语音信号处理

1.语音信号的产生与特性

我们要对语音进行分析,首先要提取能够表示该语音的特征参数,有了特征参数才可能利用这些参数进行有效的处理,在对语音信号处理的过程中,语音信号的质量不仅取决于处理方法,同时取决于时候选对了合适的特征参数。

语音信号是一个非平稳的时变信号,但语音信号是由声门的激励脉冲通过声道形成的,而声道(人的口腔、鼻腔)的肌肉运动是缓慢的,所以“短时间”(10~30ms)内可以认为语音信号是平稳时不变的。由此构成了语音信号的“短时分析技术”。

提取的不同的语音特征参数对应着不同的语音信号分析方法:时域分析、频域分析、倒谱域分析…由于语音信号最重要的感知特性反映在功率谱上,而相位变化只起到很小的作用,所有语音频域分析更加重要。

2.语音的读取

本实验使用wave库,实现语音文件的读取、波形图绘制,相关的库还有librosa、scipy等

import wave #调用wave模块
import matplotlib.pyplot as plt #调用matplotlib.pyplot模块作为Plt
import numpy as np  #调用numpy模块记作np
import scipy.signal as signal
import pyaudio%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示符号f = wave.open(r"C:\Users\zyf\Desktop\Jupyter\1.wav", "rb")#读取语音文件
params = f.getparams() #返回音频参数
nchannels, sampwidth, framerate, nframes = params[:4] #赋值声道数,量化位数,采样频率,采样点数
print(nchannels,sampwidth,framerate,nframes)# 输出声道数,量化位数,采样频率,采样点数str_data = f.readframes(nframes) # 读取nframes个数据,返回字符串格式
f.close()
wave_data = np.frombuffer(str_data, dtype=np.short) # 将字符串转换为数组,得到一维的short类型的数组
wave_data = wave_data * 1.0 / (max(abs(wave_data))) # 赋值的归一化
time = np.arange(0, nframes) * (1.0 / framerate) # 最后通过采样点数和取样频率计算出每个取样的时间
# 整合左声道和右声道的数据,如果语音为双通道语音,具体代码需做调整
#wave_data = np.reshape(wave_data, [nframes, nchannels])
# wave_data.shape = (-1, 2)   # -1的意思就是没有指定,根据另一个维度的数量进行分割
plt.figure() # 单通道语音波形图
plt.plot(time, wave_data[:])
plt.xlabel("时间/s",fontsize=14)
plt.ylabel("幅度",fontsize=14)
plt.title("波形图",fontsize=14)
plt.grid()  # 标尺plt.tight_layout()  # 紧密布局
plt.show()

3.语音的播放

# 音频的播放,本实验使用pyaudio(代码相对matlab较麻烦,后期简化)
import pyaudio
import wavechunk = 1024
wf = wave.open(r"C:\Users\zyf\Desktop\Jupyter\1.wav", 'rb')
p = pyaudio.PyAudio()# 打开声音输出流
stream = p.open(format = p.get_format_from_width(wf.getsampwidth()),channels = wf.getnchannels(),rate = wf.getframerate(),output = True)# 写声音输出流到声卡进行播放
while True:data = wf.readframes(chunk)if data == "":breakstream.write(data)stream.stop_stream()
stream.close()
p.terminate()   # 关闭PyAudio

4.音频文件的写入

# 音频文件的写入、存储
# 使用wave库,相关的库还有librosa、scipy等,读写操作上的差异参阅博客: https://blog.csdn.net/weixin_38346042/article/details/119906391
import wave
import numpy as np
import scipy.signal as signalframerate = 44100   # 采样频率
time = 10           # 持续时间t = np.arange(0, time, 1.0/framerate)# 调用scipy.signal库中的chrip函数,
# 产生长度为10秒、取样频率为44.1kHz、100Hz到1kHz的频率扫描波
wave_data = signal.chirp(t, 100, time, 1000, method='linear') * 10000# 由于chrip函数返回的数组为float64型,
# 需要调用数组的astype方法将其转换为short型。
wave_data = wave_data.astype(np.short)# 打开WAV音频用来写操作
f = wave.open(r"sweep.wav", "wb")f.setnchannels(1)           # 配置声道数
f.setsampwidth(2)           # 配置量化位数
f.setframerate(framerate)   # 配置取样频率
comptype = "NONE"
compname = "not compressed"# 也可以用setparams一次性配置所有参数
# outwave.setparams((1, 2, framerate, nframes,comptype, compname))# 将wav_data转换为二进制数据写入文件
f.writeframes(wave_data.tobytes())
f.close()

5.语音的分帧加窗

5.1 分帧

语音数据和视频数据不同,本没有帧的概念,但是为了传输与存储,我们采集的音频数据都是一段一段的。为了程序能够进行批量处理,会根据指定的长度(时间段或者采样数)进行分段,结构化为我们编程的数据结构,这就是分帧。语音信号在宏观上是不平稳的,在微观上是平稳的,具有短时平稳性(10—30ms内可以认为语音信号近似不变),这个就可以把语音信号分为一些短段来进行处理,每一个短段称为一帧(CHUNK)。

