UA MATH564 概率论 公式与定理总结

Part 1 Elementary Probability

Tip 1: Probability is a measure satisfying monotonicity and σ\sigmaσ-countably additivity
Tip 2: Boole’s Inequality
P(⋃i=1nAi)≤∑i=1nP(Ai),n∈NP(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i),n \in \mathbb{N}P(i=1⋃n​Ai​)≤i=1∑n​P(Ai​),n∈N

Tip 3: Poincare’s Formula
Sm=∑1≤i1<i2<⋯<im≤nP(Ai1∩Ai2∩⋯∩Aim)S~m=∑1≤i1<i2<⋯<im≤nP(Ai1∪Ai2∪⋯∪Aim)P(⋃i=1nAi)=∑m=1n(−1)m+1Sm,P(⋂i=1nAi)=∑m=1n(−1)m+1S~mS_m = \sum_{1 \le i_1 < i_2 < \cdots < i_m \le n} P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_m}) \\ \tilde{S}_m = \sum_{1 \le i_1 < i_2 < \cdots < i_m \le n}P(A_{i_1} \cup A_{i_2} \cup \cdots \cup A_{i_m}) \\ P(\bigcup_{i=1}^{n} A_i) = \sum_{m=1}^n (-1)^{m+1}S_m,\ \ P(\bigcap_{i=1}^{n} A_i) = \sum_{m=1}^n (-1)^{m+1}\tilde{S}_mSm​=1≤i1​<i2​<⋯<im​≤n∑​P(Ai1​​∩Ai2​​∩⋯∩Aim​​)S~m​=1≤i1​<i2​<⋯<im​≤n∑​P(Ai1​​∪Ai2​​∪⋯∪Aim​​)P(i=1⋃n​Ai​)=m=1∑n​(−1)m+1Sm​,  P(i=1⋂n​Ai​)=m=1∑n​(−1)m+1S~m​

Tip 4: Inclusive-exclusive Formula (set form and identical function form)
#⋃i=1nAi=∑i=1n#Ai+(−1)m+1∑1≤i1<⋯<im≤n#⋂j=1mAij+(−1)n+1#⋂i=1nAiI⋃i=1nAi=1−∏i=1n(1−Xi)=∑i=1nXi−∑1≤i1<i2≤nXi1Xi2+⋯+(−1)m+1∑1≤i1<⋯<im≤nXi1⋯Xim⋯+(−1)nX1⋯Xn,Xi=IAi\# \bigcup_{i=1}^n A_i = \sum_{i=1}^n \#A_i +(-1)^{m+1} \sum_{1 \le i_1 < \cdots < i_m \le n}\# \bigcap_{j=1}^m A_{i_j} + (-1)^{n+1}\#\bigcap_{i=1}^n A_{i} \\I_{\bigcup_{i=1}^n A_i} =1 - \prod_{i=1}^n (1-X_i) = \sum_{i=1}^n X_i - \sum_{1 \le i_1 < i_2 \le n} X_{i_1}X_{i_2} + \cdots \\+ (-1)^{m+1}\sum_{1 \le i_1 < \cdots < i_m \le n} X_{i_1}\cdots X_{i_m} \cdots +(-1)^n X_1\cdots X_n, X_i = I_{A_i}#i=1⋃n​Ai​=i=1∑n​#Ai​+(−1)m+11≤i1​<⋯<im​≤n∑​#j=1⋂m​Aij​​+(−1)n+1#i=1⋂n​Ai​I⋃i=1n​Ai​​=1−i=1∏n​(1−Xi​)=i=1∑n​Xi​−1≤i1​<i2​≤n∑​Xi1​​Xi2​​+⋯+(−1)m+11≤i1​<⋯<im​≤n∑​Xi1​​⋯Xim​​⋯+(−1)nX1​⋯Xn​,Xi​=IAi​​

Tip 5: The Law of Total Probability
P(A)=∑i=1nP(A∣Ci)P(Ci)P(A) = \sum_{i=1}^n P(A|C_i)P(C_i)P(A)=i=1∑n​P(A∣Ci​)P(Ci​)

