文章目录

  • 1 Linux内核链表介绍
    • 1.1 移植Linux内核链表
      • 1.1.1 Linux内核链表的位置及依赖
      • 1.1.2 移植时的注意事项
    • 1.2 Linux内核链表剖析
      • 1.2.1 Linux内核链表的实现
      • 1.2.2 Linux内核链表的结点定义
      • 1.2.3 Linux内核链表的创建及初始化
      • 1.2.4 Linux内核链表的插入操作
      • 1.2.5 Linux内核链表的删除操作
      • 1.2.6 Linux内核的遍历
      • 1.2.7 Linux内核链表的简单使用
      • 1.2.8 Linux内核链表总结
      • 1.2.9 LinuxList源码
  • 2 双向循环链表的实现
    • 2.1 继承层次图
    • 2.2 双向循环链表的设计思路
    • 2.3 代码实现
    • 2.4 思考

1 Linux内核链表介绍

1.1 移植Linux内核链表

移植Linux内核链表,使其使用于非GNU编译器。

1.1.1 Linux内核链表的位置及依赖

位置:

  • {linux-2.6.39}\\include\linux\list.h

依赖:

  • #include <linux/types.h>
  • #include <linux/stddef.h>
  • #include <linux/poison.h>
  • #include <linux/prefetch.h>

1.1.2 移植时的注意事项

清除文件间的依赖:

  • 剥离依赖文件中与链表实现相关的代码。

清除平台相关代码(GNU C):

  • ({})
  • typeof
  • _builtin_prefetch
  • static inline

1.2 Linux内核链表剖析

1.2.1 Linux内核链表的实现

Linux内核链表的实现:

  • 带头结点的双向循环链表,且头结点为表中成员。
  • 头结点的next指针指向首结点。
  • 头结点的prev指针指向尾结点。

1.2.2 Linux内核链表的结点定义


问题:数据放在哪里?

使用struct list_head自定义链表结点。

1.2.3 Linux内核链表的创建及初始化

1.2.4 Linux内核链表的插入操作

  • 在链表头部插入:list_add(new, head)
  • 在链表尾部插入:list_add_tail(new, head)

1.2.5 Linux内核链表的删除操作

1.2.6 Linux内核的遍历

  • 正向遍历:list_for_each(pos, head)
  • 逆向遍历:list_for_each_prev(pos, head)

1.2.7 Linux内核链表的简单使用

#include <stdio.h>
#include "LinuxList.h"void list_demo_1()
{struct Node{struct list_head head;int value;};struct Node l = {0};struct list_head* list = (struct list_head*)&l;struct list_head* slider = NULL;int i = 0;INIT_LIST_HEAD(list);printf("Insert begin ...\n");for(i=0; i<5; i++){struct Node* n = (struct Node*)malloc(sizeof(struct Node));n->value = i;list_add_tail((struct list_head*)n, list);}list_for_each(slider, list){printf("%d\n", ((struct Node*)slider)->value);}printf("Insert end ...\n");printf("Delete begin ...\n");list_for_each(slider, list){if( ((struct Node*)slider)->value == 3 ){list_del(slider);free(slider);break;}}list_for_each(slider, list){printf("%d\n", ((struct Node*)slider)->value);}printf("Delete end ...\n");
}void list_demo_2()
{struct Node{int value;struct list_head head;};struct Node l = {0};struct list_head* list = &l.head;struct list_head* slider = NULL;int i = 0;INIT_LIST_HEAD(list);printf("Insert begin ...\n");for(i=0; i<5; i++){struct Node* n = (struct Node*)malloc(sizeof(struct Node));n->value = i;list_add(&n->head, list);}list_for_each(slider, list){printf("%d\n", list_entry(slider, struct Node, head)->value);}printf("Insert end ...\n");printf("Delete begin ...\n");list_for_each(slider, list){struct Node* n = list_entry(slider, struct Node, head);if( n->value == 3 ){list_del(slider);free(n);break;}}list_for_each(slider, list){printf("%d\n", list_entry(slider, struct Node, head)->value);}printf("Delete end ...\n");
}int main()
{// list_demo_1();// list_demo_2();return 0;
}

