TCP三次握手

一:引出

客户端与服务器之间数据的发送和返回的过程当中需要创建一个叫TCP connection的东西;由于TCP不存在连接的概念,只存在请求和响应,请求和响应都是数据包,它们之间都是经过由TCP创建的一个从客户端发起,服务器接收的类似连接的通道,这个连接可以一直保持,http请求是在这个连接的基础上发送的;在一个TCP的连接上是可以发送多个http请求的

二:TCP的报文格式

1:TCP在传输层和网络层数据传输的过程
TCP协议是在传输层端到端的传输信息,既然说到传输层协议,那么就讲一下传输层协议在数据传输过程中的位置:


左边家庭要给右边家庭通信中的(应用层和传输层和网络层)
左边家庭的孩子小红(应用层中 应用进程)写了一封信(应用消息),然后小红将信交给了哥哥李雷(传输层),李雷将信放入到家门口的信箱里,邮递员来了将信取走放到了邮政汽车上,然后邮政汽车肯定不是直达的,他们到了转运中心(路由器)转到另一辆汽车上根据时间成本,路线成本等选择一条路继续运输(网络层)。

2:TCP报文

其中比较重要的字段

a:序号(sequence number):
Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。

对序号的补充:
应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,然后TCP把数据流分区成适当长度的 报文段 (通常受该计算机连接的网络的 数据链路层 的 最大传输单元 ( MTU )的限制)。之后TCP把结果包传给IP层,由它来通过网络将包传送给接收端实体的TCP层**。TCP为了保证不发生丢包,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。**然后接收端实体对已成功收到的包发回一个相应的确认( ACK );如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据包就被假设为已丢失将会被进行重传。TCP用一个 校验和 函数来检验数据是否有错误;在发送和接收时都要计算校验和。

b:确认序号(acknowledgement number):
Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。

c:标志位(Flags):
共6个,即URG、ACK、PSH、RST、SYN、FIN等。具体含义如下
URG:紧急指针(urgent pointer)有效。
ACK:确认序号有效,确认接收到消息;
PSH:接收方应该尽快将这个报文交给应用层。
RST:重置连接。
SYN:发起一个新连接。
FIN:释放一个连接。

三:TCP的三次握手的图示

1:图示

所谓的三次握手即TCP连接的建立。这个连接必须是一方主动打开,另一方被动打开的。
以下为客户端主动发起连接的图解:


2:客户端各个状态:

CLOSED状态:为关闭状态
SYN_SENT状态:为请求连接状态, 当你要访问其它的计算机的服务时首先要发个同步信号给该端口,此时状态为SYN_SENT,如果连接成功了就变为ESTABLISHED,此时SYN_SENT状态非常短暂。
ESTABLISHED状态:连接成功

3:服务端的各个状态:

LISTENING状态:监听状态, State显示是LISTENING时表示处于侦听状态,就是说该端口是开放的,等待连接,但还没有被连接。就像你房子的门已经敞开的,但还没有人进来。
SYN-RCVD状态:收到和发送一个连接请求后等待对方对连接请求的确认。
ESTABLISHED状态:连接成功

补充:SYN-RCVD状态

  • 当服务器收到客户端发送的同步信号时,将标志位ACK和SYN置1发送给客户端,此时服务器端处于SYN_RCVD状态,
  • 如果连接成功了就变为ESTABLISHED,正常情况下SYN_RCVD状态非常短暂。如果发现有很多SYN_RCVD状态,那你的机器有可能被SYN Flood的DoS(拒绝服务攻击)攻击了。