Tip 6: Bayesian Formula
P(Ci∣A)=P(A,Ci)P(A)=P(A∣Ci)P(Ci)∑i=1nP(A∣Ci)P(Ci)P(C_i|A) = \frac{P(A,C_i)}{P(A)}= \frac{P(A|C_i)P(C_i)}{\sum_{i=1}^n P(A|C_i)P(C_i)}P(Ci​∣A)=P(A)P(A,Ci​)​=∑i=1n​P(A∣Ci​)P(Ci​)P(A∣Ci​)P(Ci​)​

Tip 7: Binomial Theorem, Negative Binomial Theorem and Multinomial Theorem
(x+y)n=∑k=0nCnkxn−kyk=∑k=0∞Cnkxn−kyk(x+y)−r=1xr(1+yx)−r=∑k=0∞C−rkx−r−kyk=∑k=0∞(−1)kCr+k−1kx−r−kyk(x1+x2+...+xr)n=∑n1+n2+...+nr=nn!n1!n2!...nr!x1n1x2n2...xrnr(x+y)^n = \sum_{k=0}^{n} C_n^k x^{n-k}y^k = \sum_{k=0}^{\infty} C_n^k x^{n-k}y^k \\ (x+y)^{-r} = \frac{1}{x^r}(1+\frac{y}{x})^{-r} = \sum_{k=0}^{\infty} C_{-r}^k x^{-r-k}y^k = \sum_{k=0}^{\infty}(-1)^kC_{r+k-1}^{k} x^{-r-k}y^k \\ (x_1+x_2+...+x_r)^n = \sum_{n_1+n_2 + ... +n_r=n} \frac{n!}{n_1!n_2!...n_r!} x_1^{n_1}x_2^{n_2}...x_r^{n_r} (x+y)n=k=0∑n​Cnk​xn−kyk=k=0∑∞​Cnk​xn−kyk(x+y)−r=xr1​(1+xy​)−r=k=0∑∞​C−rk​x−r−kyk=k=0∑∞​(−1)kCr+k−1k​x−r−kyk(x1​+x2​+...+xr​)n=n1​+n2​+...+nr​=n∑​n1​!n2​!...nr​!n!​x1n1​​x2n2​​...xrnr​​

Tip 8: Stirling Number of the Second Kind (number of methods to put nnn objects into kkk urn, and every urn should not be empty)
S2(n,n−1)=Cn2S2(n+1,k)=kS2(n,k)+S2(n,k−1)xn=∑k=1nS2(n,k)(x)kΔm0n=m!S2(n,m),n≥mS_2(n,n-1) = C_n^2 \\ S_2(n+1,k) = kS_2(n,k) + S_2(n,k-1) \\ x^n = \sum_{k=1}^n S_2(n,k) (x)_k \\ \Delta^m 0^n = m! S_2(n,m),n \ge m S2​(n,n−1)=Cn2​S2​(n+1,k)=kS2​(n,k)+S2​(n,k−1)xn=k=1∑n​S2​(n,k)(x)k​Δm0n=m!S2​(n,m),n≥m

Tip 9: Stirling’s Formula
Γ(n+1)=n!≈2πn(ne)n\Gamma(n+1) = n! \approx \sqrt{2\pi n} \left( \frac{n}{e} \right)^nΓ(n+1)=n!≈2πn​(en​)n

Part 2 Transformation of Random Variable
Method 1: By definition P(Y=g(X)≤y)=P(X≤g−1(y))P(Y = g(X) \le y) = P(X \le g^{-1}(y))P(Y=g(X)≤y)=P(X≤g−1(y)). Applicable when X,Y∈RX,Y \in \mathbb{R}X,Y∈R

Method 2: By Jacobian Determinant fY(y)=fX(h(y))∣Jh(y)∣f_Y(y) = f_X(h(y)) |Jh(y)|fY​(y)=fX​(h(y))∣Jh(y)∣. Applicable when X,Y∈RnX,Y \in \mathbb{R}^nX,Y∈Rn. Note that Y=g(X),X=h(Y)Y = g(X), \ X = h(Y)Y=g(X), X=h(Y) and JJJ indicates Jacobian determinant. Generally n=2,3n=2,3n=2,3 for hand calculation.

Method 3: In mathematical statistics, sometimes we also use additivity or MGF to find distribution.