1.2.8 Linux内核链表总结

  • Linux内核链表移植时需要剔除依赖及平台相关代码。
  • Linux内核链表是带头结点的双向循环链表。
  • 使用Linux内核链表时需要自定义链表结点。
    • 将struct list_head作为结点结构体的第一个成员或最后一个成员。
    • struct list_head不是第一个成员时,需要使用list_entry宏。
    • list_entry的定义中使用了container_of宏。

1.2.9 LinuxList源码

/* LinuxList.h */#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H// #include <linux/types.h>
// #include <linux/stddef.h>
// #include <linux/poison.h>
// #include <linux/prefetch.h>#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif#ifndef container_of
#define container_of(ptr, type, member) ((type *)((char *)ptr - offsetof(type,member)))
#endif#define prefetch(x) ((void)x)#define LIST_POISON1  (NULL)
#define LIST_POISON2  (NULL)struct list_head {struct list_head *next, *prev;
};struct hlist_head {struct hlist_node *first;
};struct hlist_node {struct hlist_node *next, **pprev;
};/** Simple doubly linked list implementation.** Some of the internal functions ("__xxx") are useful when* manipulating whole lists rather than single entries, as* sometimes we already know the next/prev entries and we can* generate better code by using them directly rather than* using the generic single-entry routines.*/#define LIST_HEAD_INIT(name) { &(name), &(name) }#define LIST_HEAD(name) \struct list_head name = LIST_HEAD_INIT(name)static void INIT_LIST_HEAD(struct list_head *list)
{list->next = list;list->prev = list;
}/** Insert a new entry between two known consecutive entries.** This is only for internal list manipulation where we know* the prev/next entries already!*/
#ifndef CONFIG_DEBUG_LIST
static void __list_add(struct list_head *new,struct list_head *prev,struct list_head *next)
{next->prev = new;new->next = next;new->prev = prev;prev->next = new;
}
#else
extern void __list_add(struct list_head *new,struct list_head *prev,struct list_head *next);
#endif/*** list_add - add a new entry* @new: new entry to be added* @head: list head to add it after** Insert a new entry after the specified head.* This is good for implementing stacks.*/
static void list_add(struct list_head *new, struct list_head *head)
{__list_add(new, head, head->next);
}/*** list_add_tail - add a new entry* @new: new entry to be added* @head: list head to add it before** Insert a new entry before the specified head.* This is useful for implementing queues.*/
static void list_add_tail(struct list_head *new, struct list_head *head)
{__list_add(new, head->prev, head);
}/** Delete a list entry by making the prev/next entries* point to each other.** This is only for internal list manipulation where we know* the prev/next entries already!*/
static void __list_del(struct list_head * prev, struct list_head * next)
{next->prev = prev;prev->next = next;
}/*** list_del - deletes entry from list.* @entry: the element to delete from the list.* Note: list_empty() on entry does not return true after this, the entry is* in an undefined state.*/
#ifndef CONFIG_DEBUG_LIST
static void __list_del_entry(struct list_head *entry)
{__list_del(entry->prev, entry->next);
}static void list_del(struct list_head *entry)
{__list_del(entry->prev, entry->next);entry->next = LIST_POISON1;entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif/*** list_replace - replace old entry by new one* @old : the element to be replaced* @new : the new element to insert** If @old was empty, it will be overwritten.*/
static void list_replace(struct list_head *old,struct list_head *new)
{new->next = old->next;new->next->prev = new;new->prev = old->prev;new->prev->next = new;
}static void list_replace_init(struct list_head *old,struct list_head *new)
{list_replace(old, new);INIT_LIST_HEAD(old);
}/*** list_del_init - deletes entry from list and reinitialize it.* @entry: the element to delete from the list.*/
static void list_del_init(struct list_head *entry)
{__list_del_entry(entry);INIT_LIST_HEAD(entry);
}/*** list_move - delete from one list and add as another's head* @list: the entry to move* @head: the head that will precede our entry*/
static void list_move(struct list_head *list, struct list_head *head)
{__list_del_entry(list);list_add(list, head);
}/*** list_move_tail - delete from one list and add as another's tail* @list: the entry to move* @head: the head that will follow our entry*/
