上期的笔记,浏览快1万了,既然关注的人很多,那就发出来承诺过的算法全模拟,希望帮到你们。

上期的操作系统学霸笔记,考试复习面试全靠它

一、模拟进程调度

功能

data.h

#ifndef _Data_h_
#define _Data_h_#include <stdio.h>
#include <stdlib.h>
#include <string.h>#define ElemType PCB
#define Status int
#define OK      1
#define ERROR   0
#define TimeSlice   1
#define Infinity 10 //INT_MAX#define NAME_MAXSIZE 20
typedef enum
{Ready,Running,Block
}ProState;typedef enum
{FCFS, SPF      //先来先服务,短进程优先
}PriorityRule;typedef struct
{char Name[NAME_MAXSIZE];   //进程名int Priority;              //优先数int ArrivalTime;           //到达时间      以时间片为单位int NeedRunningTime;     //运行时间      以时间片为单位int StartTime;               //开始执行时间int FinishTime;             //完成时间int TimeUsedCPU;          //已用CPU时间       以时间片为单位ProState ProcessState;       //进程状态
}PCB;typedef struct Node
{ElemType data;struct Node * Next;
}LNode,*LinkList;#endif

ChainList.h

#ifndef _ChainList_h_
#define _ChainList_h_#include "Data.h"//功能:链表初始化
Status Init(LinkList *L);//功能:赋值运算,将e2赋值给e1
void Assignment(ElemType *e1, ElemType e2);//功能:获取第i个结点元素
Status GetElemt_L(LinkList L,int i,ElemType *e);//功能:链表根据优先级插入元素
Status ListInsert_L(LinkList L,ElemType e);//功能:链表删除头结点
Status ListDelete_L(LinkList L,ElemType *e);#endif

ProPCB.h

#ifndef _ProPCB_h_
#define _ProPCB_h_#include "ChainList.h"//功能:将e插入链表Q
Status GetProcess(LinkList Q,ElemType e);       //上就绪队列//功能:根据不同的优先级规则,返回优先数
int GetPriority(ElemType *e, PriorityRule PR);  //根据不同的规则PR 设置优先数//功能:将链表Q的头结点数据放到e指向的内存,并删除
Status OutProsess(LinkList Q,ElemType *e);      //下就绪队列//功能:CPU运行pcb指向的进程,并输出所有进行进程状态
Status CPURunPro(LinkList Q, PCB *pcb);         //CPU运行PCB//功能:打印所有PCB信息
void PrintProQueue(LinkList Q, PCB *pcb);       //打印运行后PCB信息//功能:当一个进程结束,打印进程信息
void PrintProResult(PCB *pcb);#endif

实现

#include "ChainList.h"extern int CPUUsedTime;//功能:链表初始化
Status Init(LinkList *L)
{*L = (LinkList)malloc(sizeof(LNode));(*L)->data.NeedRunningTime = -1;(*L)->Next = NULL;return OK;
}//功能:赋值运算,将e2赋值给e1
void Assignment(ElemType *e1, ElemType e2)
{e1->ArrivalTime = e2.ArrivalTime;strcpy(e1->Name,e2.Name);e1->Priority = e2.Priority;e1->ProcessState = e2.ProcessState;e1->FinishTime = e2.FinishTime;e1->StartTime = e2.StartTime;e1->NeedRunningTime = e2.NeedRunningTime;e1->TimeUsedCPU = e2.TimeUsedCPU;
}//链表中按照优先级:从大到小排序插入
Status ListInsert_L(LinkList L,ElemType e)  //这样修改应该不对 p = *L出错
{LinkList p = L->Next, pre = L, s;while (p && e.Priority <= p->data.Priority)   {pre = p;p = p->Next;}s = (LinkList)malloc(sizeof(LNode));Assignment(&s->data, e);s->Next = pre->Next;pre->Next = s;return OK;
}
//链表中头部删除
Status ListDelete_L(LinkList L,ElemType *e)
{LinkList p = L, q;q = p->Next;if(!q)return ERROR;p->Next = q->Next;Assignment(e, q->data);free(q);return OK;
}
#include "ProPCB.h"extern int CPUUsedTime;//功能:将e插入链表Q
Status GetProcess(LinkList Q,ElemType e)
{return ListInsert_L(Q, e);
}//功能:根据不同的优先级规则,返回优先数
int GetPriority(ElemType *e, PriorityRule PR)
{if(PR == FCFS)return Infinity - e->ArrivalTime;else if(PR == SPF)return Infinity - e->NeedRunningTime;elseprintf("GetPriority Function ERROR!\n");return ERROR;
}//功能:将链表Q的头结点数据放到e指向的内存,并删除
Status OutProsess(LinkList Q,ElemType *e)
{return ListDelete_L(Q ,e);
}//上一次CPU运行时间增加1个时间片
Status CPURunPro(LinkList Q,PCB *pcb)
{if(pcb->StartTime == -1)pcb->StartTime = CPUUsedTime;pcb->ProcessState = Running;//PrintProQueue(Q, pcb);pcb->TimeUsedCPU += TimeSlice;return OK;
}//功能:打印所有PCB信息
void PrintProQueue(LinkList Q, PCB *pcb)
{LinkList p = Q->Next;printf("进程名  优先数  到达时间  运行时间  已用CPU时间  完成时间  进程状态\n");if(pcb)printf(" %4s     %2d      %4d      %4d     %3d(+1)       %3d        %4s  \n",pcb->Name,pcb->Priority,pcb->ArrivalTime,pcb->NeedRunningTime,pcb->TimeUsedCPU, pcb->FinishTime,pcb->ProcessState == Ready ? "就绪" : "运行");while (p){printf(" %4s     %2d      %4d      %4d     %3d           %3d        %4s  \n",p->data.Name,p->data.Priority,p->data.ArrivalTime,p->data.NeedRunningTime,p->data.TimeUsedCPU,p->data.FinishTime, p->data.ProcessState == Ready ? "就绪" : "运行");p = p->Next;}printf("-------------------------------------------------------------------------------\n");
}//功能:当一个进程结束,打印进程信息
void PrintProResult(PCB *pcb)
{printf("进程名  到达时刻 运行时间 开始时刻 完成时刻 周转时间 带权周转时间 进程状态\n");if(pcb)printf(" %2s     %3d      %4d        %4d      %3d     %4d       %5.2lf       %4s  \n",pcb->Name,pcb->ArrivalTime,pcb->NeedRunningTime,pcb->StartTime,pcb->FinishTime,pcb->FinishTime-pcb->ArrivalTime,((pcb->FinishTime - pcb->ArrivalTime)*1.0)/pcb->NeedRunningTime,"完成");printf("-------------------------------------------------------------------------------\n");
}

main:

#include "ProPCB.h"/****************************
*  实验01: 非抢占式静态优先权  *
*  ① 优先权始终保持不变      *
*  ② 一旦进入CPU便运行到结束  *
*  ③ FCFS只考虑到达时间进CPU    *
*  ④ SPF认为到达时间相同        *
****************************/int CPUUsedTime = 0;void InputData(LinkList * pPCBdata, PriorityRule PR)
{ElemType e = {{0},-1,-1,-1,-1,-1,0,Ready};e.ArrivalTime = 0;e.ProcessState = Ready;e.TimeUsedCPU = 0;strcpy(e.Name,"A");e.NeedRunningTime = 1;e.Priority = GetPriority(&e, PR);if(PR == SPF)   e.ArrivalTime = 0;GetProcess(*pPCBdata,e);e.ArrivalTime = 1;e.ProcessState = Ready;e.TimeUsedCPU = 0;strcpy(e.Name,"B");e.NeedRunningTime = 100;e.Priority = GetPriority(&e, PR);if(PR == SPF)   e.ArrivalTime = 0;GetProcess(*pPCBdata,e);e.ArrivalTime = 2;e.ProcessState = Ready;e.TimeUsedCPU = 0;strcpy(e.Name,"C");e.NeedRunningTime = 1;e.Priority = GetPriority(&e, PR);if(PR == SPF)   e.ArrivalTime = 0;GetProcess(*pPCBdata,e);e.ArrivalTime = 3;e.ProcessState = Ready;e.TimeUsedCPU = 0;strcpy(e.Name,"D");e.NeedRunningTime = 100;e.Priority = GetPriority(&e, PR);if(PR == SPF)   e.ArrivalTime = 0;GetProcess(*pPCBdata,e);}//void InputData1(LinkList * pPCBdata, PriorityRule PR)
//{
//    ElemType e = {{0},-1,-1,-1,-1,-1,0,Ready};
//    e.ArrivalTime = 0;
//    e.ProcessState = Ready;
//    e.TimeUsedCPU = 0;
//    strcpy(e.Name,"A");
//    e.NeedRunningTime = 4;
//    e.Priority = GetPriority(&e, PR);
//    if(PR == SPF)   e.ArrivalTime = 0;
//    GetProcess(*pPCBdata,e);
//
//    e.ArrivalTime = 1;
//    e.ProcessState = Ready;
//    e.TimeUsedCPU = 0;
//    strcpy(e.Name,"B");
//    e.NeedRunningTime = 3;
//    e.Priority = GetPriority(&e, PR);
//    if(PR == SPF)   e.ArrivalTime = 0;
//    GetProcess(*pPCBdata,e);
//
//    e.ArrivalTime = 2;
//    e.ProcessState = Ready;
//    e.TimeUsedCPU = 0;
//    strcpy(e.Name,"C");
//    e.NeedRunningTime = 5;
//    e.Priority = GetPriority(&e, PR);
//    if(PR == SPF)   e.ArrivalTime = 0;
//    GetProcess(*pPCBdata,e);
//
//    e.ArrivalTime = 3;
//    e.ProcessState = Ready;
//    e.TimeUsedCPU = 0;
//    strcpy(e.Name,"D");
//    e.NeedRunningTime = 2;
//    e.Priority = GetPriority(&e, PR);
//    if(PR == SPF)   e.ArrivalTime = 0;
//    GetProcess(*pPCBdata,e);
//
//    e.ArrivalTime = 4;
//    e.ProcessState = Ready;
//    e.TimeUsedCPU = 0;
//    strcpy(e.Name,"E");
//    e.NeedRunningTime = 4;
//    e.Priority = GetPriority(&e, PR);
//    if(PR == SPF)   e.ArrivalTime = 0;
//    GetProcess(*pPCBdata,e);
//}int main(void)
{LinkList PCBQueue; //InitPCBdata里面存放PCB初始数据ElemType e = {{0},-1,-1,-1,-1,-1,0,Ready};ElemType *pcb = NULL;PriorityRule PR;PR = FCFS;       //   SPF    or   FCFS//***********    初始化就绪队列    *************//Init(&PCBQueue);InputData(&PCBQueue, PR);printf("初始数据如下:\n");PrintProQueue(PCBQueue, pcb);//***********    进程根据优先级上CPU    *************//printf("\n进程运行信息如下:\n");while (OutProsess(PCBQueue, &e)){//一次性运行完毕while(e.TimeUsedCPU < e.NeedRunningTime) //上完CPU的进程是否完毕{CPURunPro(PCBQueue, &e);             //上CPU++CPUUsedTime;                          //CPU时间增加}//***********    当进程执行完毕时打印输出    *************//e.FinishTime = CPUUsedTime;PrintProResult(&e);}getchar();return 0;
}