SYN Flood的攻击原理是:
在进行三次握手时,攻击软件向被攻击的服务器发送SYN连接请求(握手的第一步),
但是这个地址是伪造的,如攻击软件随机伪造了51.133.163.104、65.158.99.152等等地址。
服务器 在收到连接请求时将标志位 ACK和 SYN 置1发送给客户端(握手的第二步),
但是这些客户端的IP地址都是伪造的,服务器根本找不到客户机,也就是说握手的第三步不可能
完成。这种情况下服务器端一般会重试(再次发送SYN+ACK给客户端)并等待一段时间后丢弃这个
未完成的连接,这段时间的长度我们称为SYN Timeout,一般来说这个时间是分钟的数量级
(大约为30秒-2分钟);一个用户出现异常导致服务器的一个线程等待1分钟并不是什么很大的问题,
但如果有一个恶意的攻击者大量模拟这种情况,服务器端将为了维护一个非常大的半连接列表而
消耗非常多的资源----数以万计的半连接,即使是简单的保存并遍历也会消耗非常多的
CPU 时间和内存,何况还要不断对这个列表中的IP进行SYN+ACK的重试。
此时从正常客户的角度看来,服务器失去响应,这种情况我们称做: 服务器端受到了
SYN Flood攻击(SYN洪水攻击 )

4:TCP三次握手的过程

握手之前主动打开连接的客户端结束CLOSED阶段,被动打开的服务器端也结束CLOSED阶段,并进入LISTEN阶段。随后开始“三次握手”:

a:首先客户端先向服务器端发送一个TCP报文

  • 标记位为SYN,表示“请求建立新连接”;
  • 序号为Seq=X(X一般为1)(传输信息的时候每个数据包的序号);
  • 随后客户端进入SYN-SENT阶段(请求连接的阶段)。

b:服务器端收到来自客户端的TCP报文之后,结束LISTEN阶段。并返回一段报文

  • 标志位为SYN和ACK,表示“确认客户端的报文Seq序号有效,服务器能正常接收客户端发送的数据,并同意创建新连接”(即告诉客户端,服务器收到了你的数据);
  • 序号为Seq=y;(返回一个收到信息的数据包 并给其标序号为y)
  • 确认号为Ack=x+1,表示收到客户端的序号Seq并将其值加1作为自己确认号Ack的值(两端配对 接收到消息 并反馈的过程;随后服务器端进入SYN-RCVD阶段。

ACK:代表确认收到消息

c:客户端接收到来自服务器确认收到数据的TCP报文后,明确了从客户端到服务器的数据传输是正常的,结束SYN-SENT阶段,并返回一段TCP报文

  • 标志位为ACK,表示“确认收到服务器端同意连接的信号”(即告诉服务器,我知道你收到我发的数据了);
  • 序号为Seq=x+1,表示收到服务器端的确认号Ack,并将其值作为自己的序号值;
  • 确认号为Ack=y+1,表示收到服务器端序号Seq,并将其值加1作为自己的确认号Ack的值;
  • 随后客户端进入ESTABLISHED阶段。(即成功建立了连接)

d:关于确认号Ack和数据包的序号Seq值得变化

  • Ack确认号:就是确认收到消息后 返回给 发送端的 序号(Ack = 发起方的Seq + 1) 即就是下次发送的端的seq序号。
    ACK确认序号(Seq)有效:确认发送的数据包的成功到达
  • Seq:序号:给每个数据包一个序号,保证接受端可以按序收到数据包(首次握手的时候 Seq = 上次握手的时候的Ack值,如果没有 则可以是任意值)
  • 在客户端与服务器端传输的TCP报文中,双方的确认号Ack和序号Seq的值,都是在彼此Ack和Seq值的基础上进行计算的,这样做保证了TCP报文传输的连贯性。一旦出现某一方发出的TCP报文丢失,便无法继续"握手",以此确保了"三次握手"的顺利完成

5:为甚要三次握手

a:为了防止服务器端开启一些无用的连接增加服务器开销

  • 第一次握手客户端发送的TCP报文,服务端成功接收;然后第二次握手,服务端返回一个确认收到消息的TCP报文,但这个报文因为某些原因丢失了,那么客户端就一直收不到这个TCP报文的。
  • 客户端设置了一个超时时间,超过了就重新发送一个TCP连接请求,那么如果没有第三次握手的话,服务端是不知道客户端是否收到服务返回的信息的,这样没有给服务器端一个创建还是关闭连接端口的请求,服务器端的端口就一直开着,等到客户端因超时重新发出请求时,服务器就会重新开启一个端口连接。那么服务器端上没有接收到请求数据的上一个端口就一直开着,长此以往,这样的端口多了,就会造成服务器端开销的严重浪费。