5.2 帧移

由于我们常用的信号处理方法都要求信号是连续的,也就说必须是信号开始到结束,中间不能有断开。然而我们进行采样或者分帧后数据都断开了,所以要在帧与帧之间保留重叠部分数据,以满足连续的要求,这部分重叠数据就是帧移。

帧长=重叠+帧移

5.3 加窗

我们处理信号的方法都要求信号是连续条件,但是分帧处理的时候中间断开了,为了满足条件我们就将分好的帧数据乘一段同长度的数据,这段数据就是窗函数整个周期内的数据,从最小变化到最大,然后最小。

常用的窗函数:矩形窗、汉明窗、海宁窗
加窗即与一个窗函数相乘,加窗之后是为了进行傅里叶展开.
1.使全局更加连续,避免出现吉布斯效应
2.加窗时候,原本没有周期性的语音信号呈现出周期函数的部分特征。
加窗的代价是一帧信号的两端部分被削弱了,所以在分帧的时候,帧与帧之间需要有重叠。

# 加窗分帧(接上)
# 语音分帧、加窗
wlen=512 # 每帧信号长度
inc=128  # 帧移
signal_length=len(wave_data) #信号总长度
print(signal_length)
if signal_length<=wlen: #若信号长度小于一个帧的长度,则帧数定义为1nf=1
else:                 #否则,计算帧的总长度nf=int(np.ceil((1.0*signal_length-wlen+inc)/inc))   # nf 为帧数
# np.ceil向上取整,所以会导致实际分帧后的长度大于信号本身的长度,所以要对原来的信号进行补零
pad_length=int((nf-1)*inc+wlen) #所有帧加起来总的铺平后的长度
zeros=np.zeros((pad_length-signal_length,)) #不够的长度使用0填补,类似于FFT中的扩充数组操作
pad_signal=np.concatenate((wave_data,zeros)) #填补后的信号记为pad_signal
indices=np.tile(np.arange(0,wlen),(nf,1))+np.tile(np.arange(0,nf*inc,inc),(wlen,1)).T  #相当于对所有帧的时间点进行抽取,得到nf*wlen长度的矩阵
indices=np.array(indices,dtype=np.int32) #将indices转化为矩阵
frames=pad_signal[indices] #得到帧信号,587*512的矩阵信号
#a=frames[30:31]
#print(frames.shape)
winfunc = signal.hamming(wlen) # 调用窗函数,本初以汉明窗为例
#print(winfunc.shape)
win=np.tile(winfunc,(nf,1)) #窗函数为一维数组(512,),因此需要按照信号帧数进行变换得到(587*512)矩阵信号
#print(win.shape)
my = frames*win   # 这里的*指的是计算矩阵的数量积(即对位相乘)。
# python中矩阵运算分为两种形式,一是np.array,而是np.matrix
# ----------------------------------
#  绘制分帧加窗后的图像(接上)
# 因为分帧加窗后的信号为587*512的矩阵信号,为了绘图,将其转换为一维信号
t=my.flatten()
t=t.T
print(t.shape)
time = np.arange(0, len(t)) * (1.0 / framerate)   # 调整时间轴
plt.figure()
plt.plot(time,t,c="g")
plt.grid()
plt.show()

6.语音的频谱分析

6.1 频谱图

通过FFT对时域语音信号进行处理,得到频谱图

import numpy as np
from scipy.io import wavfile
import matplotlib.pyplot as plt%matplotlib inline
sampling_freq, audio = wavfile.read(r"C:\Users\zyf\Desktop\Jupyter\1.wav")   # 读取文件audio = audio / np.max(audio)   # 归一化,标准化# 应用傅里叶变换
fft_signal = np.fft.fft(audio)
print(fft_signal)fft_signal = abs(fft_signal)
print(fft_signal)# 建立时间轴
Freq = np.arange(0, len(fft_signal))# 绘制语音信号的
plt.figure()
plt.plot(Freq, fft_signal, color='blue')
plt.xlabel('Freq (in kHz)')
plt.ylabel('Amplitude')
plt.show()

6.2 语谱图

语谱图综合了时域和频域的特点,明显的显示出来了语音频率随时间的变化情况**,语谱图的横轴为时间,纵轴为频率任意给定频率成分在给定时刻的强弱用颜色深浅表示。**颜色深表示频谱值大,颜色浅表示频谱值小,谱图上不同的黑白程度形成不同的纹路,称为声纹,不用讲话者的声纹是不一样的,可以用做声纹识别。

import wave
import matplotlib.pyplot as plt
import numpy as npf = wave.open(r"C:\Users\zyf\Desktop\Jupyter\1.wav", "rb")
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
strData = f.readframes(nframes)#读取音频,字符串格式
waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为int
waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化
waveData = np.reshape(waveData,[nframes,nchannels]).T
f.close()plt.specgram(waveData[0],Fs = framerate, scale_by_freq = True, sides = 'default')
plt.ylabel('Frequency(Hz)')
plt.xlabel('Time(s)')
plt.colorbar()
plt.show()