二、模拟银行家算法

介绍

data.h

#ifndef _Data_h_
#define _Data_h_#include <stdio.h>
#include <stdlib.h>
#include <string.h>#define ElemType PCB
#define Status int
#define true                1
#define false               0
#define OK                  1
#define ERROR               0
#define RESOURCE_NUM        3
#define MAX_RESOURCE_A_NUM  10
#define MAX_RESOURCE_B_NUM  5
#define MAX_RESOURCE_C_NUM  7
#define NAME_MAXSIZE        20
#define PCB_Num 5
typedef struct{int MaxNum[RESOURCE_NUM];            //需要每项资源个数int AllocationNum[RESOURCE_NUM];  //已占用每项资源个数int NeedNum[RESOURCE_NUM];           //还需要的每项资源个数
}ResourceList;typedef struct
{char Name[NAME_MAXSIZE];           //进程名ResourceList resList;              //资源清单
}PCB;typedef struct Node
{ElemType data;struct Node * Next;
}LNode,*LinkList;#endif

chainlist.h

#ifndef _ChainList_h_
#define _ChainList_h_#include "Data.h"Status Init(LinkList *L);
void Assignment(ElemType *e1, ElemType e2);
Status ListInsert_L(LinkList L,ElemType e);#endif

实现

ProPCB.h

#ifndef _ProPCB_h_
#define _ProPCB_h_#include "ChainList.h"
#include <string.h>
//上队列
Status GetProcess(LinkList Q,ElemType e);
//银行家算法
Status BankerAlgorithm(int *Allocation, int *Request,int i, int *Need, int *Available);
//安全性检测算法
Status SecurityCheck(int *Allocation,int *Need, int *Available);
//分配资源
Status AllocateResource(LinkList PCBdata , int pos , int *Request);
//获取资源矩阵
void GetMatrixData(LinkList PCBdata,int *Max,int *Allocation,int *Need,int *Available);
//打印进程资源信息
void PrintProQueue(LinkList L, int *A);
//得到指定PCB名的位置
void GetPos(LinkList L, char *name, int len, int *pos);
//对当前的请求进行预分配
void PreGrant(int* Allocation, int *Request,int pos,int *Need, int *Available);
//正式分配算法
void GrantSource(LinkList L, int *Request, int pos, int *Available);#endif

chainlist.c

#include "ChainList.h"
extern int CPUUsedTime;
Status Init(LinkList *L)
{*L = (LinkList)malloc(sizeof(LNode));strcpy((*L)->data.Name, "");(*L)->Next = NULL;return OK;
}void Assignment(ElemType *e1, ElemType e2)
{int i = 0;strcpy(e1->Name,e2.Name);for(i = 0; i < RESOURCE_NUM; ++i){e1->resList.AllocationNum[i] = e2.resList.AllocationNum[i];e1->resList.MaxNum[i] = e2.resList.MaxNum[i];e1->resList.NeedNum[i] = e2.resList.NeedNum[i];}
}Status ListInsert_L(LinkList L,ElemType e) //这样修改应该不对 p = *L出错
{LinkList p = L, s;while (p->Next)  p = p->Next;s = (LinkList)malloc(sizeof(LNode));Assignment(&s->data, e);s->Next = p->Next;p->Next = s;return OK;
}

ProPCB.c

#include "ProPCB.h"Status GetProcess(LinkList Q,ElemType e)
{return ListInsert_L(Q, e);
}Status AllocateResource(LinkList PCBdata , int pos , int *Request)
{int i = 1;LNode *p = PCBdata->Next;while (p && i < pos){p = p->Next;++i;}if(!p || i > pos)return ERROR;for (i = 0; i < RESOURCE_NUM; ++i){p->data.resList.AllocationNum[i] += Request[i];p->data.resList.NeedNum[i] -= Request[i];}return OK;
}
void GetMatrixData(LinkList PCBdata,int *Max,int *Allocation,int *Need,int *Available)
{LNode *p;int i, j, c = RESOURCE_NUM;Available[0] = Available[1] = Available[2] = 0;for(p = PCBdata->Next, i = 0; p; p = p->Next, ++i){for(j = 0; j < RESOURCE_NUM; ++j){Max[i * c + j] = p->data.resList.MaxNum[j];Allocation[i * c + j] = p->data.resList.AllocationNum[j];Need[i * c + j] = p->data.resList.NeedNum[j];}Available[0] += Allocation[i * c + 0];Available[1] += Allocation[i * c + 1];Available[2] += Allocation[i * c + 2];}Available[0] =  MAX_RESOURCE_A_NUM - Available[0];Available[1] =  MAX_RESOURCE_B_NUM - Available[1];Available[2] =  MAX_RESOURCE_C_NUM - Available[2];
}void PrintProQueue(LinkList L,int *available)
{int i = 0;L = L->Next;printf(" -------------------------------------------------------------\n");printf("|进程名 |     Max    |  Allocation |    Need    |  Available  |\n");printf("|       |  A   B   C |  A   B   C  | A   B   C  |  A   B   C  |\n");while(L){printf("|  %s   |  %d   %d   %d |  %d   %d   %d  | %d   %d   %d  |  %d   %d   %d  |\n",L->data.Name, L->data.resList.MaxNum[0], L->data.resList.MaxNum[1], L->data.resList.MaxNum[2],L->data.resList.AllocationNum[0],L->data.resList.AllocationNum[1],L->data.resList.AllocationNum[2],L->data.resList.NeedNum[0],L->data.resList.NeedNum[1],L->data.resList.NeedNum[2],available[0], available[1], available[2]);L = L->Next;}printf(" -------------------------------------------------------------\n");}//安全性检测算法
Status SecurityCheck(int *Allocation,int *Need, int *Available)
{/ 以下补充  //int work[RESOURCE_NUM];int Finish[PCB_Num];int k, i, j, t, f;int flag;//初始化工作向量和标记数组memcpy(work, Available, sizeof work);memset(Finish, 0, sizeof Finish);//最多检测PCB_Num次for(k = 0; k < PCB_Num; ++k){flag = 0;for(i = 0; i < PCB_Num; ++i){//已经被访问if(Finish[i]){continue;}//检测是否所有资源都能被分配for(j = 0; j < RESOURCE_NUM; ++j){if(!(Need[i * 3 + j] <= work[j])){break;}}//可以满足,回收if(j == RESOURCE_NUM){for(t = 0; t < RESOURCE_NUM; ++t){work[t] += Allocation[i * 3 + t];}Finish[i] = 1;flag = 1;break;}}//为进行分配,跳出循环if(!flag){break;}}for(f = 0; f < PCB_Num; ++f){//只要有一个进程不满足,跳出循环if(!Finish[f]){return ERROR;}}return OK;
}//银行家算法
Status BankerAlgorithm(int* Allocation, int *Request,int pos,int *Need, int *Available)
{/ 以下补充  //int i;//检查请求的是否大于需要的for(i = 0; i < RESOURCE_NUM; ++i){if(Request[i] > Need[pos*3 + i]){return ERROR;}}//检查请求的是否大于可分配的for(i = 0; i < RESOURCE_NUM; ++i){if(Request[i] > Available[i]){return ERROR;}}//进行预分配PreGrant(Allocation, Request, pos, Need, Available);//进行安全性检测if(!SecurityCheck(Allocation, Need, Available)){return ERROR;}return OK;
}//根据PCB的名字得到该PCB在链表中的位置
void GetPos(LinkList L, char *name, int len, int *pos)
{LinkList p = L->Next;char PcbName[NAME_MAXSIZE];memcpy(PcbName, name, (len + 1) * sizeof(char));(*pos) = 0;while(p){if(strcmp(p->data.Name, PcbName)){(*pos)++;p = p->Next;} else {break;}}
}//预分配算法
void PreGrant(int* Allocation, int *Request,int pos,int *Need, int *Available){int i;//1. Need减去请求的for(i = 0; i < RESOURCE_NUM; ++i){Need[pos*3 + i] -= Request[i];}//2. Available减去请求的for(i = 0; i < RESOURCE_NUM; ++i){Available[i] -= Request[i];}//3. Allocation加上请求的for(i = 0; i < RESOURCE_NUM; ++i){Allocation[pos*3 + i] += Request[i];}
}/*** 1.首先对请求资源的进程进行分配资源* 2.如果给该进程分配资源之后,该进程所需的资源等于已经得到的资源,那么对其拥有的资源进行回收*///正式分配算法,pos从0开始标记
void GrantSource(LinkList L, int *Request, int pos, int *Available){LinkList p = L->Next;int tag = 0;int i;int flag = 0;if(tag < pos && NULL != p){p = p->Next;tag++;}if(p){//已获得的加上请求的for(i = 0; i < RESOURCE_NUM; ++i){p->data.resList.AllocationNum[i] += Request[i];}//还需要的减去请求的for(i = 0; i < RESOURCE_NUM; ++i){p->data.resList.NeedNum[i] -= Request[i];}//可利用的减去请求的for(i = 0; i < RESOURCE_NUM; ++i){Available[i] -= Request[i];}//如果进行分配之后该进程最大所需资源数目等于已获得的资源数目,则对资源进行回收flag = 0;for(i = 0; i < RESOURCE_NUM; ++i){if(p->data.resList.AllocationNum[i] != p->data.resList.MaxNum[i]){flag = 1;break;}}if(!flag){for(i = 0; i < RESOURCE_NUM; ++i){Available[i] += p->data.resList.AllocationNum[i];}}}
}

