn: 在python中机器学习

    原址:http://my.oschina.net/u/175377/blog/84420 目录[-] Scikit Learn: 在python中机器学习 载入示例数据 一个改变数据集大小的示例:数码 ...

  7. 在线音乐推荐网 Python+Django+Mysql开发技术 基于用户、物品的协同过滤推荐算法 个性化音乐推荐系统 音乐网站+协同过滤推荐算法 机器学习、分布式大数据、人工智能开发

    在线音乐推荐网 Python+Django+Mysql开发技术 基于用户.物品的协同过滤推荐算法 个性化音乐推荐系统 音乐网站+协同过滤推荐算法 机器学习.分布式大数据.人工智能开发 MusicRec ...

  8. 简单在线音乐推荐网 基于用户、物品的协同过滤推荐算法 使用Python+Django+Mysql开发技术 在线音乐推荐系统 音乐网站推荐系统 个性化推荐算法开发 人工智能、大数据分布式、机器学习开发

    简单在线音乐推荐网 基于用户.物品的协同过滤推荐算法 使用Python+Django+Mysql开发技术 在线音乐推荐系统 音乐网站推荐系统 个性化推荐算法开发 人工智能.大数据分布式.机器学习开发S ...

  9. 如何使用 Python 构建推荐引擎?

    作者 | Craig Kerstiens 译者 | 弯月,编辑 | 王晓曼 头图 | CSDN 下载自东方IC 来源 | CSDN(ID:CSDNnews) 我非常喜欢数据.数据可以告诉你用户在干什么 ...

最新文章

  1. WordPress主题制作函数
  2. Redis 学习资料整理
  3. SAP CRM how is db table CRMD_PRODUCT_I read
  4. 在linux下添加路由
  5. 别以为if slse很简单——决策树
  6. 计算机一级电子表格插入表格,计算机一级电子表格
  7. c++ hough变换代码_hough变换原理以及实现(转载)
  8. 解决mac安装anaconda后无法在命令行调用conda,jupyter等
  9. Socket通信入门小实例
  10. oracle中ccuser,oracle数据库user profile设置方法
  11. mysql 转字符串 blob_BLOB转换为字符串或图像/ PHP或SQL
  12. PHP中百度地图和高德地图经纬度互相转换
  13. tableau实战系列(十二)-使用盒须图查看你的数据分布
  14. 计算机常用英语单词(带音标)
  15. 如何从 vue-element-admin 迁移到 Fantastic-admin
  16. 白光干涉仪可以用于测量化妆品用的云母材料?
  17. The Pilots Brotrefrigeratorhers
  18. 为什么人人都需要懂一点高阶(中台)产品思维
  19. 钦州学院计算机好吗,罗雁(数学与计算机科学系)老师 - 钦州学院 - 院校大全
  20. 七云mc服务器下载地址_我的世界1.7.10云晨之都

热门文章

  1. 松下传真机清零与维修
  2. 数字图像处理 - 扫描枪里的应用
  3. stm32应用笔记:如何给项目选取合适的ROM和RAM参数
  4. 词权重 (term weight)方案总结
  5. 捣蛋SQL导致实例iops 100%
  6. api getway自述
  7. 程序员的工资到底有多高?我们用数据说话!
  8. 《基于Android微博整合客户端的设计与实现》毕业设计论文开题报告
  9. 【PR 基础】裁剪工具的简单使用
  10. 我的世界1.7.2 java_我下载了我的世界1.7.2为什么总是显示Java有误,我都安装了3个Java了!...