一:前言

最近给一个非Java方向的朋友讲了下双亲委派模型,朋友让我写篇文章深度研究下JVM的ClassLoader,我确实也好久没写JVM相关的文章了,有点手痒痒,涂了皮炎平也抑制不住。

我在向朋友解释的时候是这么说的:双亲委派模型中,ClassLoader在加载类的时候,会先交由它的父ClassLoader加载,只有当父ClassLoader加载失败的情况下,才会尝试自己去加载。这样可以实现部分类的复用,又可以实现部分类的隔离,因为不同ClassLoader加载的类是互相隔离的。

不过贸然的向别人解释双亲委派模型是不妥的,如果在不了解JVM的类加载机制的情况下,又如何能很好的理解“不同ClassLoader加载的类是互相隔离的”这句话呢?所以为了理解双亲委派,最好的方式,就是先了解下ClassLoader的加载流程。

二:Java 类是如何被加载的

2.1:何时加载类

我们首先要清楚的是,Java类何时会被加载?

《深入理解Java虚拟机》给出的答案是:

1:遇到new、getstatic、putstatic 等指令时。

2:对类进行反射调用的时候。

3:初始化某个类的子类的时候。

4:虚拟机启动时会先加载设置的程序主类。

5:使用JDK 1.7 的动态语言支持的时候。

其实要我说,最通俗易懂的答案就是:当运行过程中需要这个类的时候。

那么我们不妨就从如何加载类开始说起。

2.2:怎么加载类

利用ClassLoader加载类很简单,直接调用ClassLoder的loadClass()方法即可,我相信大家都会,但是还是要举个栗子:

public class Test { public static void main(String[] args) throws ClassNotFoundException { Test.class.getClassLoader().loadClass("com.wangxiandeng.test.Dog"); }}

上面这段代码便实现了让ClassLoader去加载 “com.wangxiandeng.test.Dog” 这个类,是不是 so easy。但是JDK 提供的 API 只是冰山一角,看似很简单的一个调用,其实隐藏了非常多的细节,我这个人吧,最喜欢做的就是去揭开 API 的封装,一探究竟。

2.3:JVM 是怎么加载类的

JVM 默认用于加载用户程序的ClassLoader为AppClassLoader,不过无论是什么ClassLoader,它的根父类都是java.lang.ClassLoader。在上面那个例子中,loadClass()方法最终会调用到ClassLoader.definClass1()中,这是一个 Native 方法。

static native Class> defineClass1(ClassLoader loader, String name, byte[] b, int off, int len, ProtectionDomain pd, String source); 

看到 Native 方法莫心慌,不要急,打开OpenJDK源码,我等继续走马观花便是!

definClass1()对应的 JNI 方法为 Java_java_lang_ClassLoader_defineClass1()

JNIEXPORT jclass JNICALLJava_java_lang_ClassLoader_defineClass1(JNIEnv *env, jclass cls, jobject loader, jstring name, jbyteArray data, jint offset, jint length, jobject pd, jstring source){ ...... result = JVM_DefineClassWithSource(env, utfName, loader, body, length, pd, utfSource); ...... return result;}

Java_java_lang_ClassLoader_defineClass1 主要是调用了JVM_DefineClassWithSource()加载类,跟着源码往下走,会发现最终调用的是 jvm.cpp 中的 jvm_define_class_common()方法。

static jclass jvm_define_class_common(JNIEnv *env, const char *name, jobject loader, const jbyte *buf, jsize len, jobject pd, const char *source, TRAPS) { ...... ClassFileStream st((u1*)buf, len, source, ClassFileStream::verify); Handle class_loader (THREAD, JNIHandles::resolve(loader)); if (UsePerfData) { is_lock_held_by_thread(class_loader, ClassLoader::sync_JVMDefineClassLockFreeCounter(), THREAD); } Handle protection_domain (THREAD, JNIHandles::resolve(pd)); Klass* k = SystemDictionary::resolve_from_stream(class_name, class_loader, protection_domain, &st, CHECK_NULL); ...... return (jclass) JNIHandles::make_local(env, k->java_mirror());}