main

#include "ProPCB.h"void InputData(LinkList * pPCBdata)
{ElemType e = {{0},{{0},{0},{0}}};strcpy(e.Name,"P0");e.resList.MaxNum[0] = 7;  e.resList.MaxNum[1] = 5;   e.resList.MaxNum[2] = 3;e.resList.AllocationNum[0] = 0;e.resList.AllocationNum[1] = 1;e.resList.AllocationNum[2] = 0;e.resList.NeedNum[0] = 7; e.resList.NeedNum[1] = 4;  e.resList.NeedNum[2] = 3;  GetProcess(*pPCBdata,e);strcpy(e.Name,"P1");e.resList.MaxNum[0] = 3; e.resList.MaxNum[1] = 2;   e.resList.MaxNum[2] = 2;e.resList.AllocationNum[0] = 2;e.resList.AllocationNum[1] = 0;e.resList.AllocationNum[2] = 0;e.resList.NeedNum[0] = 1; e.resList.NeedNum[1] = 2;  e.resList.NeedNum[2] = 2;  GetProcess(*pPCBdata,e);strcpy(e.Name,"P2");e.resList.MaxNum[0] = 9; e.resList.MaxNum[1] = 0;   e.resList.MaxNum[2] = 2;e.resList.AllocationNum[0] = 3;e.resList.AllocationNum[1] = 0;e.resList.AllocationNum[2] = 2;e.resList.NeedNum[0] = 6; e.resList.NeedNum[1] = 0;  e.resList.NeedNum[2] = 0;  GetProcess(*pPCBdata,e);strcpy(e.Name,"P3");e.resList.MaxNum[0] = 2; e.resList.MaxNum[1] = 2;   e.resList.MaxNum[2] = 2;e.resList.AllocationNum[0] = 2;e.resList.AllocationNum[1] = 1;e.resList.AllocationNum[2] = 1;e.resList.NeedNum[0] = 0; e.resList.NeedNum[1] = 1;  e.resList.NeedNum[2] = 1;  GetProcess(*pPCBdata,e);strcpy(e.Name,"P4");e.resList.MaxNum[0] = 4; e.resList.MaxNum[1] = 3;   e.resList.MaxNum[2] = 3;e.resList.AllocationNum[0] = 0;e.resList.AllocationNum[1] = 0;e.resList.AllocationNum[2] = 2;e.resList.NeedNum[0] = 4; e.resList.NeedNum[1] = 3;  e.resList.NeedNum[2] = 1;  GetProcess(*pPCBdata,e);
}
int main(void)
{LinkList PCBdata;  //PCBdata里面存放原始数据ElemType e = {{0},{{0},{0},{0}}};char PcbName[NAME_MAXSIZE], chioce;int Max[PCB_Num][RESOURCE_NUM] = {0}, Allocation[PCB_Num][RESOURCE_NUM] = {0};int Need[PCB_Num][RESOURCE_NUM] = {0}, Available[RESOURCE_NUM] = {0};int Request[RESOURCE_NUM] = {0}, pos = 0;LNode *p = NULL;int i;/ 以下补充  ////初始化就绪队列Init(&PCBdata);//数据输入InputData(&PCBdata);while(1){//获取所有PCB中的资源信息GetMatrixData(PCBdata, *Max, *Allocation, *Need, Available);//打印当前系统的状态PrintProQueue(PCBdata, Available);//接受请求printf("请输入申请资源的进程名,资源A,资源B,资源C申请量(空格隔开):");scanf("%s", PcbName);for(i = 0; i < RESOURCE_NUM; ++i){scanf("%d", &Request[i]);}//获取相应的PCB在链表中的位置GetPos(PCBdata, PcbName, strlen(PcbName), &pos);//跑银行家算法,根据返回值的状态判断是否安全,//如果安全,进行正式分配,否则仅仅打印不安全信息if(BankerAlgorithm(*Allocation, Request, pos, *Need, Available)){//正式分配资源GrantSource(PCBdata, Request, pos, Available);//分配完成后,打印资源的信息GetMatrixData(PCBdata, *Max, *Allocation, *Need, Available);PrintProQueue(PCBdata, Available);printf("请安任意键继续. . . ");getchar();getchar();} else {printf("不安全,不可分配!\n");}}return 0;
}

三、模拟固定分区分配

介绍

data.h

#ifndef _Data_h_
#define _Data_h_#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LIST_INIT_SIZE 10
#define LISTINCREMENT  2
#define true                1
#define false               0
#define PCBType             PCB
#define Status              int
#define OK                  1
#define ERROR               0
#define NAME_MAXSIZE        20
#define PCB_Num             5
#define LIST_INITSIZE       10
#define PartiType           PartitionInfo
#define TotalMemory         512 //KBtypedef enum
{Unallocated, Allocated
}DistributState, PartitionSt;typedef enum
{FirstPriority, BestAdapt
}AllocatStrategy;typedef struct
{char Name[NAME_MAXSIZE];   //进程名int    MemorySize;             //内存的大小int StartAddress;            //内存起始地址DistributState DistbutSt;   //分配状态
}PCB;typedef struct Node
{PCBType data;struct Node * Next;
}LNode, *LinkList, *PCBList;            //typedef struct {//分区号用数组下标代替int PartitionSize;int PartStartAddr;char Name[NAME_MAXSIZE];//若为空,则分区空闲
}PartitionInfo;typedef struct
{PartiType *elem;int listsize;      //表容量int length;            //元素个数
}SqList, PartTable;     //分区表#endif

list.h

#ifndef _List_h_
#define _List_h_#include "Data.h"//*******           链表            *******//
Status InitLinkList(LinkList *L);
void PCBAssign(PCBType *e1, PCBType e2);
Status GetElemt_L(LinkList L,int i,PCBType *e);
Status ListInsert_L(LinkList L,PCBType e);
Status ListDelete_L(LinkList L,int i,PCBType *e);//******         动态顺序表           ******//
void PartiAssign(PartiType *e1, PartiType e2);
Status InitList_Sq(SqList *L);
Status ListInsert_Sq(SqList *L,int i,PartiType e);
Status ListDelete_Sq(SqList *L,int i,PartiType *e);#endif
#ifndef _MemoryManage_h_
#define _MemoryManage_h_#include "List.h"//*****         PCB链表操作        *****//
Status InsertProcess(LinkList Q,PCBType e);
Status DeleteProsess(LinkList Q,int i,PCBType *e);
//*****         分区表操作        *****//
Status InsertTable(SqList *L, int i, PartiType e);
Status DeleteTable(SqList *L, int i, PartiType *e);
int SelectPart(PCB* pPCB, SqList *pPartTable);
int MallocMemory(PCB *pe, SqList *pPartTable, int pos);
void SearchSpace(PCBList PCBdata, SqList partTable);
void FreeMemory(int pos, SqList *pPartTable);
void InitAllocation(PCBList PCBdata, PartTable partTable);
void PrintProQueue(LinkList L);
void PrintPartTable(PartTable L);#endif