b:防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。

  • 已经失效的客户端发出的请求信息,由于某种原因传输到了服务器端,服务器端以为是客户端发出的有效请求,接收后产生错误。

c:总结

  • 也可以这样理解:“第三次握手”是客户端向服务器端发送数据,这个数据就是要告诉服务器,客户端有没有收到服务器“第二次握手”时传过去的数据。
  • 若发送的这个数据是“收到了”的信息,接收后服务器就正常建立TCP连接,否则建立TCP连接失败,服务器关闭连接端口。由此减少服务器开销和接收到失效请求发生的错误。(如果第三次握手失败的话,那服务端就关闭连接)

---------------------------------------------------------------------------------------------------------------------------------

TCP四次挥手(详解)

1:图示


二:TCP四次挥手的过程

所谓的四次挥手即TCP连接的释放(解除)。连接的释放必须是一方主动释放,另一方被动释放。挥手之前主动释放连接的客户端结束ESTABLISHED阶段。随后开始“四次挥手”:

a:首先客户端想要释放连接,向服务器端发送一段TCP报文,其中

  • 标记位为FIN,表示“请求释放连接“;
  • 序号为Seq=U;
  • 随后客户端进入FIN-WAIT-1阶段,即半关闭阶段。并且停止在客户端到服务器端方向上发送数据,但是客户端仍然能接收从服务器端传输过来的数据。

注意:这里不发送的是正常连接时传输的数据(非确认报文),而不是一切数据,所以客户端仍然能发送ACK确认报文。
b:服务器端接收到从客户端发出的TCP报文之后,确认了客户端想要释放连接,随后服务器端结束ESTABLISHED阶段,进入CLOSE-WAIT阶段(半关闭状态)并返回一段TCP报文,其中:

  • 标记位为ACK,表示“接收到客户端发送的释放连接的请求”;
  • 序号为Seq=V;
  • 确认号为Ack=U+1,表示是在收到客户端报文的基础上,将其序号Seq值加1作为本段报文确认号Ack的值;
  • 随后服务器端开始准备释放服务器端到客户端方向上的连接。
    客户端收到从服务器端发出的TCP报文之后,确认了服务器收到了客户端发出的释放连接请求,随后客户端结束FIN-WAIT-1阶段,进入FIN-WAIT-2阶段前"两次挥手"既让服务器端知道了客户端想要释放连接,也让客户端知道了服务器端了解了自己想要释放连接的请求。于是,可以确认关闭客户端到服务器端方向上的连接了

c:服务器端自从发出ACK确认报文之后,经过CLOSED-WAIT阶段,做好了释放服务器端到客户端方向上的连接准备,再次向客户端发出一段TCP报文,其中:
(第二次挥手 服务器端回复 确认收到 客户端想要释放连接的请求 返回ACK,但是 服务端还有些数据的处理,所以不能马上断开连接,所以需要第三次握手 即服务端发送 FIN 释放连接的标志位)

  • 标记位为FIN,ACK,表示“已经准备好释放连接了”。注意:这里的ACK并不是确认收到服务器端报文的确认报文。
  • 序号为Seq=W;
  • 确认号为Ack=U+1;表示是在收到客户端报文的基础上,将其序号Seq值加1作为本段报文确认号Ack的值。
    随后服务器端结束CLOSE-WAIT阶段,进入LAST-ACK阶段。并且停止在服务器端到客户端的方向上发送数据,但是服务器端仍然能够接收从客户端传输过来的数据。

d:客户端收到从服务器端发出的TCP报文,确认了服务器端已做好释放连接的准备,结束FIN-WAIT-2阶段,进入TIME-WAIT阶段,并向服务器端发送一段报文,其中:

  • 标记位为ACK,表示“接收到服务器准备好释放连接的信号”。
  • 序号为Seq=U+1;表示是在收到了服务器端报文的基础上,将其确认号Ack值作为本段报文序号的值。
  • 确认号为Ack=W+1;表示是在收到了服务器端报文的基础上,将其序号Seq值作为本段报文确认号的值。随后客户端开始在TIME-WAIT阶段等待2MSL。
    服务器端收到从客户端发出的TCP报文之后结束LAST-ACK阶段,进入CLOSED阶段。由此正式确认关闭服务器端到客户端方向上的连接。
    客户端等待完2MSL之后,结束TIME-WAIT阶段,进入CLOSED阶段,由此完成“四次挥手”。

e:总结
后“两次挥手”既让客户端知道了服务器端准备好释放连接了,也让服务器端知道了客户端了解了自己准备好释放连接了。于是,可以确认关闭服务器端到客户端方向上的连接了,由此完成“四次挥手”。

三:为什么握手是三次,挥手要四次?

a:握手三次(即在一次握手就可以搞定ACK+SYN)
TCP建立连接时之所以只需要"三次握手",是因为在第二次"握手"过程中,服务器端发送给客户端的TCP报文是以SYN与ACK作为标志位的。SYN是请求连接标志,表示服务器端同意建立连接;ACK是确认报文,表示告诉客户端,服务器端收到了它的请求报文。
即SYN建立连接报文与ACK确认接收报文是在同一次"握手"当中传输的,所以"三次握手"不多也不少,正好让双方明确彼此信息互通。

b:挥手四次
TCP释放连接时之所以需要“四次挥手”,是因为FIN释放连接报文与ACK确认接收报文是分别由第二次和第三次"握手"传输的。

b1:为何建立连接时一起传输,释放连接时却要分开传输?

  • 建立连接时,被动方服务器端结束CLOSED阶段进入“握手”阶段并不需要任何准备,可以直接返回SYN和ACK报文,开始建立连接。
  • 释放连接时,被动方服务器,突然收到主动方客户端释放连接的请求时并不能立即释放连接,因为还有必要的数据需要处理,所以服务器先返回ACK确认收到报文,经过CLOSE-WAIT阶段准备好释放连接之后,才能返回FIN释放连接报文。

四:为什么客户端在TIME-WAIT阶段要等2MSL?

为的是确认服务器端是否收到客户端发出的ACK确认报文

当客户端发出最后的ACK确认报文时,并不能确定服务器端能够收到该段报文。所以客户端在发送完ACK确认报文之后,会设置一个时长为2MSL的计时器。MSL指的是Maximum Segment Lifetime:一段TCP报文在传输过程中的最大生命周期。2MSL即是服务器端发出为FIN报文和客户端发出的ACK确认报文所能保持有效的最大时长。

  • 如果客户端在2MSL内,再次收到了来自服务器端的FIN报文,说明服务器端由于各种原因没有接收到客户端发出的ACK确认报文。客户端再次向服务器端发出ACK确认报文,计时器重置,重新开始2MSL的计时;
  • 否则客户端在2MSL内没有再次收到来自服务器端的FIN报文,说明服务器端正常接收了ACK确认报文,客户端可以进入CLOSED阶段,完成“四次挥手”。

TCP三次握手与四次挥手(详解)相关推荐

  1. TCP 三次握手和四次挥手详解

    1. TCP 报文格式详解 (1). 源端口和目的端口字段--各占 2 字节,标识了发送方和接收方的应用进程,如2210,80端口 (2). 序号字段--占 4 字节,TCP 连接中传送的数据流中的每 ...

  2. TCP三次握手和四次挥手详解(面试常见问题)

    大概两个月前,一位朋友在面试360集团时,在面试过程中被问及TCP三次握手和四次挥手的相关知识,他当时只知道大概,但当时面试官问他TCP三次握手过程中发送的数字是多少,他一下子就懵住了,因为这也是他第 ...

  3. TCP—三次握手和四次挥手详解

      本文主要介绍TCP连接三次握手和四次挥手的机制. TCP三次握手 剖析三次握手机制   首先Client端发送连接请求报文,Server端接受连接后回复ACK报文,并为这次连接分配资源.Clien ...

  4. TCP三次握手和四次挥手详解

    文章目录 三次握手和四次挥手简述 三次握手的目的 三次握手流程详解 半连接队列和全连接队列 四次挥手的目的 四次挥手详解 为什么客户端需要TIME_WAIT状态 为什么挥手比握手多一次 为什么三次挥手 ...

