近期在Kaggle里发现一个有趣的项目。他提供了一个端游吃鸡的数据包,里面有近百局吃鸡游戏中各种游戏内部的量化数据,这绝壁是个好东西,能挖掘出各种有趣的结论。所以今天就用吃鸡比赛的真实数据来看看如何提高你吃鸡的概率。

那么我们就用 Python 和 R 做数据分析来回答以下的灵魂发问?

首先来看下数据:

跳哪儿危险?

对于我这样一直喜欢苟着的良心玩家,在经历了无数次落地成河的惨痛经历后,我是坚决不会选择跳P城这样楼房密集的城市,穷归穷但保命要紧。所以我们决定统计一下到底哪些地方更容易落地成河?我们筛选出在前100秒死亡的玩家地点进行可视化分析。激情沙漠地图的电站、皮卡多、别墅区、依波城最为危险,火车站、火电厂相对安全。绝地海岛中P城、军事基地、学校、医院、核电站、防空洞都是绝对的危险地带。物质丰富的G港居然相对安全。

 1import numpy as np2import matplotlib.pyplot as plt3import pandas as pd4import seaborn as sns5from scipy.misc.pilutil import imread6import matplotlib.cm as cm78#导入部分数据9deaths1 = pd.read_csv("deaths/kill_match_stats_final_0.csv")
10deaths2 = pd.read_csv("deaths/kill_match_stats_final_1.csv")
11
12deaths = pd.concat([deaths1, deaths2])
13
14#打印前5列,理解变量
15print (deaths.head(),'\n',len(deaths))
16
17#两种地图
18miramar = deaths[deaths["map"] == "MIRAMAR"]
19erangel = deaths[deaths["map"] == "ERANGEL"]
20
21#开局前100秒死亡热力图
22position_data = ["killer_position_x","killer_position_y","victim_position_x","victim_position_y"]
23for position in position_data:
24    miramar[position] = miramar[position].apply(lambda x: x*1000/800000)
25    miramar = miramar[miramar[position] != 0]
26
27    erangel[position] = erangel[position].apply(lambda x: x*4096/800000)
28    erangel = erangel[erangel[position] != 0]
29
30n = 50000
31mira_sample = miramar[miramar["time"] < 100].sample(n)
32eran_sample = erangel[erangel["time"] < 100].sample(n)
33
34# miramar热力图
35bg = imread("miramar.jpg")
36fig, ax = plt.subplots(1,1,figsize=(15,15))
37ax.imshow(bg)
38sns.kdeplot(mira_sample["victim_position_x"], mira_sample["victim_position_y"],n_levels=100, cmap=cm.Reds, alpha=0.9)
39
40# erangel热力图
41bg = imread("erangel.jpg")
42fig, ax = plt.subplots(1,1,figsize=(15,15))
43ax.imshow(bg)
44sns.kdeplot(eran_sample["victim_position_x"], eran_sample["victim_position_y"], n_levels=100,cmap=cm.Reds, alpha=0.9)

苟着还是出去干?

我到底是苟在房间里面还是出去和敌人硬拼?这里因为比赛的规模不一样,这里选取参赛人数大于90的比赛数据,然后筛选出团队team_placement即最后成功吃鸡的团队数据:

1、先计算了吃鸡团队平均击杀敌人的数量,这里剔除了四人模式的比赛数据,因为人数太多的团队会因为数量悬殊平均而变得没意义;

2、所以我们考虑通过分组统计每一组吃鸡中存活到最后的成员击杀敌人的数量,但是这里发现数据统计存活时间变量是按照团队最终存活时间记录的,所以该想法失败;

3、最后统计每个吃鸡团队中击杀人数最多的数量统计,这里剔除了单人模式的数据,因为单人模式的数量就是每组击杀最多的数量。最后居然发现还有击杀数量达到60的,怀疑是否有开挂。想要吃鸡还是得出去练枪法,光是苟着是不行的。