Part 3 Moment Generating Function and Prob Inequality
Tip 1: Moment Generating Function and Moment
MX(t)=EetX,MX(n)(0)=EXnM_X(t) = Ee^{tX},\ M^{(n)}_X(0) = EX^nMX​(t)=EetX, MX(n)​(0)=EXn

Tip 2: Markov Inequality
P(X>x)≤E[g(X)]g(x)P(X >x ) \le \frac{E[g(X)]}{g(x)}P(X>x)≤g(x)E[g(X)]​

Tip 3: Chebyshev Inequality
P(∣Y−EY∣>x)≤VarYx2,∀x>0P(|Y-EY|>x) \le \frac{VarY}{x^2},\forall x>0P(∣Y−EY∣>x)≤x2VarY​,∀x>0

Tip 4: Chernoff Bound
ln⁡P(X>x)≤inf⁡t∈R{KX(t)−tx},KX(t)=ln⁡MX(t)\ln P(X > x) \le \inf_{t \in \mathbb{R}} \{K_X(t)-tx\},\ K_X(t) = \ln M_X(t)lnP(X>x)≤t∈Rinf​{KX​(t)−tx}, KX​(t)=lnMX​(t)

Part 4 Conditional Density and Conditional Expectation
Tip 1: Conditional Density
fX∣Y(x∣y)=f(x,y)f(y)f_{X|Y}(x|y) = \frac{f(x,y)}{f(y)}fX∣Y​(x∣y)=f(y)f(x,y)​

Tip 2: Law of Total Expectation
E[Y]=E[E[Y∣X]]E[Y] = E[E[Y|X]]E[Y]=E[E[Y∣X]]

Tip 3: Law of Total Variance
Var(Y)=Var(E[Y∣X])+E[Var(Y∣X)]Var(Y) = Var(E[Y|X]) + E[Var(Y|X)]Var(Y)=Var(E[Y∣X])+E[Var(Y∣X)]

Tip 4: Variance of Sum of Two Random Variables
Var(X±Y)=Var(X)+Var(Y)±2Cov(X,Y)Var(X\pm Y) = Var(X) + Var(Y) \pm 2Cov(X,Y)Var(X±Y)=Var(X)+Var(Y)±2Cov(X,Y)

Tip 5: Law of Total Covariance
Cov(Y1,Y2)=E[Cov(Y1,Y2∣X)]+Cov[E(Y1∣X),E(Y2∣X)]Cov(Y_1,Y_2) = E[Cov(Y_1,Y_2|X)] + Cov[E(Y_1|X),E(Y_2|X)]Cov(Y1​,Y2​)=E[Cov(Y1​,Y2​∣X)]+Cov[E(Y1​∣X),E(Y2​∣X)]

Tip 6: Linear Conbination of Random Variables
Var(∑i=1maiXi)=∑i,j=1maiajCov(Xi,Xj)Cov(∑i=1maiXi,∑j=1nbjYj)=∑i=1m∑j=1naibjCov(Xi,Yj)Var \left( \sum_{i=1}^m a_iX_i \right) = \sum_{i,j = 1}^m a_ia_jCov(X_i,X_j) \\ Cov \left( \sum_{i=1}^m a_iX_i,\sum_{j=1}^n b_jY_j \right) = \sum_{i=1}^m \sum_{j=1}^n a_ib_jCov(X_i,Y_j)Var(i=1∑m​ai​Xi​)=i,j=1∑m​ai​aj​Cov(Xi​,Xj​)Cov(i=1∑m​ai​Xi​,j=1∑n​bj​Yj​)=i=1∑m​j=1∑n​ai​bj​Cov(Xi​,Yj​)

Part 5 Distribution of Order Statistics
Theorem 1: Distribution of one order statistic
FX(j)=∑k=jnCnk[F(x)]k[1−F(x)]n−kF_{X_{(j)}} = \sum_{k=j}^n C_n^k [F(x)]^k[1-F(x)]^{n-k}FX(j)​​=k=j∑n​Cnk​[F(x)]k[1−F(x)]n−k

Theorem 2: Density of one order statistic
fX(j)(x)=jCnj[F(x)]j−1[1−F(x)]n−jf(x)f_{X_{(j)}}(x) = jC_n^j [F(x)]^{j-1}[1-F(x)]^{n-j}f(x)fX(j)​​(x)=jCnj​[F(x)]j−1[1−F(x)]n−jf(x)