上面这段逻辑主要就是利用 ClassFileStream 将要加载的class文件转成文件流,然后调用SystemDictionary::resolve_from_stream(),生成 Class 在 JVM 中的代表:Klass。对于Klass,大家可能不太熟悉,但是在这里必须得了解下。说白了,它就是JVM 用来定义一个Java Class 的数据结构。不过Klass只是一个基类,Java Class 真正的数据结构定义在 InstanceKlass中。

class InstanceKlass: public Klass { protected: Annotations* _annotations; ...... ConstantPool* _constants; ...... Array* _inner_classes; ...... Array* _methods; Array* _default_methods; ...... Array* _fields;}

可见 InstanceKlass 中记录了一个 Java 类的所有属性,包括注解、方法、字段、内部类、常量池等信息。这些信息本来被记录在Class文件中,所以说,InstanceKlass就是一个Java Class 文件被加载到内存后的形式。

再回到上面的类加载流程中,这里调用了 SystemDictionary::resolve_from_stream(),将 Class 文件加载成内存中的 Klass。

resolve_from_stream() 便是重中之重!主要逻辑有下面几步:

1:判断是否允许并行加载类,并根据判断结果进行加锁。

bool DoObjectLock = true;if (is_parallelCapable(class_loader)) { DoObjectLock = false;}ClassLoaderData* loader_data = register_loader(class_loader, CHECK_NULL);Handle lockObject = compute_loader_lock_object(class_loader, THREAD);check_loader_lock_contention(lockObject, THREAD);ObjectLocker ol(lockObject, THREAD, DoObjectLock);

如果允许并行加载,则不会对ClassLoader进行加锁,只对SystemDictionary加锁。否则,便会利用 ObjectLocker 对ClassLoader 加锁,保证同一个ClassLoader在同一时刻只能加载一个类。ObjectLocker 会在其构造函数中获取锁,并在析构函数中释放锁。

允许并行加载的好处便是精细化了锁粒度,这样可以在同一时刻加载多个Class文件。

2:解析文件流,生成 InstanceKlass。

InstanceKlass* k = NULL;k = KlassFactory::create_from_stream(st, class_name, loader_data, protection_domain, NULL, // host_klass NULL, // cp_patches CHECK_NULL);

3:利用SystemDictionary注册生成的 Klass。

SystemDictionary 是用来帮助保存 ClassLoader 加载过的类信息的。准确点说,SystemDictionary并不是一个容器,真正用来保存类信息的容器是 Dictionary,每个ClassLoaderData 中都保存着一个私有的 Dictionary,而 SystemDictionary 只是一个拥有很多静态方法的工具类而已。

我们来看看注册的代码:

if (is_parallelCapable(class_loader)) { InstanceKlass* defined_k = find_or_define_instance_class(h_name, class_loader, k, THREAD); if (!HAS_PENDING_EXCEPTION && defined_k != k) { // If a parallel capable class loader already defined this class, register 'k' for cleanup. assert(defined_k != NULL, "Should have a klass if there's no exception"); loader_data->add_to_deallocate_list(k); k = defined_k; }} else { define_instance_class(k, THREAD);}

如果允许并行加载,那么前面就不会对ClassLoader加锁,所以在同一时刻,可能对同一Class文件加载了多次。但是同一Class在同一ClassLoader中必须保持唯一性,所以这里会先利用 SystemDictionary 查询 ClassLoader 是否已经加载过相同 Class。

如果已经加载过,那么就将当前线程刚刚加载的InstanceKlass加入待回收列表,并将 InstanceKlass* k 重新指向利用SystemDictionary查询到的 InstanceKlass。

如果没有查询到,那么就将刚刚加载的 InstanceKlass 注册到 ClassLoader的 Dictionary 中 中。

虽然并行加载不会锁住ClassLoader,但是会在注册 InstanceKlass 时对 SystemDictionary 加锁,所以不需要担心InstanceKlass 在注册时的并发操作。

如果禁止了并行加载,那么直接利用SystemDictionary将 InstanceKlass 注册到 ClassLoader的 Dictionary 中即可。

resolve_from_stream()的主要流程就是上面三步,很明显,最重要的是第二步,从文件流生成InstanceKlass。

生成InstanceKlass 调用的是 KlassFactory::create_from_stream()方法,它的主要逻辑就是下面这段代码。

ClassFileParser parser(stream, name, loader_data, protection_domain, host_klass, cp_patches, ClassFileParser::BROADCAST, // publicity level CHECK_NULL);InstanceKlass* result = parser.create_instance_klass(old_stream != stream, CHECK_NULL);

原来 ClassFileParser 才是真正的主角啊!它才是将Class文件升华成InstanceKlass的幕后大佬!