 1library(dplyr)2library(tidyverse)3library(data.table)4library(ggplot2)5pubg_full <- fread("../agg_match_stats.csv")6# 吃鸡团队平均击杀敌人的数量7attach(pubg_full)8pubg_winner <- pubg_full %>% filter(team_placement==1&party_size<4&game_size>90) 9detach(pubg_full)
10team_killed <- aggregate(pubg_winner$player_kills, by=list(pubg_winner$match_id,pubg_winner$team_id), FUN="mean")
11team_killed$death_num <- ceiling(team_killed$x)
12ggplot(data = team_killed) + geom_bar(mapping = aes(x = death_num, y = ..count..), color="steelblue") +
13  xlim(0,70) + labs(title = "Number of Death that PUBG Winner team Killed", x="Number of death")
14
15# 吃鸡团队最后存活的玩家击杀数量
16pubg_winner <- pubg_full %>% filter(pubg_full$team_placement==1) %>% group_by(match_id,team_id)
17attach(pubg_winner)
18team_leader <- aggregate(player_survive_time~player_kills, data = pubg_winner, FUN="max")
19detach(pubg_winner)
20
21# 吃鸡团队中击杀敌人最多的数量
22pubg_winner <- pubg_full %>% filter(pubg_full$team_placement==1&pubg_full$party_size>1)
23attach(pubg_winner)
24team_leader <- aggregate(player_kills, by=list(match_id,team_id), FUN="max")
25detach(pubg_winner)
26ggplot(data = team_leader) + geom_bar(mapping = aes(x = x, y = ..count..), color="steelblue") +
27  xlim(0,70) + labs(title = "Number of Death that PUBG Winner Killed", x="Number of death")
28

哪一种武器干掉的玩家多?

运气好挑到好武器的时候,你是否犹豫选择哪一件?从图上来看,M416和SCAR是不错的武器,也是相对容易能捡到的武器,大家公认Kar98k是能一枪毙命的好枪,它排名比较靠后的原因也是因为这把枪在比赛比较难得,而且一下击中敌人也是需要实力的,像我这种捡到98k还装上8倍镜但没捂热乎1分钟的玩家是不配得到它的。

 1#杀人武器排名2death_causes = deaths['killed_by'].value_counts()34sns.set_context('talk')5fig = plt.figure(figsize=(30, 10))6ax = sns.barplot(x=death_causes.index, y=[v / sum(death_causes) for v in death_causes.values])7ax.set_title('Rate of Death Causes')8ax.set_xticklabels(death_causes.index, rotation=90)9
10#排名前20的武器
11rank = 20
12fig = plt.figure(figsize=(20, 10))
13ax = sns.barplot(x=death_causes[:rank].index, y=[v / sum(death_causes) for v in death_causes[:rank].values])
14ax.set_title('Rate of Death Causes')
15ax.set_xticklabels(death_causes.index, rotation=90)
16
17#两个地图分开取
18f, axes = plt.subplots(1, 2, figsize=(30, 10))
19axes[0].set_title('Death Causes Rate: Erangel (Top {})'.format(rank))
20axes[1].set_title('Death Causes Rate: Miramar (Top {})'.format(rank))
21
22counts_er = erangel['killed_by'].value_counts()
23counts_mr = miramar['killed_by'].value_counts()
24
25sns.barplot(x=counts_er[:rank].index, y=[v / sum(counts_er) for v in counts_er.values][:rank], ax=axes[0] )
26sns.barplot(x=counts_mr[:rank].index, y=[v / sum(counts_mr) for v in counts_mr.values][:rank], ax=axes[1] )
27axes[0].set_ylim((0, 0.20))
28axes[0].set_xticklabels(counts_er.index, rotation=90)
29axes[1].set_ylim((0, 0.20))
30axes[1].set_xticklabels(counts_mr.index, rotation=90)
31
32#吃鸡和武器的关系
33win = deaths[deaths["killer_placement"] == 1.0]
34win_causes = win['killed_by'].value_counts()
35
36sns.set_context('talk')
37fig = plt.figure(figsize=(20, 10))
38ax = sns.barplot(x=win_causes[:20].index, y=[v / sum(win_causes) for v in win_causes[:20].values])
39ax.set_title('Rate of Death Causes of Win')
40ax.set_xticklabels(win_causes.index, rotation=90)

队友的助攻是否助我吃鸡?