Theorem 3: Density of one order statistics, for j>ij>ij>i,
fX(i),X(j)(xi,xj)=n!(i−1)!(j−i−1)!(n−j)!f(xi)f(xj)[F(xi)]i−1[F(xj)−F(xi)]j−i−1[1−F(xj)]n−jf_{X_{(i)},X_{(j)}}(x_i,x_j)=\frac{n!}{(i-1)!(j-i-1)!(n-j)!}f(x_{i})f(x_{j})[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-i-1}[1-F(x_j)]^{n-j}fX(i)​,X(j)​​(xi​,xj​)=(i−1)!(j−i−1)!(n−j)!n!​f(xi​)f(xj​)[F(xi​)]i−1[F(xj​)−F(xi​)]j−i−1[1−F(xj​)]n−j

Theorem 4: Density of all order statistics
f(x(1),⋯,x(n))=n!f(x1)f(x2)⋯f(xn),x1<x2,⋯<xnf(x_{(1)},\cdots,x_{(n)})=n!f(x_1)f(x_2)\cdots f(x_n),x_1<x_2,\cdots<x_nf(x(1)​,⋯,x(n)​)=n!f(x1​)f(x2​)⋯f(xn​),x1​<x2​,⋯<xn​

Part 6 Basic Asymptotic Theory
Tip 1: Convergence mode of random variable sequence:

  1. Convergence almost surely, Xn→Xa.s.X_n \to X\ a.s.Xn​→X a.s.
    P[lim⁡n→∞Xn=X]=1P[\lim_{n \to \infty}X_n = X]=1P[n→∞lim​Xn​=X]=1
  2. Lp(p>0)L_p(p>0)Lp​(p>0) Convergence Xn→LpXX_n \to_{L_p} XXn​→Lp​​X
    lim⁡n→∞E[∣Xn−X∣p]=0\lim_{n\to \infty} E[|X_n-X|^p] = 0n→∞lim​E[∣Xn​−X∣p]=0
    If p=1p=1p=1,called convergence in mean; If p=2p=2p=2,called mean square convergence
  3. Convergence in probability, Xn→PXX_n \to_P XXn​→P​X
    ∀ϵ>0,P[∣Xn−X∣>ϵ]=0\forall \epsilon>0, P[|X_n-X|>\epsilon]=0∀ϵ>0,P[∣Xn​−X∣>ϵ]=0
  4. Convergence in distribution Xn→DXX_n \to_D XXn​→D​X
    For arbitrary bounded continuous function, h:(X,B(X))→(X,B(X))h:(\mathcal{X},\mathcal{B}(\mathcal{X}))\to (\mathcal{X},\mathcal{B}(\mathcal{X}))h:(X,B(X))→(X,B(X)),
    lim⁡n→∞Eh(Xn)=Eh(X)\lim_{n \to \infty} Eh(X_n) = Eh(X)n→∞lim​Eh(Xn​)=Eh(X)

Tip 2: Relations among different convergence mode

  1. p>qp>qp>q, if Xn→LpXX_n \to_{L_p}XXn​→Lp​​X, then Xn→LqXX_n \to_{L_q} XXn​→Lq​​X
  2. If Xn→LpXX_n \to_{L_p}XXn​→Lp​​X, then Xn→PXX_n \to_P XXn​→P​X
  3. If Xn→Xa.s.X_n \to X\ a.s.Xn​→X a.s., then Xn→PXX_n \to_P XXn​→P​X
  4. If Xn→Xa.s.X_n \to X\ a.s.Xn​→X a.s., then g(Xn)→g(X)a.s.g(X_n) \to g(X)\ a.s.g(Xn​)→g(X) a.s., ggg is bounded continuous function
  5. If Xn→DXX_n \to_{D}XXn​→D​X, then g(Xn)→Dg(X)g(X_n) \to_{D} g(X)g(Xn​)→D​g(X)
  6. If Xn→PXX_n \to_{P}XXn​→P​X, then g(Xn)→Pg(X)g(X_n) \to_{P} g(X)g(Xn​)→P​g(X)
  7. Xn→Xa.s.X_n \to X\ a.s.Xn​→X a.s., g(x)g(x)g(x) is convex and xp=o(g(x))x^p=o(g(x))xp=o(g(x)). If {Eg(Xn)}\{Eg(X_n)\}{Eg(Xn​)} is a bounded sequence, then Xn→LpXX_n\to_{L_p}XXn​→Lp​​X
  8. (Slutsky’s Theorem) If Xn→DXX_n \to_D XXn​→D​X, Yn→PcY_n \to_P cYn​→P​c, then XnYn→DcXX_nY_n \to_D cXXn​Yn​→D​cX, Xn+Yn→DX+cX_n+Y_n \to_D X+cXn​+Yn​→D​X+c