实现

list.c

#include "List.h"Status InitLinkList(LinkList *L)
{*L = (LinkList)malloc(sizeof(LNode));strcpy((*L)->data.Name, "");(*L)->Next = NULL;return OK;
}void PCBAssign(PCBType *e1, PCBType e2)
{strcpy(e1->Name,e2.Name);e1->DistbutSt = e2.DistbutSt;e1->MemorySize = e2.MemorySize;e1->StartAddress = e2.StartAddress;
}Status GetElemt_L(LinkList L,int i,PCBType *e)
{LinkList p = L->Next;  //指向第j个结点int j = 1;                //从第一个开始往后找while ( p && j < i )  //p不为空且j < i{p = p->Next;++j;}                     //p为空,说明链表循环结束,也没有到第i个结点   j==iif (!p || j > i)      //因为此处对i   没有做判断   如果 i==0  或 负数  条件成立//对于 i == j == 1 的情况则不用循环正好  返回{return ERROR;}*e = p->data;         //通过寻址改变了 该地址内存中元素的值return OK;
}
//链表中按照优先级:从大到小排序插入
Status ListInsert_L(LinkList L,PCBType e)   //这样修改应该不对 p = *L出错
{LinkList p = L, s;while (p->Next)  p = p->Next;s = (LinkList)malloc(sizeof(LNode));PCBAssign(&s->data, e);s->Next = p->Next;p->Next = s;return OK;
}
//链表中头部删除
Status ListDelete_L(LinkList L,int i,PCBType *e)
{LinkList p = L, q;int j = 0;while (p->Next && j < i-1){p = p->Next; ++j;}if(!p->Next || j > i - 1)return ERROR;q = p->Next;p->Next = q->Next;PCBAssign(e, q->data);free(q);return OK;
}//           初始化         ///
void PartiAssign(PartiType *e1, PartiType e2)
{e1->PartitionSize = e2.PartitionSize;e1->PartStartAddr = e2.PartStartAddr;strcpy(e1->Name, e2.Name);
}Status InitList_Sq(SqList *L)
{//构造一个空的线性表LL->elem = (PartiType *)malloc((LIST_INIT_SIZE)*sizeof(PartiType));if(!L->elem) return ERROR;        //存储分配失败L->length = 0;                 //空表长度为0L->listsize = LIST_INIT_SIZE;  //初始存储的容量return OK;
}//在顺序线性表L中第i个位置之前插入新的元素e
Status ListInsert_Sq(SqList *L,int i,PartiType e)
{//在顺序线性表L中第i个位置之前插入新的元素e//i的合法值为1 <= i <= ListLength_Sq(L)+1PartiType *q, *p, *newbase;if(i < 1 || i > L->length + 1 ) return ERROR;     //i值不合法if(L->length >= L->listsize){               //当前存储空间已满,增加分配newbase = (PartiType *)realloc(L->elem,(L->listsize + LISTINCREMENT)*sizeof(PartiType));if(!newbase) return ERROR;              //存储分配失败L->elem = newbase;                      //新基址L->listsize += LISTINCREMENT;         //增加存储容量} q = &(L->elem[i - 1]);                        //q为插入位置for(p = &(L->elem[L->length-1]);p >= q; --p)PartiAssign((p+1),*p);                  //插入位置及之后的元素右移PartiAssign(q ,e);                            //插入eL->length++;return OK;
}//在顺序线性表L中删除第i个元素,并用e返回其值
Status ListDelete_Sq(SqList *L,int i,PartiType *e)
{//在顺序线性表L中删除第i个元素,并用e返回其值//i的合法值为1 <= i <= ListLength_Sq(L)PartiType *p,*q;if((i < 1) || (i > L->length))  return ERROR;                            //i值不合法p = &(L->elem[i-1]);                         //p为被删除元素的位置PartiAssign(e, *p);                             //将被删除元素的值赋给e (待定)q = L->elem + L->length-1;                  //移动到表尾元素的位置for (++p;p<=q;++p)PartiAssign((p-1), *p);                   //被删除元素之后的元素左移L->length--;return OK;
}

memoryManage.c

#include "MemoryManage.h"//*****         PCB链表操作        *****//
Status InsertProcess(LinkList Q,PCBType e)
{return ListInsert_L(Q, e);
}Status DeleteProsess(LinkList Q,int i,PCBType *e)
{return ListDelete_L(Q ,i,e);
}//*****         分区表操作        *****//
Status InsertTable(SqList *L, int i, PartiType e)
{return ListInsert_Sq(L,i, e);
}Status DeleteTable(SqList *L, int i, PartiType *e)
{return ListDelete_Sq(L, i, e);
}//返回第几个内存块,从1开始,若返回0,则代表错误
int SelectPart(PCB* pPCB, SqList *pPartTable)
{int i,Start;if(pPCB->MemorySize <= 16)Start = 0;else if(pPCB->MemorySize <= 32)Start = 1;else if(pPCB->MemorySize <= 64)Start = 2;else if(pPCB->MemorySize <= 128)Start = 3;else if(pPCB->MemorySize <= 256)Start = 4;else{printf("内存过大,无法装入!\n");return ERROR;}for (i = Start; i < pPartTable->length; ++i)if(!strcmp(pPartTable->elem[i].Name, ""))return i + 1;return ERROR;
}//i传递的是下标
int MallocMemory(PCB *pe, SqList *pPartTable,int i)
{///   以下需要补充    /pe->DistbutSt = Allocated;pe->StartAddress = pPartTable->elem[i].PartStartAddr;strcpy(pPartTable->elem[i].Name, pe->Name);return OK;
}/*** PCBdata:表示PCB链* partTable:分区表* 将每一个PCB取出,查找是否有合适的分区可以分配给他,如果有分配,如果没有不分配*/
void InitAllocation(PCBList PCBdata, PartTable partTable)
{///   以下需要补充    /PCBList L = PCBdata->Next;int pos;while(L){pos = SelectPart(&L->data, &partTable);if(pos == 0) {printf("无法为%s进程分配空间!!!\n", L->data.Name);} else {L->data.DistbutSt = Allocated;L->data.StartAddress = partTable.elem[pos-1].PartStartAddr;strcpy(partTable.elem[pos-1].Name, L->data.Name);}L = L->Next;}//SearchSpace(PCBdata, partTable);
}void FreeMemory(int pos, SqList *pPartTable)
{///   以下需要补充    /strcpy(pPartTable->elem[pos].Name, "");
}void SearchSpace(PCBList PCBdata, SqList partTable)
{int pos;LNode *p;p = PCBdata->Next;while (p){if(p->data.DistbutSt == Unallocated){pos = SelectPart(&(p->data), &partTable);//从1开始if(pos){MallocMemory(&(p->data), &partTable, pos - 1);break;}}p = p->Next;}}void PrintProQueue(LinkList L)
{int i = 0;L = L->Next;printf(" ----------------------------------------\n");printf("|进程名 | 起始位置 | 申请大小 | 是否分配 |\n");while(L){printf("|  %s   |  %4d    |  %4d    |  %4s    |\n",L->data.Name, L->data.StartAddress, L->data.MemorySize, L->data.DistbutSt == Allocated?  "是" : "否");L = L->Next;}printf(" ----------------------------------------\n");
}void PrintPartTable(PartTable L)
{int i = 0, j = 0;printf(" ----------------------------------------\n");printf("|分区号 | 起始位置 | 分区大小 | 是否分配 |\n");for (i = 0; i < L.length; ++i)printf("|  %2d   |  %4d    |  %4d    |  %4s    |\n",i + 1 , L.elem[i].PartStartAddr, L.elem[i].PartitionSize , strcmp(L.elem[i].Name, "") ? L.elem[i].Name :"否");printf(" ----------------------------------------\n");
}

main

#include "MemoryManage.h"/*实验06 固定分区分配
* 分配策略:
* ①离队首最近,能够装入该分区的进程;
* ②搜索能够装入该分区最大的进程。
*/void InputPCBData(PCBList * pPCBdata)
{PCBType e = {{0}, 0, 0, Unallocated};strcpy(e.Name,"P1");e.MemorySize = 16;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P2");e.MemorySize = 32;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P3");e.MemorySize = 48;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P4");e.MemorySize = 96;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P5");e.MemorySize = 100;InsertProcess(*pPCBdata,e);
}void SetFixedZone(PartTable * pPartdata)
{PartiType se = {0, 0, Unallocated };se.PartStartAddr = 16;se.PartitionSize = 16;InsertTable(pPartdata, 1, se);se.PartStartAddr = 32;se.PartitionSize = 32;InsertTable(pPartdata, 2, se);se.PartStartAddr = 64;se.PartitionSize = 64;InsertTable(pPartdata, 3, se);se.PartStartAddr = 128;se.PartitionSize = 128;InsertTable(pPartdata, 4, se);se.PartStartAddr = 256;se.PartitionSize = 256;InsertTable(pPartdata, 5, se);}
//0 - 15Kb 操作系统占用  总大小512KB
int main(void)
{PCBList PCBdata;       //PCBdata里面存放原始PCB数据PartTable partTable;    //分区表char PcbName[NAME_MAXSIZE] = {0}, choice;PCBType PCBe = {{0}, 0, 0, Unallocated};PartiType Parte = {0, 0};PCBType tmp;PCBType *pcb = NULL;LNode *p; PCBList pl = NULL;int tpos = 0;int startAddress;int i, size, pos, j;InitList_Sq(&partTable);SetFixedZone(&partTable);InitLinkList(&PCBdata);InputPCBData(&PCBdata);InitAllocation(PCBdata, partTable);PrintProQueue(PCBdata);PrintPartTable(partTable);while(true){system("cls");PrintProQueue(PCBdata);PrintPartTable(partTable);printf(" ================================================\n");printf("|           1.结 束 进 程                        |\n");printf("|           2.添 加 进 程                        |\n");printf("|           3.退 出 系 统                        |\n");printf(" ================================================\n");printf("请选择:");fflush(stdin);scanf("%d",&choice);//printf("haha");switch (choice){///   以下需要补充    /case 1:printf("要结束的进程名:");scanf("%s", PcbName);//找到指定进程的位置,pl = PCBdata->Next;startAddress = -1;tpos = 0;while(pl){tpos++;if(!strcmp(pl->data.Name, PcbName) && pl->data.DistbutSt == Allocated){startAddress = pl->data.StartAddress;break;}pl = pl->Next;}if(startAddress == -1){printf("进程不存在!!!\n");break;}//删除进程DeleteProsess(PCBdata, tpos, &tmp);//根据起始地址找到要回收的分区for(j = 0; j < partTable.length; ++j){if(partTable.elem[j].PartStartAddr == startAddress){tpos = j;break;}}//回收内存FreeMemory(tpos, &partTable);//重新检查是否可以为其他进程分配SearchSpace(PCBdata, partTable);break;case 2:printf("请输入添加的进程名和所占分区的大小:");scanf("%s %d", PcbName, &size);strcpy(PCBe.Name, PcbName);PCBe.MemorySize = size;PCBe.DistbutSt = Unallocated;PCBe.StartAddress = 0;InsertProcess(PCBdata, PCBe);SearchSpace(PCBdata, partTable);break;case 3:exit(0);break;}PrintProQueue(PCBdata);PrintPartTable(partTable);system("pause");}return 0;
}