有时候一不留神就被击倒了,还好我爬得快让队友救我。这里选择成功吃鸡的队伍,最终接受1次帮助的成员所在的团队吃鸡的概率为29%,所以说队友助攻还是很重要的(再不要骂我猪队友了,我也可以选择不救你。)竟然还有让队友救9次的,你也是个人才。

 1library(dplyr)2library(tidyverse)3library(data.table)4library(ggplot2)5pubg_full <- fread("E:/aggregate/agg_match_stats_0.csv")6attach(pubg_full)7pubg_winner <- pubg_full %>% filter(team_placement==1) 8detach(pubg_full)9ggplot(data = pubg_winner) + geom_bar(mapping = aes(x = player_assists, y = ..count..), fill="#E69F00") +
10  xlim(0,10) + labs(title = "Number of Player assisted", x="Number of death")
11ggplot(data = pubg_winner) + geom_bar(mapping = aes(x = player_assists, y = ..prop..), fill="#56B4E9") +
12  xlim(0,10) + labs(title = "Number of Player assisted", x="Number of death")

敌人离我越近越危险?

对数据中的killer_position和victim_position变量进行欧式距离计算,查看两者的直线距离跟被击倒的分布情况,呈现一个明显的右偏分布,看来还是需要随时观察到附近的敌情,以免到淘汰都不知道敌人在哪儿。

 1# python代码:杀人和距离的关系2import math3def get_dist(df): #距离函数4    dist = []5   for row in df.itertuples():6        subset = (row.killer_position_x - row.victim_position_x)**2 + (row.killer_position_y - row.victim_position_y)**27        if subset > 0:8            dist.append(math.sqrt(subset) / 100)9         else:
10            dist.append(0)
11    return dist
12
13df_dist = pd.DataFrame.from_dict({'dist(m)': get_dist(erangel)})
14df_dist.index = erangel.index
15
16erangel_dist = pd.concat([erangel,df_dist], axis=1)
17
18df_dist = pd.DataFrame.from_dict({'dist(m)': get_dist(miramar)})
19df_dist.index = miramar.index
20
21miramar_dist = pd.concat([miramar,df_dist], axis=1)
22
23f, axes = plt.subplots(1, 2, figsize=(30, 10))
24plot_dist = 150
25
26axes[0].set_title('Engagement Dist. : Erangel')
27axes[1].set_title('Engagement Dist.: Miramar')
28
29plot_dist_er = erangel_dist[erangel_dist['dist(m)'] <= plot_dist]
30plot_dist_mr = miramar_dist[miramar_dist['dist(m)'] <= plot_dist]
31
32sns.distplot(plot_dist_er['dist(m)'], ax=axes[0])
33sns.distplot(plot_dist_mr['dist(m)'], ax=axes[1])

团队人越多我活得越久?

对数据中的party_size变量进行生存分析,可以看到在同一生存率下,四人团队的生存时间高于两人团队,再是单人模式,所以人多力量大这句话不是没有道理的。

乘车是否活得更久?

对死因分析中发现,也有不少玩家死于Bluezone,大家天真的以为捡绷带就能跑毒。对数据中的player_dist_ride变量进行生存分析,可以看到在同一生存率下,有开车经历的玩家生存时间高于只走路的玩家,光靠腿你是跑不过毒的。

小岛上人越多我活得更久?

对game_size变量进行生存分析发现还是小规模的比赛比较容易存活。

 1# R语言代码如下:2library(magrittr)3library(dplyr)4library(survival)5library(tidyverse)6library(data.table)7library(ggplot2)8library(survminer)9pubg_full <- fread("../agg_match_stats.csv")
10# 数据预处理,将连续变量划为分类变量
11pubg_sub <- pubg_full %>%
12  filter(player_survive_time<2100) %>%
13  mutate(drive = ifelse(player_dist_ride>0, 1, 0)) %>%
14  mutate(size = ifelse(game_size<33, 1,ifelse(game_size>=33 &game_size<66,2,3)))
15# 创建生存对象
16surv_object <- Surv(time = pubg_sub$player_survive_time)
17fit1 <- survfit(surv_object~party_size,data = pubg_sub)
18# 可视化生存率
19ggsurvplot(fit1, data = pubg_sub, pval = TRUE, xlab="Playing time [s]", surv.median.line="hv",
20           legend.labs=c("SOLO","DUO","SQUAD"), ggtheme = theme_light(),risk.table="percentage")
21fit2 <- survfit(surv_object~drive,data=pubg_sub)
22ggsurvplot(fit2, data = pubg_sub, pval = TRUE, xlab="Playing time [s]", surv.median.line="hv",
23           legend.labs=c("walk","walk&drive"), ggtheme = theme_light(),risk.table="percentage")
24fit3 <- survfit(surv_object~size,data=pubg_sub)
25ggsurvplot(fit3, data = pubg_sub, pval = TRUE, xlab="Playing time [s]", surv.median.line="hv",
26           legend.labs=c("small","medium","big"), ggtheme = theme_light(),risk.table="percentage")

最后毒圈有可能出现的地点?