Tip 3: Weak Law of Large Number, if population variance is bounded
Xˉ→L2EX=μ\bar{X} \to_{L_2} EX = \muXˉ→L2​​EX=μ

Tip 4: Classical Central Limit Theorem
Zn=Xˉ−μσ/n→DN(0,1)Z_n = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \to_D N(0,1)Zn​=σ/n​Xˉ−μ​→D​N(0,1)

Tip 5: Delta Method
Var[g(Xˉ)]≈[g′(μ)]2Var(Xˉ−μ)=[g′(μ)]2σ2nVar[g(\bar{X})] \approx [g'(\mu)]^2 Var(\bar{X}-\mu) = [g'(\mu)]^2 \frac{\sigma^2}{n}Var[g(Xˉ)]≈[g′(μ)]2Var(Xˉ−μ)=[g′(μ)]2nσ2​

Tip 6: Delta Method Refined Central Limit Theorem
Zn=g(Xˉ)−g(μ)[g′(μ)]2σ2n→DN(0,1)Z_n = \frac{g(\bar{X})-g(\mu)}{\sqrt{[g'(\mu)]^2 \frac{\sigma^2}{n}}} \to_D N(0,1)Zn​=[g′(μ)]2nσ2​​g(Xˉ)−g(μ)​→D​N(0,1)

Part 7 Independence
Tip 1: Independence of Events

  1. If A and B are independent, P(A∩B)=P(A)P(B)P(A\cap B) = P(A)P(B)P(A∩B)=P(A)P(B)
  2. If A, B and C are pairwisely independent, P(A∩B)=P(A)P(B)P(A\cap B) = P(A)P(B)P(A∩B)=P(A)P(B), P(A∩C)=P(A)P(C)P(A\cap C) = P(A)P(C)P(A∩C)=P(A)P(C), P(B∩C)=P(B)P(C)P(B\cap C) = P(B)P(C)P(B∩C)=P(B)P(C)
  3. If A, B and C are independent, then they are pairwisely independent and P(A∩B∩C)=P(A)P(B)P(C)P(A\cap B \cap C) = P(A)P(B)P(C)P(A∩B∩C)=P(A)P(B)P(C)

Tip 2: Independent Random Variables

  1. Independence: fX,Y(x,y)=fX(x)fY(y)f_{X,Y}(x,y) = f_X(x)f_Y(y)fX,Y​(x,y)=fX​(x)fY​(y)
  2. Linearly Independence: Cov(X,Y)=0Cov(X,Y) = 0Cov(X,Y)=0, or E[XY]=E(X)E(Y)E[XY] = E(X)E(Y)E[XY]=E(X)E(Y), Var(X+Y)=Var(X)+Var(Y)Var(X+Y) = Var(X)+Var(Y)Var(X+Y)=Var(X)+Var(Y)
  3. Mean Independence: E[Y∣X]=EYE[Y|X]=EYE[Y∣X]=EY
  4. Independence>Mean Independence>Linearly Independence
  5. MX+Y(t)=MX(t)MY(t)M_{X+Y}(t) = M_X(t)M_Y(t)MX+Y​(t)=MX​(t)MY​(t)
  6. g(X)g(X)g(X) and h(Y)h(Y)h(Y) are independent

UA MATH564 概率论 公式与定理总结相关推荐

  1. UA MATH564 概率论 QE练习 Glivenko–Cantelli定理

    UA MATH564 概率论 QE练习 Glivenko–Cantelli定理 Glivenko–Cantelli定理 Part a Notice P(Xi≤t)=F(t),i=1,⋯,nP(X_i ...

  2. UA MATH564 概率论 计算至少有一个发生的概率:Waring公式

    UA MATH564 概率论 计算至少有一个发生的概率:Waring公式 基于组合学的证明方法 基于概率论的证明方法 在推出Poincare公式后,计算nnn个事件中至少有一个事件发生的概率的问题就彻 ...