四、模拟基本分页存储

介绍

data.h

#ifndef _Data_h_
#define _Data_h_#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>#define LIST_INIT_SIZE 10
#define LISTINCREMENT  2
#define true                1
#define false               0
#define PCBType             PCB
#define Status              int
#define OK                  1
#define ERROR               0
#define NAME_MAXSIZE        20
#define PCB_Num             5
#define LIST_INITSIZE       10
#define PartiType           PartitionInfo
#define BlockNumType        PageData //分页信息
#define TotalMemory         512 //KB
#define PageSize            16  //通常为1 ~ 8KB    //进程申请内存的大小[16, 256]KB    256 / 8 = 32页typedef enum
{Unallocated, Allocated
}DistributState, PartitionSt;typedef struct {//分区号用数组下标代替int PartStartAddr;char Name[NAME_MAXSIZE];//若为空,则分区空闲
}PartitionInfo;typedef struct
{PartitionInfo *elem;int listsize;      //表容量int length;            //元素个数
}SqList_f, PartTable;   //分区使用说明表typedef struct {                       int BlockNum;               //块号DistributState DistbutSt;   //分配状态
}PageData;typedef struct
{PageData *elem;    int listsize;       int length;
}SqList_y, PageTable;   //页表typedef struct
{char Name[NAME_MAXSIZE];   //进程名int    MemorySize;             //内存的大小PageTable *pPagetable;       //页表指针
}PCB;typedef struct Node
{PCBType data;struct Node * Next;
}LNode, *LinkList, *PCBList;#endif

list.h

#ifndef _List_h_
#define _List_h_#include "Data.h"//*******           链表            *******//
Status InitLinkList(LinkList *L);
void PCBAssign(PCBType *e1, PCBType e2);
Status GetElemt_L(LinkList L,int i,PCBType *e);
Status ListInsert_L(LinkList L,PCBType e);
Status ListDelete_L(LinkList L,int i,PCBType *e);//******         分区使用说明表           ******//
void PartiAssign_f(PartiType *e1, PartiType e2);
Status InitList_f(SqList_f *L);
Status ListInsert_f(SqList_f *L,int i,PartiType e);
Status ListDelete_f(SqList_f *L,int i,PartiType *e);//******         页表           ******//
void PartiAssign_y(BlockNumType *e1, BlockNumType e2);
Status InitList_y(SqList_y **L);
Status ListInsert_y(SqList_y *L,int i,BlockNumType e);
Status ListDelete_y(SqList_y *L,int i,BlockNumType *e);#endif

memorymanage.h

#ifndef _MemoryManage_h_
#define _MemoryManage_h_#include "List.h"//*****         PCB 链 表 操 作        *****//
Status InsertProcess(LinkList Q,PCBType e);
Status DeleteProsess(LinkList Q,int i,PCBType *e);
//*****         分 区 表 操 作         *****//
//插入分区表元素
Status InsertTable_f(SqList_f *L, int i, PartiType e);
//删除分区表元素
Status DeleteTable_f(SqList_f *L, int i, PartiType *e);//******          页 表 操 作         ******//
//插入页表元素
Status InsertTable_y(SqList_y *L, int i, BlockNumType e);
//删除页表元素
Status DeleteTable_y(SqList_y *L, int i, BlockNumType *e);
Status LoadPages(PageTable *L, int size);Status MallocMemory(PCB *pe, SqList_f *pPartTable, int *arr);
Status SelectPart(PCB* pPCB, SqList_f *pPartTable,int *arr);
void SearchSpace(PCBList PCBdata, SqList_f *partTable);
void FreeMemory(int *arr, int len, SqList_f *pPartTable);
void InitAllocation(PCBList PCBdata, PartTable *partTable);
void PrintProQueue(LinkList L);
void PrintPartTable(PartTable L);#endif

实现

#include "List.h"//*******           链表            *******//
Status InitLinkList(LinkList *L)
{*L = (LinkList)malloc(sizeof(LNode));strcpy((*L)->data.Name, "");(*L)->Next = NULL;return OK;
}void PCBAssign(PCBType *e1, PCBType e2)
{strcpy(e1->Name,e2.Name);e1->MemorySize = e2.MemorySize;e1->pPagetable = e2.pPagetable;
}Status GetElemt_L(LinkList L,int i,PCBType *e)
{LinkList p = L->Next;  //指向第j个结点int j = 1;                //从第一个开始往后找while ( p && j < i )  //p不为空且j < i{p = p->Next;++j;}                     //p为空,说明链表循环结束,也没有到第i个结点   j==iif (!p || j > i)      //因为此处对i   没有做判断   如果 i==0  或 负数  条件成立//对于 i == j == 1 的情况则不用循环正好  返回{return ERROR;}*e = p->data;         //通过寻址改变了 该地址内存中元素的值return OK;
}
//链表中按照优先级:从大到小排序插入
Status ListInsert_L(LinkList L,PCBType e)   //这样修改应该不对 p = *L出错
{LinkList p = L, s;while (p->Next)  p = p->Next;s = (LinkList)malloc(sizeof(LNode));PCBAssign(&s->data, e);s->Next = p->Next;p->Next = s;return OK;
}Status ListDelete_L(LinkList L,int i,PCBType *e)
{LinkList p = L, q;int j = 0;while (p->Next && j < i-1){p = p->Next; ++j;}if(!p->Next || j > i - 1)return ERROR;q = p->Next;p->Next = q->Next;PCBAssign(e, q->data);free(q);return OK;
}//******         分区使用说明表           ******//
void PartiAssign_f(PartiType *e1, PartiType e2)
{e1->PartStartAddr = e2.PartStartAddr;strcpy(e1->Name, e2.Name);
}Status InitList_f(SqList_f *L)
{//构造一个空的线性表LL->elem = (PartiType *)malloc((LIST_INIT_SIZE)*sizeof(PartiType));if(!L->elem) return ERROR;        //存储分配失败L->length = 0;                 //空表长度为0L->listsize = LIST_INIT_SIZE;  //初始存储的容量return OK;
}//在顺序线性表L中第i个位置之前插入新的元素e
Status ListInsert_f(SqList_f *L,int i,PartiType e)
{//在顺序线性表L中第i个位置之前插入新的元素e//i的合法值为1 <= i <= ListLength_Sq(L)+1PartiType *q, *p, *newbase;if(i < 1 || i > L->length + 1 ) return ERROR;     //i值不合法if(L->length >= L->listsize){               //当前存储空间已满,增加分配newbase = (PartiType *)realloc(L->elem,(L->listsize + LISTINCREMENT)*sizeof(PartiType));if(!newbase) return ERROR;              //存储分配失败L->elem = newbase;                      //新基址L->listsize += LISTINCREMENT;         //增加存储容量} q = &(L->elem[i - 1]);                        //q为插入位置for(p = &(L->elem[L->length-1]);p >= q; --p)PartiAssign_f((p+1),*p);                    //插入位置及之后的元素右移PartiAssign_f(q ,e);                          //插入eL->length++;return OK;
}//在顺序线性表L中删除第i个元素,并用e返回其值
Status ListDelete_f(SqList_f *L,int i,PartiType *e)
{//在顺序线性表L中删除第i个元素,并用e返回其值//i的合法值为1 <= i <= ListLength_Sq(L)PartiType *p,*q;if((i < 1) || (i > L->length))  return ERROR;                            //i值不合法p = &(L->elem[i-1]);                         //p为被删除元素的位置PartiAssign_f(e, *p);                           //将被删除元素的值赋给e (待定)q = L->elem + L->length-1;                  //移动到表尾元素的位置for (++p;p<=q;++p)PartiAssign_f((p-1), *p);                     //被删除元素之后的元素左移L->length--;return OK;
}//******         页表           ******//void PartiAssign_y(BlockNumType *e1, BlockNumType e2)
{(*e1).BlockNum = e2.BlockNum;(*e1).DistbutSt = e2.DistbutSt;
}Status InitList_y(SqList_y **L)
{//构造一个空的线性表L(*L) = (PageTable *)malloc(sizeof(PageTable));//不可缺少(*L)->elem = (BlockNumType *)malloc((LIST_INIT_SIZE)*sizeof(BlockNumType));if(!(*L)->elem) return ERROR;        //存储分配失败(*L)->length = 0;                 //空表长度为0(*L)->listsize = LIST_INIT_SIZE;  //初始存储的容量return OK;
}//在顺序线性表L中第i个位置之前插入新的元素e
Status ListInsert_y(SqList_y *L,int i,BlockNumType e)
{//在顺序线性表L中第i个位置之前插入新的元素e//i的合法值为1 <= i <= ListLength_Sq(L)+1BlockNumType *q, *p, *newbase;if(i < 1 || i > L->length + 1 ) return ERROR;     //i值不合法if(L->length >= L->listsize){               //当前存储空间已满,增加分配newbase = (BlockNumType *)realloc(L->elem,(L->listsize + LISTINCREMENT)*sizeof(BlockNumType));if(!newbase) return ERROR;             //存储分配失败L->elem = newbase;                      //新基址L->listsize += LISTINCREMENT;         //增加存储容量} q = &(L->elem[i - 1]);                        //q为插入位置for(p = &(L->elem[L->length-1]);p >= q; --p)PartiAssign_y((p+1),*p);                    //插入位置及之后的元素右移PartiAssign_y(q ,e);                          //插入eL->length++;return OK;
}//在顺序线性表L中删除第i个元素,并用e返回其值
Status ListDelete_y(SqList_y *L,int i,BlockNumType *e)
{//在顺序线性表L中删除第i个元素,并用e返回其值//i的合法值为1 <= i <= ListLength_Sq(L)BlockNumType *p,*q;if((i < 1) || (i > L->length))   return ERROR;                            //i值不合法p = &(L->elem[i-1]);                         //p为被删除元素的位置PartiAssign_y(e, *p);                           //将被删除元素的值赋给e (待定)q = L->elem + L->length-1;                  //移动到表尾元素的位置for (++p;p<=q;++p)PartiAssign_y((p-1), *p);                 //被删除元素之后的元素左移L->length--;return OK;
}