面对有本事能苟到最后的我,怎么样预测最后的毒圈出现在什么位置。从表agg_match_stats数据找出排名第一的队伍,然后按照match_id分组,找出分组数据里面player_survive_time最大的值,然后据此匹配表格kill_match_stats_final里面的数据,这些数据里面取第二名死亡的位置,作图发现激情沙漠的毒圈明显更集中一些,大概率出现在皮卡多、圣马丁和别墅区。绝地海岛的就比较随机了,但是还是能看出军事基地和山脉的地方更有可能是最后的毒圈。

 1#最后毒圈位置2import matplotlib.pyplot as plt3import pandas as pd4import seaborn as sns5from scipy.misc.pilutil import imread6import matplotlib.cm as cm78#导入部分数据9deaths = pd.read_csv("deaths/kill_match_stats_final_0.csv")
10#导入aggregate数据
11aggregate = pd.read_csv("aggregate/agg_match_stats_0.csv")
12print(aggregate.head())
13#找出最后三人死亡的位置
14
15team_win = aggregate[aggregate["team_placement"]==1] #排名第一的队伍
16#找出每次比赛第一名队伍活的最久的那个player
17grouped = team_win.groupby('match_id').apply(lambda t: t[t.player_survive_time==t.player_survive_time.max()])
18
19deaths_solo = deaths[deaths['match_id'].isin(grouped['match_id'].values)]
20deaths_solo_er = deaths_solo[deaths_solo['map'] == 'ERANGEL']
21deaths_solo_mr = deaths_solo[deaths_solo['map'] == 'MIRAMAR']
22
23df_second_er = deaths_solo_er[(deaths_solo_er['victim_placement'] == 2)].dropna()
24df_second_mr = deaths_solo_mr[(deaths_solo_mr['victim_placement'] == 2)].dropna()
25print (df_second_er)
26
27position_data = ["killer_position_x","killer_position_y","victim_position_x","victim_position_y"]
28for position in position_data:
29    df_second_mr[position] = df_second_mr[position].apply(lambda x: x*1000/800000)
30    df_second_mr = df_second_mr[df_second_mr[position] != 0]
31
32    df_second_er[position] = df_second_er[position].apply(lambda x: x*4096/800000)
33    df_second_er = df_second_er[df_second_er[position] != 0]
34
35df_second_er=df_second_er
36# erangel热力图
37sns.set_context('talk')
38bg = imread("erangel.jpg")
39fig, ax = plt.subplots(1,1,figsize=(15,15))
40ax.imshow(bg)
41sns.kdeplot(df_second_er["victim_position_x"], df_second_er["victim_position_y"], cmap=cm.Blues, alpha=0.7,shade=True)
42
43# miramar热力图
44bg = imread("miramar.jpg")
45fig, ax = plt.subplots(1,1,figsize=(15,15))
46ax.imshow(bg)
47sns.kdeplot(df_second_mr["victim_position_x"], df_second_mr["victim_position_y"], cmap=cm.Blues,alpha=0.8,shade=True)

获取数据地址:https://www.kaggle.com/skihikingkevin/pubg-match-deaths#aggregate.zip。

此文花费了不少功夫,点赞、转发都是对作者的认可和支持。

最后祝大家:

用Python解析吃鸡游戏的真相相关推荐

  1. Python实现吃鸡游戏子弹and导弹自动追踪!原来是这样的一个原理啊!

    一,前言 自动追踪算法,在我们制作射击类游戏时经常会用到.这个听起来很高大上的东西,其实并不是军事学的专利,从数学上来说就是解微分方程, 这个没有点数学基础是很难算出来的.但是我们有了计算机就不一样了 ...

  2. 吃鸡是python写的吗_吃鸡游戏也是用Python写的?学了Python,120个月年终奖向你招手~...

    原标题:吃鸡游戏也是用Python写的?学了Python,120个月年终奖向你招手~ 吃鸡游戏火爆全球,已经把腾讯的<王者荣耀>都比下去了,有传言,腾讯给"王者荣耀"开 ...