2.4:不得不说的ClassFileParser

ClassFileParser 加载Class文件的入口便是 create_instance_klass()。顾名思义,用来创建InstanceKlass的。

create_instance_klass()主要就干了两件事:

(1):为 InstanceKlass 分配内存

InstanceKlass* const ik = InstanceKlass::allocate_instance_klass(*this, CHECK_NULL);

(2):分析Class文件,填充 InstanceKlass 内存区域

fill_instance_klass(ik, changed_by_loadhook, CHECK_NULL);

我们先来说道说道第一件事,为 InstanceKlass 分配内存。

内存分配代码如下:

const int size = InstanceKlass::size(parser.vtable_size(), parser.itable_size(), nonstatic_oop_map_size(parser.total_oop_map_count()), parser.is_interface(), parser.is_anonymous(), should_store_fingerprint(parser.is_anonymous()));ClassLoaderData* loader_data = parser.loader_data();InstanceKlass* ik;ik = new (loader_data, size, THREAD) InstanceKlass(parser, InstanceKlass::_misc_kind_other);

这里首先计算了InstanceKlass在内存中的大小,要知道,这个大小在Class 文件编译后就被确定了。

然后便 new 了一个新的 InstanceKlass 对象。这里并不是简单的在堆上分配内存,要注意的是Klass 对 new 操作符进行了重载:

void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() { return Metaspace::allocate(loader_data, word_size, MetaspaceObj::ClassType, THREAD);}

分配 InstanceKlass 的时候调用了 Metaspace::allocate():

 MetaspaceObj::Type type, TRAPS) { ...... MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType; ...... MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype); ...... return result;}

由此可见,InstanceKlass 是分配在 ClassLoader的 Metaspace(元空间) 的方法区中。从 JDK8 开始,HotSpot 就没有了永久代,类都分配在 Metaspace 中。Metaspace 和永久代不一样,采用的是 Native Memory,永久代由于受限于 MaxPermSize,所以当内存不够时会内存溢出。

分配完 InstanceKlass 内存后,便要着手第二件事,分析Class文件,填充 InstanceKlass 内存区域。

ClassFileParser 在构造的时候就会开始分析Class文件,所以fill_instance_klass()中只需要填充即可。填充结束后,还会调用 java_lang_Class::create_mirror()创建 InstanceKlass 在Java 层的 Class 对象。

void ClassFileParser::fill_instance_klass(InstanceKlass* ik, bool changed_by_loadhook, TRAPS) { ..... ik->set_class_loader_data(_loader_data); ik->set_nonstatic_field_size(_field_info->nonstatic_field_size); ik->set_has_nonstatic_fields(_field_info->has_nonstatic_fields); ik->set_static_oop_field_count(_fac->count[STATIC_OOP]); ik->set_name(_class_name); ...... java_lang_Class::create_mirror(ik, Handle(THREAD, _loader_data->class_loader()), module_handle, _protection_domain, CHECK);}

顺便提一句,对于Class文件结构不熟悉的同学,可以看下我两年前写的一篇文章:

《汪先生:Jvm之用java解析class文件》

到这儿,Class文件已经完成了华丽的转身,由冷冰冰的二进制文件,变成了内存中充满生命力的InstanceKlass。

三:再谈双亲委派

如果你耐心的看完了上面的源码分析,你一定对 “不同ClassLoader加载的类是互相隔离的” 这句话的理解又上了一个台阶。

我们总结下:每个ClassLoader都有一个 Dictionary 用来保存它所加载的InstanceKlass信息。并且,每个 ClassLoader 通过锁,保证了对于同一个Class,它只会注册一份 InstanceKlass 到自己的 Dictionary 。

正式由于上面这些原因,如果所有的 ClassLoader 都由自己去加载 Class 文件,就会导致对于同一个Class文件,存在多份InstanceKlass,所以即使是同一个Class文件,不同InstanceKlasss 衍生出来的实例类型也是不一样的。