memorymanage.c


#include "MemoryManage.h"//*****         PCB链表操作        *****//
Status InsertProcess(LinkList Q,PCBType e)
{return ListInsert_L(Q, e);
}Status DeleteProsess(LinkList Q,int i,PCBType *e)
{return ListDelete_L(Q ,i,e);
}//*****         分区表操作        *****//
Status InsertTable_f(SqList_f *L, int i, PartiType e)
{return ListInsert_f(L,i, e);
}Status DeleteTable_f(SqList_f *L, int i, PartiType *e)
{return ListDelete_f(L, i, e);
}//*****         页表操作        *****//
Status InsertTable_y(SqList_y *L, int i, BlockNumType e)
{return ListInsert_y(L,i, e);
}Status DeleteTable_y(SqList_y *L, int i, BlockNumType *e)
{return ListDelete_y(L, i, e);
}Status LoadPages(PageTable *L, int size)
{int i, pageNum = ceil( size * 1.0 / PageSize) ;PageData e = {-1, Unallocated};for (i = 0; i < pageNum; i++){if(!InsertTable_y(L, L->length + 1, e))return ERROR;}return OK;;
}//若返回0,则代表错误
Status SelectPart(PCB* pPCB, SqList_f *pPartTable,int *arr)
{/     以下补充     /int i = 0, j = 0;while(i < pPCB->pPagetable->length && j < pPartTable->length){if(pPCB->pPagetable->elem[i].DistbutSt == Unallocated){if(!strcmp(pPartTable->elem[j].Name, "")){arr[i] = j;++i;++j;} else {++j;}} else {++i;}}if(i == pPCB->pPagetable->length){return OK;}return ERROR;
}Status MallocMemory(PCB *pe, SqList_f *pPartTable, int *arr)
{int i, pageNum ;以下补充     /for(i = 0; i < pe->pPagetable->length; ++i){if(pe->pPagetable->elem[i].DistbutSt == Unallocated){pe->pPagetable->elem[i].BlockNum = arr[i];pe->pPagetable->elem[i].DistbutSt = Allocated;strcpy(pPartTable->elem[arr[i]].Name, pe->Name);}}return ERROR;
}void InitAllocation(PCBList PCBdata, PartTable *pPartTable)
{LNode *p;int pos, arr[20] = {0};p = PCBdata->Next;while (p){if(p->data.pPagetable->elem[0].DistbutSt == Unallocated){if(SelectPart(&(p->data), pPartTable, arr)){MallocMemory(&(p->data), pPartTable, arr);}}p = p->Next;}
}//该释放进程只在结束进程时用到,因此不用管进程信息
void FreeMemory(int *arr, int len, SqList_f *pPartTable)
{int i;以下补充   /for(i = 0; i < len; ++i){strcpy(pPartTable->elem[arr[i]].Name, "");}
}void SearchSpace(PCBList PCBdata, SqList_f *partTable)
{int pos, arr[20] = {0};LNode *p;p = PCBdata->Next;while (p){if(p->data.pPagetable->elem[0].DistbutSt == Unallocated){if(SelectPart(&(p->data), partTable, arr)){MallocMemory(&(p->data), partTable, arr);}}p = p->Next;}}void PrintProQueue(LinkList L)
{int i = 0;L = L->Next;while(L){printf(" -----------------------------\n");printf("|进程名 | 申请大小 |\n");printf("|  %s   |  %4d    |\n", L->data.Name, L->data.MemorySize);printf("%s页表信息如下:\n|   页号   |   块号   | 是否分配 |\n", L->data.Name);for (i = 0; i < L->data.pPagetable->length; i++)printf("|  %4d    |  %4d    |  %4s    |\n", i , L->data.pPagetable->elem[i].BlockNum,L->data.pPagetable->elem[i].DistbutSt == Allocated?  "是" : "否");L = L->Next;}printf(" ----------------------------------------\n");
}void PrintPartTable(PartTable L)
{int i = 0, j = 0;printf(" ----------------------------------------\n");printf("|分区号 | 起始位置 | 分区大小 | 是否分配 |\n");for (i = 0; i < L.length; ++i)printf("|  %2d   |  %4d    |  %4d    |  %4s    |\n",i , L.elem[i].PartStartAddr, PageSize , strcmp(L.elem[i].Name, "") ? L.elem[i].Name :"否");printf(" ----------------------------------------\n");
}

main

#include "MemoryManage.h"/*   实验08  基本分页   */void InputPCBData(PCBList * pPCBdata)
{PCBType e = {{0}, 0, NULL};strcpy(e.Name,"P1");e.MemorySize = 16;InitList_y(&(e.pPagetable));LoadPages(e.pPagetable, e.MemorySize);InsertProcess(*pPCBdata,e);strcpy(e.Name,"P2");e.MemorySize = 32;InitList_y(&(e.pPagetable));LoadPages(e.pPagetable, e.MemorySize);InsertProcess(*pPCBdata,e);strcpy(e.Name,"P3");e.MemorySize = 48;InitList_y(&(e.pPagetable));LoadPages(e.pPagetable, e.MemorySize);InsertProcess(*pPCBdata,e);strcpy(e.Name,"P4");e.MemorySize = 96;InitList_y(&(e.pPagetable));LoadPages(e.pPagetable, e.MemorySize);InsertProcess(*pPCBdata,e);strcpy(e.Name,"P5");e.MemorySize = 100;InitList_y(&(e.pPagetable));LoadPages(e.pPagetable, e.MemorySize);InsertProcess(*pPCBdata,e);
}void SettingPage(PartTable * pPartdata)
{PartiType se = {0, {0}};int Num = (512 - 16) / PageSize , i;for (i = 0; i < Num; ++i){se.PartStartAddr = 16 + i * PageSize;InsertTable_f(pPartdata, i + 1, se);}
}
//0 - 15Kb 操作系统占用  总大小512KB
int main(void)
{PCBList PCBdata;       //PCBdata里面存放原始PCB数据PartTable partTable;    //分区表char PcbName[NAME_MAXSIZE] = {0}, choice;PCBType PCBe = {{0}, 0, NULL};PartiType Parte = {0, 0};PCBType *pcb = NULL;LNode *p; int i, size, pos, arr[20] = {0}, k = 0;InitList_f(&partTable);SettingPage(&partTable);InitLinkList(&PCBdata);InputPCBData(&PCBdata);InitAllocation(PCBdata, &partTable);PrintProQueue(PCBdata);PrintPartTable(partTable);while(true){system("cls");PrintProQueue(PCBdata);PrintPartTable(partTable);printf(" ================================================\n");printf("|           1.结 束 进 程                        |\n");printf("|           2.添 加 进 程                        |\n");printf("|           3.退 出 系 统                        |\n");printf(" ================================================\n");printf("请选择:");fflush(stdin);scanf("%c",&choice);switch (choice){case '1':printf("要结束的进程名:");scanf("%s",PcbName);for (p = PCBdata->Next, i = 1; p && strcmp(PcbName, p->data.Name); i++, p = p->Next);if(!p){printf("进程名输入错误!\n");break;}DeleteProsess(PCBdata, i, &PCBe);k = 0;for(i = 0; i < partTable.length; i++){if(!strcmp(PcbName, partTable.elem[i].Name)){arr[k++] = i;}}FreeMemory(arr, k, &partTable);SearchSpace(PCBdata, &partTable);break;case '2':printf("请输入添加的进程名,进程所占内存大小:");scanf("%s%d",PcbName , &size);strcpy(PCBe.Name, PcbName);PCBe.MemorySize = size;InitList_y(&(PCBe.pPagetable));LoadPages(PCBe.pPagetable, PCBe.MemorySize);if(SelectPart(&(PCBe), &partTable, arr))MallocMemory(&(PCBe), &partTable, arr);InsertProcess(PCBdata, PCBe);break;case '3':return 0;default:printf("选择项输入错误,重新选择!\n");break;}PrintProQueue(PCBdata);PrintPartTable(partTable);system("pause");}return 0;
}

五、模拟动态分区分配

介绍

list.h

#ifndef _List_h_
#define _List_h_#include "Data.h"//*******           链表            *******//
Status InitLinkList(LinkList *L);
void PCBAssign(PCBType *e1, PCBType e2);
Status GetElemt_L(LinkList L,int i,PCBType *e);
Status ListInsert_L(LinkList L,PCBType e);
Status ListDelete_L(LinkList L,int i,PCBType *e);//******         动态顺序表           ******//
void PartiAssign(PartiType *e1, PartiType e2);
Status InitList_Sq(SqList *L);
Status ListInsert_Sq(SqList *L,int i,PartiType e);
Status ListDelete_Sq(SqList *L,int i,PartiType *e);#endif