static void list_move_tail(struct list_head *list,struct list_head *head)
{__list_del_entry(list);list_add_tail(list, head);
}/*** list_is_last - tests whether @list is the last entry in list @head* @list: the entry to test* @head: the head of the list*/
static int list_is_last(const struct list_head *list,const struct list_head *head)
{return list->next == head;
}/*** list_empty - tests whether a list is empty* @head: the list to test.*/
static int list_empty(const struct list_head *head)
{return head->next == head;
}/*** list_empty_careful - tests whether a list is empty and not being modified* @head: the list to test** Description:* tests whether a list is empty _and_ checks that no other CPU might be* in the process of modifying either member (next or prev)** NOTE: using list_empty_careful() without synchronization* can only be safe if the only activity that can happen* to the list entry is list_del_init(). Eg. it cannot be used* if another CPU could re-list_add() it.*/
static int list_empty_careful(const struct list_head *head)
{struct list_head *next = head->next;return (next == head) && (next == head->prev);
}/*** list_rotate_left - rotate the list to the left* @head: the head of the list*/
static void list_rotate_left(struct list_head *head)
{struct list_head *first;if (!list_empty(head)) {first = head->next;list_move_tail(first, head);}
}/*** list_is_singular - tests whether a list has just one entry.* @head: the list to test.*/
static int list_is_singular(const struct list_head *head)
{return !list_empty(head) && (head->next == head->prev);
}static void __list_cut_position(struct list_head *list,struct list_head *head, struct list_head *entry)
{struct list_head *new_first = entry->next;list->next = head->next;list->next->prev = list;list->prev = entry;entry->next = list;head->next = new_first;new_first->prev = head;
}/*** list_cut_position - cut a list into two* @list: a new list to add all removed entries* @head: a list with entries* @entry: an entry within head, could be the head itself* and if so we won't cut the list** This helper moves the initial part of @head, up to and* including @entry, from @head to @list. You should* pass on @entry an element you know is on @head. @list* should be an empty list or a list you do not care about* losing its data.**/
static void list_cut_position(struct list_head *list,struct list_head *head, struct list_head *entry)
{if (list_empty(head))return;if (list_is_singular(head) &&(head->next != entry && head != entry))return;if (entry == head)INIT_LIST_HEAD(list);else__list_cut_position(list, head, entry);
}static void __list_splice(const struct list_head *list,struct list_head *prev,struct list_head *next)
{struct list_head *first = list->next;struct list_head *last = list->prev;first->prev = prev;prev->next = first;last->next = next;next->prev = last;
}/*** list_splice - join two lists, this is designed for stacks* @list: the new list to add.* @head: the place to add it in the first list.*/
static void list_splice(const struct list_head *list,struct list_head *head)
{if (!list_empty(list))__list_splice(list, head, head->next);
}/*** list_splice_tail - join two lists, each list being a queue* @list: the new list to add.* @head: the place to add it in the first list.*/
static void list_splice_tail(struct list_head *list,struct list_head *head)
{if (!list_empty(list))__list_splice(list, head->prev, head);
}/*** list_splice_init - join two lists and reinitialise the emptied list.* @list: the new list to add.* @head: the place to add it in the first list.** The list at @list is reinitialised*/
static void list_splice_init(struct list_head *list,struct list_head *head)
{if (!list_empty(list)) {__list_splice(list, head, head->next);INIT_LIST_HEAD(list);}
}/*** list_splice_tail_init - join two lists and reinitialise the emptied list* @list: the new list to add.* @head: the place to add it in the first list.** Each of the lists is a queue.* The list at @list is reinitialised*/
static void list_splice_tail_init(struct list_head *list,struct list_head *head)
{if (!list_empty(list)) {__list_splice(list, head->prev, head);INIT_LIST_HEAD(list);}