参考博客:
https://www.cnblogs.com/zhenmeili/p/14830176.html
https://blog.csdn.net/sinat_18131557/article/details/105340416
https://blog.csdn.net/weixin_38346042/article/details/119906391
https://www.jb51.net/article/126984.htm

语音信号处理-python相关推荐

  1. 语音信号处理 | Python实现端点检测

    由于项目需要,我要使用Python对语音进行端点检测,在之前的博客使用短时能量和谱质心特征进行端点检测中,我使用MATLAB实现了一个语音端点检测算法,下面我将使用Python重新实现这个这个算法,并 ...

  2. python实验六 语音信号处理

    目录 实验目的: 实验原理: 实验准备: 实验步骤与内容: 参考代码: 实验目的: 依托语音信号处理领域的声学特征提取任务,学习常用的语音信号处理工具,实现对语音数据的预处理和常用特征提取等操作: 熟 ...

  3. pysptk, 语音信号处理工具包( SPTK )的python 封装器

    pysptk, 语音信号处理工具包( SPTK )的python 封装器 A python wrapper for Speech Signal Processing Toolkit (SPTK). 源 ...

  4. Python之librosa库语音信号处理

    librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能. 学会librosa后再也不用用python去实 ...

  5. python语音信号处理_现代语音信号处理笔记 (一)

    本系列笔记对胡航老师的现代语音信号处理这本书的语音处理部分进行总结,包含语音信号处理基础.语音信号分析.语音编码三部分.一开始以为三部分总结到一篇文章里就可以了,但写着写着发现事情并没有那么简单... ...

  6. 语音信号处理:librosa库【详解】

    librosa是一个非常强大的python语音信号处理的第三方库. 学会librosa后再也不用用python去实现那些复杂的算法了,只需要一句语句就能轻松实现. [librosa官网:https:/ ...

  7. 语音信号处理入门系列(1)—— 语音信号处理概念

    文章目录 1.语音交互 2. 复杂的声学环境 2.1 声学回声消除 2.2 解混响 2.3 语音分离 2.4 波束形成 2.5 噪声抑制 2.6幅度控制 2.7 前端信号处理的技术路线 3. 参考 4 ...

  8. 语音信号处理基础与MFCC

    讲道理,想要处理语音这种时间信号,最适合RNN或者SNN这种神经网络来进行识别,传统的方法是基于GMM+HMM的方式进行声学模型以及语言模型的建模.现在的语音识别往往引入神经网络,进行端到端(end- ...

  9. librosa能量_librosa语音信号处理

    librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能.学会librosa后再也不用用python去实现 ...

  10. 【语音信号处理】1语音信号可视化——时域、频域、语谱图、MFCC详细思路与计算、差分

    基本语音信号处理操作入门 1. 数据获取 2. 语音信号可视化 2.1 时域特征 2.2 频域特征 2.3 语谱图 3. 倒谱分析 4. 梅尔系数 4.1 梅尔频率倒谱系数 4.2 Mel滤波器原理 ...

最新文章

  1. ​Arm芯片的新革命在缓缓上演
  2. 算法复习——凸包加旋转卡壳(poj2187)
  3. 在屏幕上输出你好的python语句是_编程实现:在屏幕上输出中文字符“你好,世界”。(输出结果中不带双引号)_学小易找答案...
  4. [译] D3.js 嵌套选择集 (Nested Selection)
  5. 肝!分享 2 本高质量算法书籍!
  6. c语言if else语句_查找C程序的输出(如果为else语句)| 设置1
  7. 60-270-040-源码-指标监测-Flink自定义metric监控流入量
  8. Python 也能干大事 —— 解方程
  9. SAP安装前应准备的事项
  10. 专家访谈:谈谈数据挖掘技术
  11. tomcat7下载地址
  12. 海康摄像头SDK跨平台通用解决方案
  13. Java为什么要面向接口编程
  14. AI 算法工程师面试高频 100 题(附答案详解)
  15. vue自定义封装全局组件与使用
  16. 幅相曲线渐近线_幅相曲线.ppt
  17. Oh-my-Posh V3更新说明
  18. 2.2.1 Nginx高性能负载均衡器
  19. style-loader 与css-loader 处理 css样式文件
  20. jvm G1 深度分析

热门文章

  1. Jenkins下载安装
  2. 计算机指数函数符号,数学公式及符号大全
  3. MATLAB学习笔记02-MATLAB的数据类型
  4. 【仿人机器人】机器人的数学建模基础
  5. 如何在 macOS 上使用 Verilog 模拟电气模型
  6. Solidworks 2015 安装教程
  7. windows下使用XShell上传文件至服务器
  8. 微信小商店的选型参考及感想
  9. 微信小程序服装商城+后台管理系统
  10. Flutter发送表情接收表情库