  3. 教你用Python解锁“吃鸡”的正确姿势!(附240行代码)

    来源:经济人学数据分析 本文约2554字,建议阅读6分钟. 本文用Python分析吃鸡比赛的真实数据,解答至关重要的9个问题,助你提高吃鸡概率. 大吉大利,今晚吃鸡~ 今天跟朋友玩了几把吃鸡,经历了各 ...

  4. 吃鸡游戏(18.11.24)

    吃鸡游戏 Description xxx 吃鸡成瘾.为此他决定逃课吃鸡!但是学校有规定,旷课到一定次数,是不给予期末考的资格的.因此 xxx 决定每门课最多逃两次.现在告诉你,一个学期有 nnn 节课 ...

  5. 教你用Python解锁“吃鸡”的正确姿势!

    本文用Python分析吃鸡比赛的真实数据,解答至关重要的9个问题,助你提高吃鸡概率. 大吉大利,今晚吃鸡~ 今天跟朋友玩了几把吃鸡,经历了各种死法,还被嘲笑说论女生吃鸡的100种死法,比如被拳头抡死. ...

  6. 计算机内存不足吃鸡怎么办,Win10玩吃鸡游戏提示虚拟内存不足怎么办?

    Win10玩吃鸡游戏提示"虚拟内存不足"怎么办? 最近吃鸡游戏非常火,大家都想大吉大利晚上吃鸡!因为吃鸡游戏对电脑配置的要求非常高,所以很多用户在玩吃鸡手游时会遇到各种问题,最常见 ...

  7. 达威尔CHERRY樱桃轴 铝合金有线背光电竞吃鸡游戏机械键盘

    作为一名电脑办公的打工仔,如果你有四五年以上的工作经验,可以毫不夸张地说,你至少用过三只以上的键盘了吧?这是最少的了,有的朋友用过的键盘都有十几把了,用过的键盘牌子也有不少了.我打工几年,就用过好几个 ...

  8. MOBA类和“吃鸡”游戏为什么对网络延迟要求高?

    作者:腾讯云技术社区 链接:https://zhuanlan.zhihu.com/p/54468154 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 我们知道,不同 ...

  9. mac版免费吃鸡游戏(荒野行动)

    最近吃鸡游戏非常的火爆,现为大家推出一款Mac腾讯吃鸡游戏"荒野行动 for Mac",是由网易游戏研发的一款射击求生类游戏,该游戏讲述了远洋岛事件爆发之后,小岛遭到极端分子洗劫的 ...

最新文章

  1. 开源监控解决方案Nagios+Cacti+PNP4Nagios+NConf+NDOUtils+Nagvis(六)ndoutils安装
  2. 频繁模式(frequent pattern)
  3. pythonprint end_python print end =''
  4. HTTP与HttpServlet
  5. Linux下搭建lamp论坛(phpwind+wordpress+discus)
  6. Linux驱动模块编译进内核中
  7. 微信小程序-音频播放-wx.createInnerAudioContext() 每次都是重复播放同一条录音
  8. wordpress 后台404解决办法
  9. HDOJ-1272 小希的迷宫
  10. 已知背景和物体的均值方差,求最佳分割阈值
  11. JavaSE——Java8之Stream流
  12. 浅谈JAVA设计模式之——责任链模式(COR)
  13. 前置,后置,环绕,异常增强(示例)
  14. Flutter 核心编程二:Dart基础语法之基本数据类型,数组,方法,Runs,函数闭包,typedef,操作符
  15. sql--sqlsever--时间相关SQL语句--查询当前时间至前N天的数据
  16. WIN10家庭版安装Hvper-V
  17. 必会工具之(一)Source Insight篇
  18. Xshell的舒服配色方案,否则蓝色看不清
  19. 数据中心机柜的选择与应用
  20. windows“运行”中的快捷命令

热门文章

  1. 使用helm安装jenkin和gitlab
  2. 日本禅师铃木俊隆的12条生活准则
  3. 戴尔游匣7559 Win10 固态硬盘系统重装
  4. SQL Server存储过程调用WebService
  5. docker跑codalab_在CodaLab上提交MURA竞赛的结果
  6. 【Linux驱动开发】LCD 驱动实验
  7. html 百分比饼状图,如何开发一个百分比饼状图动画
  8. c语言3d打印机控制程序下载,MatterControl(3D打印机控制软件)
  9. 【观察】智能运维从拓荒走向深耕,云智慧领跑的升势和胜势
  10. GNSS及其定位原理,差分GNSS技术分析