}/*** list_entry - get the struct for this entry* @ptr:  the &struct list_head pointer.* @type:  the type of the struct this is embedded in.* @member:   the name of the list_struct within the struct.*/
#define list_entry(ptr, type, member) \container_of(ptr, type, member)/*** list_first_entry - get the first element from a list* @ptr:   the list head to take the element from.* @type: the type of the struct this is embedded in.* @member:   the name of the list_struct within the struct.** Note, that list is expected to be not empty.*/
#define list_first_entry(ptr, type, member) \list_entry((ptr)->next, type, member)/*** list_for_each  -   iterate over a list* @pos:  the &struct list_head to use as a loop cursor.* @head:  the head for your list.*/
#define list_for_each(pos, head) \for (pos = (head)->next; prefetch(pos->next), pos != (head); \pos = pos->next)/*** __list_for_each    -   iterate over a list* @pos:  the &struct list_head to use as a loop cursor.* @head:  the head for your list.** This variant differs from list_for_each() in that it's the* simplest possible list iteration code, no prefetching is done.* Use this for code that knows the list to be very short (empty* or 1 entry) most of the time.*/
#define __list_for_each(pos, head) \for (pos = (head)->next; pos != (head); pos = pos->next)/*** list_for_each_prev    -   iterate over a list backwards* @pos:    the &struct list_head to use as a loop cursor.* @head:  the head for your list.*/
#define list_for_each_prev(pos, head) \for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \pos = pos->prev)/*** list_for_each_safe - iterate over a list safe against removal of list entry* @pos:    the &struct list_head to use as a loop cursor.* @n:     another &struct list_head to use as temporary storage* @head:   the head for your list.*/
#define list_for_each_safe(pos, n, head) \for (pos = (head)->next, n = pos->next; pos != (head); \pos = n, n = pos->next)/*** list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry* @pos: the &struct list_head to use as a loop cursor.* @n:     another &struct list_head to use as temporary storage* @head:   the head for your list.*/
#define list_for_each_prev_safe(pos, n, head) \for (pos = (head)->prev, n = pos->prev; \prefetch(pos->prev), pos != (head); \pos = n, n = pos->prev)/*** list_for_each_entry -   iterate over list of given type* @pos:  the type * to use as a loop cursor.* @head: the head for your list.* @member:   the name of the list_struct within the struct.*/
#define list_for_each_entry(pos, head, member)              \for (pos = list_entry((head)->next, typeof(*pos), member);  \prefetch(pos->member.next), &pos->member != (head);  \pos = list_entry(pos->member.next, typeof(*pos), member))/*** list_for_each_entry_reverse - iterate backwards over list of given type.* @pos:    the type * to use as a loop cursor.* @head: the head for your list.* @member:   the name of the list_struct within the struct.*/
#define list_for_each_entry_reverse(pos, head, member)          \for (pos = list_entry((head)->prev, typeof(*pos), member);  \prefetch(pos->member.prev), &pos->member != (head);  \pos = list_entry(pos->member.prev, typeof(*pos), member))/*** list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()* @pos:  the type * to use as a start point* @head:  the head of the list* @member:  the name of the list_struct within the struct.** Prepares a pos entry for use as a start point in list_for_each_entry_continue().*/
#define list_prepare_entry(pos, head, member) \((pos) ? : list_entry(head, typeof(*pos), member))/*** list_for_each_entry_continue - continue iteration over list of given type* @pos:   the type * to use as a loop cursor.* @head: the head for your list.* @member:   the name of the list_struct within the struct.** Continue to iterate over list of given type, continuing after* the current position.*/