MemoryManage.h

#ifndef _MemoryManage_h_
#define _MemoryManage_h_#include "List.h"//*****         PCB链表操作        *****//
Status InsertProcess(LinkList Q,PCBType e);
Status DeleteProsess(LinkList Q,int i,PCBType *e);
//*****         分区表操作        *****//
Status InsertTable(SqList *L, int i, PartiType e);
Status DeleteTable(SqList *L, int i, PartiType *e);
int SelectPart(PCB* pPCB, SqList *pPartTable, AllocatStrategy AS);
int MallocMemory(PCB *pe, SqList *pPartTable,int i);
void SearchSpace(PCBList PCBdata, SqList *partTable, AllocatStrategy AS);
void FreeMemory(int pos, SqList *pPartTable);
void InitAllocation(PCBList PCBdata, PartTable *partTable, AllocatStrategy AS);
void PrintProQueue(LinkList L);
void PrintPartTable(PartTable L);#endif

实现

list.c

#include "List.h"Status InitLinkList(LinkList *L)
{*L = (LinkList)malloc(sizeof(LNode));strcpy((*L)->data.Name, "");(*L)->Next = NULL;return OK;
}void PCBAssign(PCBType *e1, PCBType e2)
{strcpy(e1->Name,e2.Name);e1->DistbutSt = e2.DistbutSt;e1->MemorySize = e2.MemorySize;e1->StartAddress = e2.StartAddress;
}Status GetElemt_L(LinkList L,int i,PCBType *e)
{LinkList p = L->Next;  //指向第j个结点int j = 1;                //从第一个开始往后找while ( p && j < i )  //p不为空且j < i{p = p->Next;++j;}                     //p为空,说明链表循环结束,也没有到第i个结点   j==iif (!p || j > i)      //因为此处对i   没有做判断   如果 i==0  或 负数  条件成立//对于 i == j == 1 的情况则不用循环正好  返回{return ERROR;}*e = p->data;         //通过寻址改变了 该地址内存中元素的值return OK;
}
//链表中按照优先级:从大到小排序插入
Status ListInsert_L(LinkList L,PCBType e)   //这样修改应该不对 p = *L出错
{LinkList p = L, s;while (p->Next)  p = p->Next;s = (LinkList)malloc(sizeof(LNode));PCBAssign(&s->data, e);s->Next = p->Next;p->Next = s;return OK;
}
//链表中头部删除
Status ListDelete_L(LinkList L,int i,PCBType *e)
{LinkList p = L, q;int j = 0;while (p->Next && j < i-1){p = p->Next; ++j;}if(!p->Next || j > i - 1)return ERROR;q = p->Next;p->Next = q->Next;PCBAssign(e, q->data);free(q);return OK;
}//           初始化         ///
void PartiAssign(PartiType *e1, PartiType e2)
{e1->PartitionSize = e2.PartitionSize;e1->PartStartAddr = e2.PartStartAddr;strcpy(e1->Name, e2.Name);
}Status InitList_Sq(SqList *L)
{//构造一个空的线性表LL->elem = (PartiType *)malloc((LIST_INIT_SIZE)*sizeof(PartiType));if(!L->elem) return ERROR;        //存储分配失败L->length = 0;                 //空表长度为0L->listsize = LIST_INIT_SIZE;  //初始存储的容量return OK;
}//在顺序线性表L中第i个位置之前插入新的元素e
Status ListInsert_Sq(SqList *L,int i,PartiType e)
{//在顺序线性表L中第i个位置之前插入新的元素e//i的合法值为1 <= i <= ListLength_Sq(L)+1PartiType *q, *p, *newbase;if(i < 1 || i > L->length + 1 ) return ERROR;     //i值不合法if(L->length >= L->listsize){               //当前存储空间已满,增加分配newbase = (PartiType *)realloc(L->elem,(L->listsize + LISTINCREMENT)*sizeof(PartiType));if(!newbase) return ERROR;              //存储分配失败L->elem = newbase;                      //新基址L->listsize += LISTINCREMENT;         //增加存储容量} q = &(L->elem[i - 1]);                        //q为插入位置for(p = &(L->elem[L->length-1]);p >= q; --p)PartiAssign((p+1),*p);                  //插入位置及之后的元素右移PartiAssign(q ,e);                            //插入eL->length++;return OK;
}//在顺序线性表L中删除第i个元素,并用e返回其值
Status ListDelete_Sq(SqList *L,int i,PartiType *e)
{//在顺序线性表L中删除第i个元素,并用e返回其值//i的合法值为1 <= i <= ListLength_Sq(L)PartiType *p,*q;if((i < 1) || (i > L->length))  return ERROR;                            //i值不合法p = &(L->elem[i-1]);                         //p为被删除元素的位置PartiAssign(e, *p);                             //将被删除元素的值赋给e (待定)q = L->elem + L->length-1;                  //移动到表尾元素的位置for (++p;p<=q;++p)PartiAssign((p-1), *p);                   //被删除元素之后的元素左移L->length--;return OK;
}
#include "MemoryManage.h"
extern int CF_i;//*****         PCB链表操作        *****//
Status InsertProcess(LinkList Q,PCBType e)
{return ListInsert_L(Q, e);
}Status DeleteProsess(LinkList Q,int i,PCBType *e)
{return ListDelete_L(Q ,i,e);
}//*****         分区表操作        *****//
Status InsertTable(SqList *L, int i, PartiType e)
{return ListInsert_Sq(L,i, e);
}Status DeleteTable(SqList *L, int i, PartiType *e)
{return ListDelete_Sq(L, i, e);
}//返回第几个内存块,从1开始,若返回0,则代表错误
int SelectPart(PCB* pPCB, SqList *pPartTable,AllocatStrategy AS)
{int i;int BestArr[20] = {0}, k = 0, min = 500, min_i = -1;if(AS == FirstPriority){for (i = 0; i < pPartTable->length; ++i)if(!strcmp(pPartTable->elem[i].Name, "") && pPartTable->elem[i].PartitionSize >= pPCB->MemorySize)return i + 1;}else if(AS == BestAdapt){以下补充   /for(i = 0; i < pPartTable->length; ++i){if(!strcmp(pPartTable->elem[i].Name, "") && pPartTable->elem[i].PartitionSize >= pPCB->MemorySize)if(pPartTable->elem[i].PartitionSize - pPCB->MemorySize < min){min = pPartTable->elem[i].PartitionSize - pPCB->MemorySize;min_i = i;}}return min_i+1;}else if(AS == CycleFirst){int flag = 0;以下补充   /for(i = CF_i; i < pPartTable->length; i = (i+1)%(pPartTable->length)){if(!strcmp(pPartTable->elem[i].Name, "") && pPartTable->elem[i].PartitionSize >= pPCB->MemorySize){CF_i = (i+1)%pPartTable->length;return i + 1;}if(flag && i == CF_i){break;}if(i == CF_i){flag = 1;}}return 0;}else{printf("算法选择有误!\n");}return ERROR;
}//通过SelectPart查找是否存在可以分配的分区,在main函数中进行调用本方法进行内存的分配
int MallocMemory(PCB *pe, SqList *pPartTable,int i)
{PartiType se = {0, 0, {0}};以下补充   ///修改PCBpe->DistbutSt = Allocated;pe->StartAddress = pPartTable->elem[i].PartStartAddr;if(pPartTable->elem[i].PartitionSize == pe->MemorySize){strcpy(pPartTable->elem[i].Name, pe->Name);} else {//修改分区使用说明表strcpy(pPartTable->elem[i].Name, "");pPartTable->elem[i].PartitionSize -= pe->MemorySize;pPartTable->elem[i].PartStartAddr += pe->MemorySize;//新建一个表目, 并插入分区表使用说明表strcpy(se.Name, pe->Name);se.PartitionSize = pe->MemorySize;se.PartStartAddr = pe->StartAddress;InsertTable(pPartTable, i+1, se);}return OK;
}void InitAllocation(PCBList PCBdata, PartTable *pPartTable,AllocatStrategy AS)
{LNode *p;int pos;p = PCBdata->Next;while (p){if(p->data.DistbutSt == Unallocated){pos = SelectPart(&(p->data), pPartTable, AS);//从1开始if(pos){MallocMemory( &(p->data), pPartTable, pos - 1);}}p = p->Next;}
}//回收指定位置的内存空间
void FreeMemory(int pos, SqList *pPartTable)//没考虑  pos为0情况,没考虑删除后修改起始地址情况
{PartiType se = {0, 0, {0}};int flag = 0;以下补充   /if(pos != pPartTable->length-1){//为后一块分配if(!strcmp(pPartTable->elem[pos+1].Name, "")){strcpy(pPartTable->elem[pos].Name, "");pPartTable->elem[pos].PartitionSize += pPartTable->elem[pos+1].PartitionSize;strcpy(se.Name, pPartTable->elem[pos+1].Name);se.PartitionSize = pPartTable->elem[pos+1].PartitionSize;se.PartStartAddr = pPartTable->elem[pos+1].PartStartAddr;DeleteTable(pPartTable, pos+1, &se);flag = 1;}}if(pos != 0){//为前一块分配if(!strcmp(pPartTable->elem[pos-1].Name, "")){strcpy(pPartTable->elem[pos-1].Name, "");pPartTable->elem[pos-1].PartitionSize += pPartTable->elem[pos].PartitionSize;strcpy(se.Name, pPartTable->elem[pos-1].Name);se.PartitionSize = pPartTable->elem[pos-1].PartitionSize;se.PartStartAddr = pPartTable->elem[pos-1].PartStartAddr;DeleteTable(pPartTable, pos-1, &se);flag = 1;}}if(!flag){strcpy(pPartTable->elem[pos].Name, "");}
}void SearchSpace(PCBList PCBdata, SqList *partTable, AllocatStrategy AS)
{int pos;LNode *p;p = PCBdata->Next;while (p){if(p->data.DistbutSt == Unallocated){pos = SelectPart(&(p->data), partTable, AS);//从1开始if(pos){MallocMemory(&(p->data), partTable, pos - 1);}}p = p->Next;}}void PrintProQueue(LinkList L)
{int i = 0;L = L->Next;printf(" ----------------------------------------\n");printf("|进程名 | 起始位置 | 申请大小 | 是否分配 |\n");while(L){printf("|  %s   |  %4d    |  %4d    |  %4s    |\n",L->data.Name, L->data.StartAddress, L->data.MemorySize, L->data.DistbutSt == Allocated?  "是" : "否");L = L->Next;}printf(" ----------------------------------------\n");
}void PrintPartTable(PartTable L)
{int i = 0, j = 0;printf(" ----------------------------------------\n");printf("|分区号 | 起始位置 | 分区大小 | 是否分配 |\n");for (i = 0; i < L.length; ++i)printf("|  %2d   |  %4d    |  %4d    |  %4s    |\n",i + 1 , L.elem[i].PartStartAddr, L.elem[i].PartitionSize , strcmp(L.elem[i].Name, "") ? L.elem[i].Name :"否");printf(" ----------------------------------------\n");
}