  3. UA MATH564 概率论VI 数理统计基础3 卡方分布下 Cochran定理

    UA MATH564 概率论VI 数理统计基础3 卡方分布下 Cochran定理 多元正态随机变量二次型的分布 Cochran定理 这一讲介绍多元正态随机变量的二次型的相关性质以及非常常用的Cochr ...

  4. UA MATH564 概率论 高阶矩的计算:有限差算子方法1

    UA MATH564 概率论 高阶矩的计算:有限差算子方法1 有限差算子及其性质 0的有限差与Stirling数之间的关系 计算离散型随机变量的n阶矩 有限差算子(finite difference) ...

  5. UA MATH564 概率论VI 数理统计基础2 多元正态分布

    UA MATH564 概率论VI 数理统计基础2 多元正态分布 矩母函数 概率密度 多元正态分布的矩 条件分布 独立性 抽样分布简单地说就是统计量服从的分布,正态分布时最常用的总体分布,因此研究正态总 ...

  6. UA MATH564 概率论IV 次序统计量例题3

    UA MATH564 概率论IV 次序统计量例题3 次序统计量常用公式 答案 次序统计量常用公式 定理1(单个次序统计量的分布) FX(j)=∑k=jnCnk[F(x)]k[1−F(x)]n−kF_{ ...

  7. UA MATH564 概率论IV 次序统计量例题2

    UA MATH564 概率论IV 次序统计量例题2 次序统计量常用公式 答案 次序统计量常用公式 定理1(单个次序统计量的分布) FX(j)=∑k=jnCnk[F(x)]k[1−F(x)]n−kF_{ ...

  8. UA MATH564 概率论IV 次序统计量例题1

    UA MATH564 概率论IV 次序统计量例题1 题目 次序统计量常用公式 答案 题目 例1 X1,⋯,Xn∼iidU(0,θ)X_1,\cdots,X_n \sim_{iid} U(0,\thet ...

  9. UA MATH564 概率论V 中心极限定理

    UA MATH564 概率论V 中心极限定理 随机变量序列的极限 收敛模式之间的关系 大数法则 中心极限定理 Classical Central Limit Theorem Sugden法则 Delt ...

最新文章

  1. 李沐亲授加州大学伯克利分校深度学习课程移师中国,现场资料新鲜出炉
  2. C++ string类型占几个字节
  3. 【android-tips】如何在view中取得activity对象
  4. Spark On Yarn 运行项目
  5. 时间同步绝对是一个大问题
  6. 4个数字,如何最快找到最小的2个数
  7. 杨森翔的书法-10斗方:杜牧中秋月
  8. html+link+点击次数,使用正则表达式,取得点击次数,函数抽离(示例代码)
  9. 用Python写个魂斗罗,另附30个Python小游戏源码
  10. 剪贴板是计算机系统,剪贴板怎么打开,小编教你电脑剪贴板怎么打开
  11. 计算机系统:计算机系统的基本组成
  12. java utc时间_Java获取UTC时间的方法
  13. android 监听 短信,Android短信验证码监听解决onChange多次调用的方法
  14. 学习linux压缩命令压缩文档
  15. git add 之后的文件被删除怎么恢复
  16. adobe Adobe Acrobat DC资源下载
  17. 外企IT需要掌握的英语词汇,持续更新中...
  18. CNN模型预测股票涨跌的始末过程——(一)股票数据的获取
  19. 如何进行Java 单元测试
  20. C# 打印PPT幻灯片

热门文章

  1. 分布式发布订阅消息系统Kafka单实例测试
  2. 异步任务AsyncTask
  3. 差分法c语言源程序,差分法求数据压缩
  4. mysql数据库可以升级吗_[数据库]MySQL升级
  5. python中迭代器的实现原理_Python 进阶应用教程
  6. 实验12:引用外部属性文件★(spring管理连接池);
  7. Java的知识点10——static关键字、静态初始化块、 参数传值机制、包、导入类import、 静态导入
  8. Python 爬虫篇 - 通过urllib.request伪装成浏览器绕过反爬虫爬取网页所有连接实例演示,urllib2库的安装
  9. CTFshow 信息收集 web9
  10. win7系统下配置openCV python环境附加 numpy +scipy安装