#define list_for_each_entry_continue(pos, head, member)         \for (pos = list_entry(pos->member.next, typeof(*pos), member);  \prefetch(pos->member.next), &pos->member != (head);  \pos = list_entry(pos->member.next, typeof(*pos), member))/*** list_for_each_entry_continue_reverse - iterate backwards from the given point* @pos:   the type * to use as a loop cursor.* @head: the head for your list.* @member:   the name of the list_struct within the struct.** Start to iterate over list of given type backwards, continuing after* the current position.*/
#define list_for_each_entry_continue_reverse(pos, head, member)     \for (pos = list_entry(pos->member.prev, typeof(*pos), member);  \prefetch(pos->member.prev), &pos->member != (head);  \pos = list_entry(pos->member.prev, typeof(*pos), member))/*** list_for_each_entry_from - iterate over list of given type from the current point* @pos:   the type * to use as a loop cursor.* @head: the head for your list.* @member:   the name of the list_struct within the struct.** Iterate over list of given type, continuing from current position.*/
#define list_for_each_entry_from(pos, head, member)             \for (; prefetch(pos->member.next), &pos->member != (head);   \pos = list_entry(pos->member.next, typeof(*pos), member))/*** list_for_each_entry_safe - iterate over list of given type safe against removal of list entry* @pos:   the type * to use as a loop cursor.* @n:        another type * to use as temporary storage* @head:  the head for your list.* @member:   the name of the list_struct within the struct.*/
#define list_for_each_entry_safe(pos, n, head, member)          \for (pos = list_entry((head)->next, typeof(*pos), member),  \n = list_entry(pos->member.next, typeof(*pos), member); \&pos->member != (head);                     \pos = n, n = list_entry(n->member.next, typeof(*n), member))/*** list_for_each_entry_safe_continue - continue list iteration safe against removal* @pos: the type * to use as a loop cursor.* @n:        another type * to use as temporary storage* @head:  the head for your list.* @member:   the name of the list_struct within the struct.** Iterate over list of given type, continuing after current point,* safe against removal of list entry.*/
#define list_for_each_entry_safe_continue(pos, n, head, member)         \for (pos = list_entry(pos->member.next, typeof(*pos), member),      \n = list_entry(pos->member.next, typeof(*pos), member);     \&pos->member != (head);                     \pos = n, n = list_entry(n->member.next, typeof(*n), member))/*** list_for_each_entry_safe_from - iterate over list from current point safe against removal* @pos:    the type * to use as a loop cursor.* @n:        another type * to use as temporary storage* @head:  the head for your list.* @member:   the name of the list_struct within the struct.** Iterate over list of given type from current point, safe against* removal of list entry.*/
#define list_for_each_entry_safe_from(pos, n, head, member)             \for (n = list_entry(pos->member.next, typeof(*pos), member);        \&pos->member != (head);                     \pos = n, n = list_entry(n->member.next, typeof(*n), member))/*** list_for_each_entry_safe_reverse - iterate backwards over list safe against removal* @pos:  the type * to use as a loop cursor.* @n:        another type * to use as temporary storage* @head:  the head for your list.* @member:   the name of the list_struct within the struct.** Iterate backwards over list of given type, safe against removal* of list entry.*/
#define list_for_each_entry_safe_reverse(pos, n, head, member)      \for (pos = list_entry((head)->prev, typeof(*pos), member),  \n = list_entry(pos->member.prev, typeof(*pos), member); \&pos->member != (head);                     \pos = n, n = list_entry(n->member.prev, typeof(*n), member))/*** list_safe_reset_next - reset a stale list_for_each_entry_safe loop* @pos:   the loop cursor used in the list_for_each_entry_safe loop* @n:      temporary storage used in list_for_each_entry_safe* @member:    the name of the list_struct within the struct.** list_safe_reset_next is not safe to use in general if the list may be* modified concurrently (eg. the lock is dropped in the loop body). An* exception to this is if the cursor element (pos) is pinned in the list,* and list_safe_reset_next is called after re-taking the lock and before* completing the current iteration of the loop body.*/