举个栗子,我们自定义一个 ClassLoader,用来打破双亲委派模型:

public class CustomClassloader extends URLClassLoader { public CustomClassloader(URL[] urls) { super(urls); } @Override protected Class> loadClass(String name, boolean resolve) throws ClassNotFoundException { if (name.startsWith("com.wangxiandeng")) { return findClass(name); } return super.loadClass(name, resolve); }}

再尝试加载Studen类,并实例化:

public class Test { public static void main(String[] args) throws Exception { URL url[] = new URL[1]; url[0] = Thread.currentThread().getContextClassLoader().getResource(""); CustomClassloader customClassloader = new CustomClassloader(url); Class clazz = customClassloader.loadClass("com.wangxiandeng.Student"); Student student = (Student) clazz.newInstance(); }}

运行后便会抛出类型强转异常:

Exception in thread "main" java.lang.ClassCastException: com.wangxiandeng.Student cannot be cast to com.wangxiandeng.Student

为什么呢?

因为实例化的Student对象所属的 InstanceKlass 是由CustomClassLoader加载生成的,而我们要强转的类型Student.Class 对应的 InstanceKlass 是由系统默认的ClassLoader生成的,所以本质上它们就是两个毫无关联的InstanceKlass,当然不能强转。

有同学问到:为什么“强转的类型Student.Class 对应的 InstanceKlass 是由系统默认的ClassLoader生成的”?

其实很简单,我们反编译下字节码:

 public static void main(java.lang.String[]) throws java.lang.Exception; descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=4, locals=5, args_size=1 0: iconst_1 1: anewarray #2 // class java/net/URL 4: astore_1 5: aload_1 6: iconst_0 7: invokestatic #3 // Method java/lang/Thread.currentThread:()Ljava/lang/Thread; 10: invokevirtual #4 // Method java/lang/Thread.getContextClassLoader:()Ljava/lang/ClassLoader; 13: ldc #5 // String 15: invokevirtual #6 // Method java/lang/ClassLoader.getResource:(Ljava/lang/String;)Ljava/net/URL; 18: aastore 19: new #7 // class com/wangxiandeng/classloader/CustomClassloader 22: dup 23: aload_1 24: invokespecial #8 // Method com/wangxiandeng/classloader/CustomClassloader."":([Ljava/net/URL;)V 27: astore_2 28: aload_2 29: ldc #9 // String com.wangxiandeng.Student 31: invokevirtual #10 // Method com/wangxiandeng/classloader/CustomClassloader.loadClass:(Ljava/lang/String;)Ljava/lang/Class; 34: astore_3 35: aload_3 36: invokevirtual #11 // Method java/lang/Class.newInstance:()Ljava/lang/Object; 39: checkcast #12 // class com/wangxiandeng/Student 42: astore 4 44: return

可以看到在利用加载的Class初始化实例后,调用了 checkcast 进行类型转化,checkcast 后的操作数 #12 即为Student这个类在常量池中的索引:#12 = Class #52 // com/wangxiandeng/Student

下面我们可以看看 checkcast 在HotSpot中的实现。

HotSpot 目前有三种字节码执行引擎,目前采用的是模板解释器,可以看下我这篇文章:《汪先生:JVM之模板解释器》。

早期的HotSpot采用的是字节码解释器。模板解释器对于指令的执行都是用汇编写的,而字节码解释器采用的C++进行的翻译,为了看起来比较舒服,我们就不看汇编了,直接看字节码解释器就行了。如果你的汇编功底很好,当然也可以直接看模板解释器,我之前写的文章《汪先生:JVM之创建对象源码分析》这里就是分析模板解释器对于 new 指令的实现。

废话不多说,我们来看看字节码解释器对于checkcast的实现,代码在 bytecodeInterpreter.cpp 中

CASE(_checkcast): if (STACK_OBJECT(-1) != NULL) { VERIFY_OOP(STACK_OBJECT(-1)); // 拿到 checkcast 指令后的操作数,本例子中即 Student.Class 在常量池中的索引:#12 u2 index = Bytes::get_Java_u2(pc+1); // 如果常量池还没有解析,先进行解析,即将常量池中的符号引用替换成直接引用, //此时就会触发Student.Class 的加载 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) { CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception); } // 获取上一步系统加载的Student.Class 对应的 InstanceKlass Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index); // 获取要强转的对象的实际类型,即我们自己手动加载的Student.Class 对应的 InstanceKlass Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx // 现在就比较简单了,直接看看上面的两个InstanceKlass指针内容是否相同 // 不同的情况下则判断是否存在继承关系 if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) { // Decrement counter at checkcast. BI_PROFILE_SUBTYPECHECK_FAILED(objKlass); ResourceMark rm(THREAD); char* message = SharedRuntime::generate_class_cast_message( objKlass, klassOf); VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap); } // Profile checkcast with null_seen and receiver. BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass); } else { // Profile checkcast with null_seen and receiver. BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL); }