  5. 面试常问:TCP 三次握手与四次挥手详解

    TCP 三次握手 图解 三次握手过程详解 第一次握手 [客户端]向[服务端]发送连接请求报文,标记 ACK=1 , SYN=1 , 客户端序列号 seq=x ,客户端进入等待状态. 第二次握手 [服务 ...

  6. TCP三次握手,四次挥手详解

    本文是对小林的图解网络的总结 TCP简介 TCP作为一个传输层协议,是一个面向连接的字节流,为应用层提供端到端的传输服务.和UDP不同的是,TCP提供的是可靠的面向连接传输服务,并且提供了流量控制等功 ...

  7. TCP三次握手及四次挥手详解

    此篇文章转载自:http://justim.blog.51cto.com/740099/237548 TCP(Transmission Control Protocol) 传输控制协议   TCP是主 ...

  8. TCP协议---三次握手和四次挥手详解 (不看后悔系列)

    目录 TCP协议简介 TCP报头 TCP工作原理 科来解码详解 wireshark解码详解 三次握手和四次挥手 数据包的大致结构 你不知道的三次握手 为什么需要有三次握手? 为啥只有三次握手才能确认双 ...

  9. 三次握手和四次挥手详解

    详解 TCP 连接的" 三次握手 "与" 四次挥手 " *TCP connection* 客户端与服务器之间数据的发送和返回的过程当中需要创建一个叫TCP co ...

  10. tcp 三次握手与四次挥手_TCP三次握手与四次挥手详解

    TCP报文结构   源端口和目的端口:各占2个字节,分别写入源端口号和目的端口号. 序号:占4个字节.序号使用mod运算.TCP是面向字节流的,在一个TCP连接中传送的字节流中的每一个字节都按顺序编号 ...

最新文章

  1. android 盒子 airplay,iOS Airplay--Airtunes音乐播放在Android盒子和手机上的实现 (第一篇)...
  2. 程序员到底要不要用框架开发?
  3. DW的代码格式化和净化功能
  4. java调用shell脚本及注意事项
  5. bootstrap mysql源码_Django+Bootstrap+Mysql 搭建个人博客 (六)
  6. Linux删除所有文件(作死命令,危险命令)
  7. python行与缩进_Python行结构与缩进的简单介绍
  8. VUE+axios+php实现图片上传
  9. JavaScript面向对象学习小结
  10. PHPWAMP_IN3新特性,一键内网穿透,一键生成app,一键IIS高承压
  11. npm install 报错(npm ERR! errno 1)
  12. 清除node本地缓存
  13. python给excel添加超链接_《python3教程》 python用xlwt,超链接到另一sheet,如何设置HYPERLINK...
  14. mysql中rpl_MySQL半同步复制之rpl_semi_sync_master_wait_point
  15. 【离散数学】平凡子群
  16. ios模拟器 - Simulator录制视频
  17. 天气预报 增加公历节日信息(1.确定时间2.第几周第几天) 和 农历节日信息 体力活+外码
  18. 人工智能如何改变新闻工作?
  19. php微信支付的开发,php微信支付开发教程
  20. 【动手学深度学习PyTorch版】19 网络中的网络 NiN

热门文章

  1. 1.JAVA猜数字游戏: 一个类A有两个成员变量v、num,v有一个初值100。 定义一个方法guess,对A类的成员变量v,用num进行猜。 *如果num比v大则提示大了,反之则提示小了.
  2. 树形dp day43
  3. 不经意想起皮鞋飘来一阵熟悉的歌声
  4. 近邻算法常用距离公式与推导(内附证明)初中生也能看懂
  5. 基于LeafLet的多点聚合展示markercluster
  6. Nginx静态资源跨域访问
  7. Python日期和时间函数
  8. SVM对文字识别的简单使用
  9. 2020年中国食用菌产值产量及出口分析,食用菌工厂化是大趋势「图」
  10. 日本摄影师梶原憲之宫崎骏动漫风女孩儿童摄影作品图片合集欣赏