#define list_safe_reset_next(pos, n, member)                \n = list_entry(pos->member.next, typeof(*pos), member)/** Double linked lists with a single pointer list head.* Mostly useful for hash tables where the two pointer list head is* too wasteful.* You lose the ability to access the tail in O(1).*/#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static void INIT_HLIST_NODE(struct hlist_node *h)
{h->next = NULL;h->pprev = NULL;
}static int hlist_unhashed(const struct hlist_node *h)
{return !h->pprev;
}static int hlist_empty(const struct hlist_head *h)
{return !h->first;
}static void __hlist_del(struct hlist_node *n)
{struct hlist_node *next = n->next;struct hlist_node **pprev = n->pprev;*pprev = next;if (next)next->pprev = pprev;
}static void hlist_del(struct hlist_node *n)
{__hlist_del(n);n->next = LIST_POISON1;n->pprev = LIST_POISON2;
}static void hlist_del_init(struct hlist_node *n)
{if (!hlist_unhashed(n)) {__hlist_del(n);INIT_HLIST_NODE(n);}
}static void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{struct hlist_node *first = h->first;n->next = first;if (first)first->pprev = &n->next;h->first = n;n->pprev = &h->first;
}/* next must be != NULL */
static void hlist_add_before(struct hlist_node *n,struct hlist_node *next)
{n->pprev = next->pprev;n->next = next;next->pprev = &n->next;*(n->pprev) = n;
}static void hlist_add_after(struct hlist_node *n,struct hlist_node *next)
{next->next = n->next;n->next = next;next->pprev = &n->next;if(next->next)next->next->pprev  = &next->next;
}/* after that we'll appear to be on some hlist and hlist_del will work */
static void hlist_add_fake(struct hlist_node *n)
{n->pprev = &n->next;
}/** Move a list from one list head to another. Fixup the pprev* reference of the first entry if it exists.*/
static void hlist_move_list(struct hlist_head *old,struct hlist_head *new)
{new->first = old->first;if (new->first)new->first->pprev = &new->first;old->first = NULL;
}#define hlist_entry(ptr, type, member) container_of(ptr,type,member)#define hlist_for_each(pos, head) \for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \pos = pos->next)#define hlist_for_each_safe(pos, n, head) \for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \pos = n)/*** hlist_for_each_entry - iterate over list of given type* @tpos:   the type * to use as a loop cursor.* @pos:  the &struct hlist_node to use as a loop cursor.* @head: the head for your list.* @member:   the name of the hlist_node within the struct.*/
#define hlist_for_each_entry(tpos, pos, head, member)            \for (pos = (head)->first;                   \pos && ({ prefetch(pos->next); 1;}) &&          \({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \pos = pos->next)/*** hlist_for_each_entry_continue - iterate over a hlist continuing after current point* @tpos:  the type * to use as a loop cursor.* @pos:  the &struct hlist_node to use as a loop cursor.* @member:   the name of the hlist_node within the struct.*/
#define hlist_for_each_entry_continue(tpos, pos, member)         \for (pos = (pos)->next;                         \pos && ({ prefetch(pos->next); 1;}) &&          \({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \pos = pos->next)/*** hlist_for_each_entry_from - iterate over a hlist continuing from current point* @tpos:   the type * to use as a loop cursor.* @pos:  the &struct hlist_node to use as a loop cursor.* @member:   the name of the hlist_node within the struct.*/
#define hlist_for_each_entry_from(tpos, pos, member)             \for (; pos && ({ prefetch(pos->next); 1;}) &&           \({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \pos = pos->next)/*** hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry* @tpos:   the type * to use as a loop cursor.* @pos:  the &struct hlist_node to use as a loop cursor.* @n:        another &struct hlist_node to use as temporary storage* @head:  the head for your list.* @member:   the name of the hlist_node within the struct.*/
#define hlist_for_each_entry_safe(tpos, pos, n, head, member)        \for (pos = (head)->first;                   \pos && ({ n = pos->next; 1; }) &&               \({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \pos = n)#endif