main

#include "MemoryManage.h"/*实验06 动态分区分配
*/int CF_i;void InputPCBData(PCBList * pPCBdata)
{PCBType e = {{0}, 0, 0, Unallocated};strcpy(e.Name,"P1");e.MemorySize = 16;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P2");e.MemorySize = 32;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P3");e.MemorySize = 48;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P4");e.MemorySize = 96;InsertProcess(*pPCBdata,e);strcpy(e.Name,"P5");e.MemorySize = 100;InsertProcess(*pPCBdata,e);
}void SetFixedZone(PartTable * pPartdata)
{PartiType se = {0, 0, {0}};se.PartStartAddr = 16;se.PartitionSize = 512 - 16;strcpy(se.Name, "");InsertTable(pPartdata, 1, se);
}
//0 - 15Kb 操作系统占用  总大小512KB
int main(void)
{PCBList PCBdata;       //PCBdata里面存放原始PCB数据PartTable partTable;    //分区表char PcbName[NAME_MAXSIZE] = {0}, choice;PCBType PCBe = {{0}, 0, 0, Unallocated};PartiType Parte = {0, 0};PCBType *pcb = NULL;LNode *p; AllocatStrategy AS = CycleFirst; //FirstPriority, BestAdapt, CycleFirst//AllocatStrategy AS = BestAdapt;int i, size, pos;//分区表InitList_Sq(&partTable);SetFixedZone(&partTable);//进程表InitLinkList(&PCBdata);InputPCBData(&PCBdata);//初始化InitAllocation(PCBdata, &partTable, AS);CF_i = 0;PrintProQueue(PCBdata);PrintPartTable(partTable);while(true){system("cls");PrintProQueue(PCBdata);PrintPartTable(partTable);printf(" ================================================\n");printf("|           1.结 束 进 程                        |\n");printf("|           2.添 加 进 程                        |\n");printf("|           3.退 出 系 统                        |\n");printf(" ================================================\n");printf("请选择:");fflush(stdin);scanf("%c",&choice);switch (choice){case '1':printf("要结束的进程名:");scanf("%s",PcbName);for (p = PCBdata->Next, i = 1; p && strcmp(PcbName, p->data.Name); i++, p = p->Next);if(!p){printf("进程名输入错误!\n");break;}DeleteProsess(PCBdata, i, &PCBe);for(i = 0; i < partTable.length; i++){if(!strcmp(PcbName, partTable.elem[i].Name)){FreeMemory(i ,&partTable);break;}}SearchSpace( PCBdata, &partTable, AS);break;case '2':printf("请输入添加的进程名,进程所占内存大小:");scanf("%s%d",PcbName , &size);PCBe.DistbutSt = Unallocated;PCBe.StartAddress = 0;strcpy(PCBe.Name, PcbName);PCBe.MemorySize = size;pos = SelectPart(&(PCBe), &partTable, AS);//从1开始if(pos)MallocMemory(&(PCBe), &partTable, pos - 1);InsertProcess(PCBdata, PCBe);break;case '3':return 0;default:printf("选择项输入错误,重新选择!\n");break;}PrintProQueue(PCBdata);PrintPartTable(partTable);system("pause");}return 0;
}

超硬核!学霸把操作系统经典算法给敲完了!要知行合一相关推荐

  1. 超硬核!兔兔阿里p7学长给的面试知识库

    一个阿里p7学长给的nosql面试知识库,绝对真实,学会了去面呀. 最近整理了一下超硬核系列的文章和面经系列的文章,可以持续关注下: 超硬核系列历史文章:(我保证每篇文章都有值得学习的地方,并且对小白 ...

  2. 超硬核!!!一篇文章搞定TCP、UDP、Socket、HTTP(详细网络编程内容+现实解释三次握手四次挥手+代码示例)【网络编程 1】

    TCP.UDP.Socket 一天面试的经验: 什么是网络编程 网络编程中两个主要的问题 网络协议是什么 为什么要对网络协议分层 计算机网络体系结构 1 TCP / UDP 1.1 什么是TCP/IP ...

  3. mysql long类型_怒肝两个月MySQL源码,我总结出这篇2W字的MySQL协议详解(超硬核干货)!!...

    点击上方蓝色"冰河技术",关注并选择"设为星标" 持之以恒,贵在坚持,每天进步一点点! 作者个人研发的在高并发场景下,提供的简单.稳定.可扩展的延迟消息队列框架 ...

  4. 超硬核之傅里叶公式推导(上)

    超硬核之傅里叶公式推导 1.三角函数系与正交性 2.周期(2pi)函数的傅里叶展开(三角形式) 3.找到周期函数傅里叶展开的系数 结语 前言:再学习数学推导之前,popcorn建议读者感性的先去理解一 ...

  5. 十一长假我肝了这本超硬核PDF,现决定开源!!

    写在前面 在 [冰河技术] 微信公众号中的[互联网工程]专题,更新了不少文章,有些读者反馈说,在公众号中刷 历史文章不太方便,有时会忘记自己看到哪一篇了,当打开一篇文章时,似乎之前已经看过了,但就是不 ...

  6. 【Nginx】冰河又一本超硬核Nginx PDF教程免费开源!!

    写在前面 在 [冰河技术] 微信公众号中的[Nginx]专题,更新了不少文章,有些读者反馈说,在公众号中刷 历史文章不太方便,有时会忘记自己看到哪一篇了,当打开一篇文章时,似乎之前已经看过了, 但就是 ...

  7. 超硬核!苏州同程旅游学长给我的全面的面试知识库

    超硬核!苏州同程旅游学长给我的全面的面试知识库 1.简介 新生和经验丰富的C#面试常见问题解答 2.什么是C#? 3.用示例说明C#中的注释类型 4.可以执行多个catch块吗? 5. public, ...

  8. 超硬核!花33小时来造台3D打印机吧~

    超硬核!花33小时来造台3D打印机 3D打印机在实际应用中还是有不少用武之地的,从零开始直接买材料回来自己组装可以有效地提高性价比,用最低的价钱打造一台性价比不错的机子.这里我就用大概两天的时间,成本 ...

  9. 超硬核Java学习路线图+学习资源+实战项目汇总,看完以后不用再问我怎么学Java了!

    之前写过很多次关于Java学习指南.Java技术路线图的文章.但是总还是有小伙伴来问我,Java怎么学,项目怎么做,资源怎么找,真是让人头秃. 于是这次黄小斜决定来一波狠的,把所有这些内容都整理起来, ...

最新文章

  1. IIS 7.5 去掉index.php 西数服务器
  2. libsvm库简介及使用
  3. mysql如何查看事务日记_MySQL中的几种日志了解
  4. HIDL示例-JAVA服务创建-Client验证-Android10.0 HwBinder通信原理(四)
  5. Solr单集代码调用案例
  6. jmeter 取json值_Jmeter入门13 后置处理器JSON Extractor提取json的多个值
  7. 解决VS2010链接错误:LINK fatal error LNK1123: 转换到 COFF
  8. 今天去团省委维护网站
  9. svn切换分支 如何判断 是否完成_SVN创建分支/合并分支/切换分支
  10. php base64尺寸,PHP base64编码的图像显示不正确
  11. 电机控制系统php,电机控制系统的未来发展变化趋势
  12. 【论文笔记】DeepWalk:大型社会表示的在线学习
  13. 不拆机更换HG255D的U-BOOT并刷OPENWRT
  14. c++ SIMD AVX2比较 例子
  15. 读书笔记:《明朝那些事第三部:妖孽宫廷》
  16. 踩在云端的温柔!这是我最近穿上就不想脱下来的鞋 | 钛空实测
  17. 移动端适配之一:到底什么是像素
  18. Unable to find image ‘yt:latest‘ locally
  19. 《爱上单片机》读后感——5年后终于了解什么是单片机
  20. python积木编程软件_积木编程软件手机版下载

热门文章

  1. 并发事务正确性的准则 可串行化_从0到1理解数据库事务(上):并发问题与隔离级别...
  2. python怎么创建变量_python怎么创建变量
  3. content add tpl.php,phpcms后台批量上传添加图片文章方法详解(一)
  4. http协议报文体_HTTP协议扫盲(七)请求报文之 GET、POST-FORM 和 POST-FILE
  5. 平台系统云服务器配置,01-云平台连接配置
  6. 【转】通过第三方工具体验Microsoft Graph
  7. 详解CSS的相对定位和绝对定位
  8. java 实现真正的随机数_关于java:SecureRandom的Android实现是否产生真正的随机数?...
  9. python语言中百分号是什么意思_Python中%是什么意思?python中百分号如何使用?...
  10. .net一个函数要用另一个函数的值_Mysql:条件判断函数-CASE WHEN、IF、IFNULL详解