通过对上面代码的分析,我相信大家已经理解了 “强转的类型Student.Class 对应的 InstanceKlass 是由系统默认的ClassLoader生成的” 这句话了。

双亲委派的好处是尽量保证了同一个Class文件只会生成一个InstanceKlass,但是某些情况,我们就不得不去打破双亲委派了,比如我们想实现Class隔离的时候。

回复下箫陌同学的问题:

// 如果常量池还没有解析,先进行解析,即将常量池中的符号引用替换成直接引用,

//此时就会触发Student.Class 的加载

if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {

CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);

}

请问,为何这里会重新加载Student.Class?jvm是不是有自己的class加载链路,然后系统循着链路去查找class是否已经被加载?那该怎么把自定义的CustomClassloader 加到这个查询链路中去呢?

第一种方法:设置启动参数 java -Djava.system.class.loader

第二种方法:利用Thread.setContextClassLoder

这里就有点技巧了,看下代码:

public class Test { public static void main(String[] args) throws Exception { URL url[] = new URL[1]; url[0] = Thread.currentThread().getContextClassLoader().getResource(""); final CustomClassloader customClassloader = new CustomClassloader(url); Thread.currentThread().setContextClassLoader(customClassloader); Class clazz = customClassloader.loadClass("com.wangxiandeng.ClassTest"); Object object = clazz.newInstance(); Method method = clazz.getDeclaredMethod("test"); method.invoke(object); }}public class ClassTest { public void test() throws Exception{ Class clazz = Thread.currentThread().getContextClassLoader().loadClass("com.wangxiandeng.Student"); Student student = (Student) clazz.newInstance(); System.out.print(student.getClass().getClassLoader()); }}

要注意的是在设置线程的ClassLoader后,并不是直接调用 new ClassTest().test()。为什么呢?因为直接强引用的话,会在解析Test.Class的常量池时,利用系统默认的ClassLoader加载了ClassTest,从而又触发了ClassTest.Class的解析。为了避免这种情况的发生,这里利用CustomClassLoader去加载ClassTest.Class,再利用反射机制调用test(),此时在解析ClassTest.Class的常量池时,就会利用CustomClassLoader去加载Class常量池项,也就不会发生异常了。

四:总结

写完这篇文章,手也不痒了,甚爽!这篇文章从双亲委派讲到了Class文件的加载,最后又绕回到双亲委派,看似有点绕,其实只有理解了Class的加载机制,才能更好的理解类似双亲委派这样的机制,否则只死记硬背一些空洞的理论,是无法起到由内而外的理解的。

本文作者:中间件小哥

利用classloader同一个项目中加载另一个同名的类_你知道 Java 类是如何被加载的吗?...相关推荐

  1. 利用classloader同一个项目中加载另一个同名的类_线程上下文类加载器ContextClassLoader内存泄漏隐患...

    前提 今天(2020-01-18)在编写Netty相关代码的时候,从Netty源码中的ThreadDeathWatcher和GlobalEventExecutor追溯到两个和线程上下文类加载器Cont ...

  2. WebService CXF系列: SpringBoot同一个项目中集成JaxWS和JaxRS

    WebService CXF系列: SpringBoot同一个项目中集成JaxWS和JaxRS 介绍 项目介绍 项目架构 项目介绍 项目集成的原则 SpringBoot集成JaxWS 1. JaxWs ...

  3. maven同一个项目中,一个子模块引用另一个子模块的类的方法

    1.首先在一个项目中创建两个子模块,如: 2.在common-api的pom.xml添加版本号,如: 3.在use-common-api的pom.xml中添加如下依赖: <dependencie ...