2 双向循环链表的实现

直接使用Linux内核链表实现双向循环链表。

2.1 继承层次图

2.2 双向循环链表的设计思路

数据结点之间在逻辑上构成双向循环链表,头结点仅用于结点的定位。

实现思路:

  • 通过模板定义DualCircleList类,继承自DualLinkList类。
  • 在DualCircleList内部使用Linux内核链表进行实现。
  • 使用struct list_head定义DualCircleList的头结点。
  • 特殊处理:循环遍历时忽略头结点。

实现要点:

  • 通过list_head进行目标结点定位(position(i))。
  • 通过list_entry将list_head指针转换为目标结点指针。
  • 通过list_for_each实现int find(const T& e)函数。
  • 遍历函数中的next()和pre()需要考虑跳过头结点。

2.3 代码实现

DualCircleList.h

#ifndef DUALCIRCLELIST_H
#define DUALCIRCLELIST_H#include "CircleList.h"
#include "LinuxList.h"
#include "Exception.h"namespace LemonLib
{template <typename T>
class DualCircleList : public CircleList<T>
{
protected:struct Node{list_head head;T value;};list_head m_header;list_head* m_current;list_head* position(int i) const{list_head* ret = const_cast<list_head*>(&m_header);for (int p=0; p<i; p++){ret = ret->next;}return ret;}int mod(int i) const{return (this->m_length == 0) ? 0 : (i % this->m_length);}public:DualCircleList(){this->m_length = 0;this->m_step = 0;m_current = NULL;INIT_LIST_HEAD(&m_header);}bool insert(const T& e){insert(this->m_length, e);}bool insert(int i, const T& e){bool ret = true;Node* node = new Node();if (node != NULL){i = i % (this->m_length + 1);node->value = e;list_add_tail(&node->head, position(i)->next);this->m_length++;}else{THROW_EXCEPTION(NoEnoughMemoryException, "No enough memory to insert new element ...");}return ret;}bool remove(int i){bool ret = true;i = mod(i);ret = (0 <= i) && (i < this->m_length);if (ret){list_head* toDel = position(i)->next;if (m_current == toDel){m_current = m_current->next;}list_del(toDel);this->m_length--;delete list_entry(toDel, Node, head);}return ret;}bool set(int i, const T& e){bool ret = true;i = mod(i);ret = (0 <= i) && (i < this->m_length);if (ret){list_entry(position(i)->next, Node, head)->value = e;}return ret;}T get(int i) const{T ret;if (get(i, ret)){return ret;}else{THROW_EXCEPTION(InvalidParameterException, "Invalid parameter in get element ...");}}bool get(int i, T& e) const{bool ret = true;i = mod(i);ret = (0 <= i) && (i < this->m_length);if (ret){e = list_entry(position(i)->next, Node, head)->value;}return ret;}int find(const T& e) const{int ret = -1;int i = 0;list_head* slider = NULL;list_for_each(slider, &m_header){if (list_entry(slider, Node, head)->value == e){ret = i;break;}i++;}return ret;}int length() const{return this->m_length;}void clear(){while (this->m_length > 0){remove(0);}}bool move(int i, int step = 1){bool ret = (step > 0);i = mod(i);ret = ret && (0 <= i) && (i < this->m_length);if (ret){m_current = position(i)->next;this->m_step = step;}return ret;}bool end(){return (m_current == NULL) || (this->m_length == 0);}T current(){if (!end()){return list_entry(m_current, Node, head)->value;}else{THROW_EXCEPTION(InvalidOperationException, "invlaid to get current val...");}}bool next(){int i = 0;while ((i < this->m_step) && (!end())){if (m_current != &m_header){m_current = m_current->next;i++;}else{m_current = m_current->next;}}if (m_current == &m_header){m_current = m_current->next;}return (i == this->m_step);}bool prev(){int i = 0;while ((i < this->m_step) && (!end())){if (m_current != &m_header){m_current = m_current->prev;i++;}else{m_current = m_current->prev;}}if (m_current == &m_header){m_current = m_current->prev;}return (i == this->m_step);}~DualCircleList(){clear();}};}#endif// DUALCIRCLELIST_H

main.cpp

#include <iostream>#include "SmartPointer.h"
#include "Exception.h"
#include "Object.h"
#include "List.h"
#include "SeqList.h"
#include "StaticList.h"
#include "DynamicList.h"
#include "Array.h"
#include "StaticArray.h"
#include "DynamicArray.h"
#include "LinkList.h"
#include "StaticLinkList.h"
#include "Pointer.h"
#include "SmartPointer.h"
#include "SharedPointer.h"
#include "CircleList.h"
#include "DualLinkList.h"
#include "StaticDualLinkList.h"
#include "DualCircleList.h"using namespace std;
using namespace LemonLib;int main()
{DualCircleList<int> dl;for (int i=0; i<5; i++){dl.insert(i);}dl.move(dl.length()-1);for (int i=0; i<dl.length(); i++){cout << dl.current() << endl;dl.prev();}cout << dl.find(5) << endl;cout << dl.find(3) << endl;return 0;
}

2.4 思考

如下代码中的pn1和pn2是否相等?为什么?

不相等,因为有虚函数指针的存在导致pn1和pn2不相等。

DualCircleList相关推荐

最新文章

  1. c语言程序设计分段定时器,单片机C语言编程定时器的几种表达方式
  2. AngularJS-Basic(一)
  3. leetcode算法题--Unique Paths II
  4. Traffic Flow Forecasting: Comparison of Modeling Approaches文献阅读笔记(一)
  5. MFC的静态库.lib、动态库.dll(包含引入库.lib)以及Unicode库示例
  6. 25行代码AC——习题5-7 打印队列(Printer Queue,UVa 12100)——解题报告
  7. 002编程基础----makefile
  8. Android SpannableString
  9. Linux学习笔记---烧写bin文件分析
  10. 医药电商、线上药房、连锁药店、用药咨询、药箱补货、药师认证、分销商、合伙人、医生管理、诊所管理、处方药、收银、发票、电子会员卡、门店调拨、提成分销、问诊咨询、积分、顾客、流程图、业务逻辑、营销、优惠
  11. jquery知识点总结(转载)
  12. 去除A和B数组中的交集
  13. mysql数据库恢复
  14. docker安装之升级win10专业版
  15. LayaBox---TypeScript---首次接触遇到的问题
  16. android 视频通话框架,Android基于腾讯云实时音视频仿微信视频通话最小化悬浮
  17. golang构建htpp服务
  18. MySQL实战演练——如何才能构建逾期用户画像?【数据可视化】
  19. 安全之路 —— 利用端口复用技术隐藏后门端口
  20. 电商快递物流的电子面单打印接口API案例代码

热门文章

  1. centos 安装vscode_CentOS6下安装VSCode
  2. 电脑qq文件服务器地址,在电脑上接收QQ地理位置打不开,提示获取不到详细地址...
  3. sysbench 压测 mysql_sysbench压测
  4. Jupyter notebook 运行环境创建和切换 (Win10+Anaconda)
  5. 【控制】《多智能体系统的协同群集运动控制》陈杰老师-第7章-Brunovsky 型高阶非线性多智能体系统一致性控制
  6. 3.6 激活函数-深度学习-Stanford吴恩达教授
  7. Verilog全新语法认识--Xilinx language template
  8. Docker镜像的基本操作
  9. Hive 和普通关系数据库的异同
  10. liunx 分割合并文件