  4. java apt怎么用_java – APT和AOP在同一个项目中,使用Maven

    我显然是唯一能够回答我自己问题的人. 我已经使用Maven Antrun Plugin通过ant编译AspectJ.这是我的pom片段: maven-antrun-plugin 1.4 org.asp ...

  5. maven只打包java目录_ssm项目中maven对resources目录打包的路径_默认路径,自定义路径...

    博客引用处(以下内容在原有博客基础上进行补充或更改,谢谢这些大牛的博客指导): ssm项目打包后mybatis的mapper.xml文件没有放进去 问题出现的原因: ssm项目打包后mybatis的m ...

  6. html引vue怎么实现国际化,Vue项目中Vue-i18n和element-ui国际化开发实现过程_唇印_前端开发者...

    在开发,但是在前面博客中,如果项目中使用了element-ui插件,插件中的语言文字替换可以结合element-ui插件一同进行.element-ui插件自身也提供了语言包.具体的配置和使用方法参考如 ...

  7. python中如何调用类_python如何调用java类

    由于 python 本身为脚本语言,且经常存在调用第三方库的情况,有的时候用 java 调用 python 不如用 python 调用 java 方便.下面就整理一下在 python 调用 java ...

  8. groovy 使用java类_深入学习java中的Groovy 和 Scala 类

    前言 Java 传承的是平台,而不是语言.有超过 200 种语言可以在 JVM 上运行,它们之中不可避免地会有一种语言最终将取代 Java 语言,成为编写 JVM 程序的最佳方式.本系列将探讨三种下一 ...

  9. serve注解是加在哪个类_不会 Java 注解 ? 看这一篇文章!

    对于Java注解,我之前的印象是很模糊的,总觉得这个东西经常听说,也经常用,但是具体是怎么回事,好像没有仔细学习过,说到注解,立马想到@Controller,仅此而已. 对于Java注解,我咨询过一些 ...

  10. robotac属于a类还是b类_工程项目分类A类、B类、C类、D类项目是指什么?注意:不是资料的A、B、C类报建资料...

    展开全部 A类属e69da5e6ba903231313335323631343130323136353331333431356639于监督站表: B类属于工程报验类, C类属于一些工程技术平常施工, ...

最新文章

  1. torch.nn.LogSoftmax()与输入具有相同尺寸和形状的张量,其值在[-inf,0)范围内
  2. 我的asp入门宝典与您分享
  3. 回归素材(part9)--PYTHON机器学习手册-从数据预处理到深度学习
  4. 如何将本地python项目部署到服务器上_如何将本地的Django项目部署到云服务器
  5. 接口 vs 抽象类 的区别
  6. SpringBoot:解决日期转换问题和日期展示问题
  7. Please review your Gradle project setup in the android/ folde
  8. Pytorch——Tensor合并+截取+拼接
  9. Shell 脚本 ssh免密码 登录 远程服务器 sshpass用法示例
  10. html5shiv-兼容处理文件
  11. Java 将Word转为HTML的方法
  12. html制作中英文双语菜单,CSS实现的中英文双语菜单效果代码
  13. NBA2K18手游显示无法连接服务器,nba2k18手游交易被拒绝 | 手游网游页游攻略大全...
  14. 打造自己个性的notepad ++
  15. 计算机u盘设备无法启动不了,U盘不能识别,该设备无法启动。(代码10)
  16. FANUC机器人编码器相关报警代码及处理方法
  17. 模拟滑动android无障碍,Android无障碍简单开发-模拟滑动点击输入等
  18. 三言|格局决定结局 态度决定高度
  19. VPS、SPS、PPS、SS简介
  20. 写了一个疫苗信息管理系统!(附源码)

热门文章

  1. 组织结构及权限模型设计
  2. shell脚本显示颜色的设置
  3. ScreenRecord(about C# winform)
  4. c语言:【顺序表】静态顺序表的删除指定位置元素Erase、删除指定元素Remove
  5. MEF程序设计指南四:使用MEF声明导出(Exports)与导入(Imports)
  6. 分割 反比 权重图 梯度 灰度_numpy gradient梯度函数1
  7. Android学习JNI,使用JNI实现字符串加密
  8. proc文件系统实现用户空间与内核空间的数据通信
  9. 关于发送H264 sdp里的
  10. 数据包接收系列 — 上半部实现(网卡驱动)