前情回顾:让你的单细胞数据动起来!|iCellR(一)
在上文我们已经基本完成了聚类分析和细胞在不同条件下的比例分析,下面继续开始啦,让你看看iCellR的强大!

1. 每个cluster的平均表达量

my.obj <- clust.avg.exp(my.obj)head(my.obj@clust.avg)
#      gene   cluster_1   cluster_2  cluster_3 cluster_4   cluster_5   cluster_6
#1     A1BG 0.072214723 0.092648973 0.08258609         0 0.027183115 0.072291636
#2 A1BG.AS1 0.014380756 0.003280237 0.01817982         0 0.000000000 0.011545546
#3     A1CF 0.000000000 0.000000000 0.00000000         0 0.000000000 0.000000000
#4      A2M 0.000000000 0.000000000 0.00000000         0 0.007004131 0.004672857
#5  A2M.AS1 0.003520828 0.039985296 0.00876364         0 0.056596203 0.018445562
#6    A2ML1 0.000000000 0.000000000 0.00000000         0 0.000000000 0.000000000
#   cluster_7  cluster_8   cluster_9
#1 0.09058946 0.04466827 0.027927923
#2 0.00000000 0.01534541 0.005930566
#3 0.00000000 0.00000000 0.000000000
#4 0.00000000 0.00000000 0.003411938
#5 0.00000000 0.00000000 0.000000000
#6 0.00000000 0.00000000 0.000000000

保存object

save(my.obj, file = "my.obj.Robj")

2. 寻找marker基因

marker.genes <- findMarkers(my.obj,fold.change = 2,padjval = 0.1)   # 筛选条件dim(marker.genes)
# [1] 1070   17head(marker.genes)
#                row   baseMean    baseSD AvExpInCluster AvExpInOtherClusters
#LRRN3         LRRN3 0.01428477 0.1282046     0.05537243          0.003437002
#LINC00176 LINC00176 0.06757573 0.2949763     0.21404151          0.028906516
#FHIT           FHIT 0.10195359 0.3885343     0.31404936          0.045957058
#TSHZ2         TSHZ2 0.04831334 0.2628778     0.14300998          0.023311970
#CCR7           CCR7 0.28132627 0.6847417     0.81386444          0.140728033
#SCGB3A1     SCGB3A1 0.06319598 0.3554273     0.18130557          0.032013232
#          foldChange log2FoldChange         pval         padj clusters
#LRRN3      16.110677       4.009945 1.707232e-06 2.847662e-03        1
#LINC00176   7.404611       2.888424 4.189197e-16 7.117446e-13        1
#FHIT        6.833539       2.772633 1.576339e-19 2.681353e-16        1
#TSHZ2       6.134616       2.616973 8.613622e-10 1.455702e-06        1
#CCR7        5.783243       2.531879 1.994533e-42 3.400679e-39        1
#SCGB3A1     5.663457       2.501683 2.578484e-07 4.313805e-04        1
#               gene  cluster_1   cluster_2   cluster_3 cluster_4   cluster_5
#LRRN3         LRRN3 0.05537243 0.004102916 0.002190847         0 0.010902326
#LINC00176 LINC00176 0.21404151 0.016772401 0.005203161         0 0.009293024
#FHIT           FHIT 0.31404936 0.008713243 0.022934924         0 0.035701186
#TSHZ2         TSHZ2 0.14300998 0.008996236 0.009444180         0 0.000000000
#CCR7           CCR7 0.81386444 0.075719109 0.034017494         0 0.021492756
#SCGB3A1     SCGB3A1 0.18130557 0.039644151 0.001183264         0 0.000000000
#            cluster_6  cluster_7   cluster_8   cluster_9
#LRRN3     0.002087831 0.00000000 0.000000000 0.012113258
#LINC00176 0.086762509 0.01198777 0.003501552 0.003560614
#FHIT      0.104189143 0.04144293 0.041064681 0.007218861
#TSHZ2     0.065509372 0.01690584 0.002352707 0.015350123
#CCR7      0.272580821 0.06523324 0.257130255 0.031304151
#SCGB3A1   0.078878071 0.01198777 0.000000000 0.043410608# baseMean: average expression in all the cells 所有细胞的平均表达值
# baseSD: Standard Deviation 标准偏差
# AvExpInCluster: average expression in cluster number (see clusters) 该cluster中的平均表达值
# AvExpInOtherClusters: average expression in all the other clusters  在所有其他cluster的平均表达值
# foldChange: AvExpInCluster/AvExpInOtherClusters  表达差异倍数
# log2FoldChange: log2(AvExpInCluster/AvExpInOtherClusters) 取表达差异倍数的log2的值
# pval: P value
# padj: Adjusted P value
# clusters: marker for cluster number
# gene: marker gene for the cluster cluster的marker gene
# the rest are the average expression for each cluster
  • 单细胞分群后,怎么找到Marker基因定义每一类群?

3. 绘制基因表达情况

基因MS4A1tSNE 2D,PCA 2D展示该基因在两种降维方式下,每个组的平均表达分布图。Box PlotBar plot展示了该基因在每个簇中的表达箱线图和条形图

# tSNE 2D
A <- gene.plot(my.obj, gene = "MS4A1",plot.type = "scatterplot",interactive = F,out.name = "scatter_plot")
# PCA 2D
B <- gene.plot(my.obj, gene = "MS4A1",plot.type = "scatterplot",interactive = F,out.name = "scatter_plot",plot.data.type = "pca")# Box Plot
C <- gene.plot(my.obj, gene = "MS4A1",box.to.test = 0,box.pval = "sig.signs",col.by = "clusters",plot.type = "boxplot",interactive = F,out.name = "box_plot")# Bar plot (to visualize fold changes)
D <- gene.plot(my.obj, gene = "MS4A1",col.by = "clusters",plot.type = "barplot",interactive = F,out.name = "bar_plot")library(gridExtra)
grid.arrange(A,B,C,D) # 4个图合并展示

  • R语言 - 箱线图(小提琴图、抖动图、区域散点图)

  • R语言 - 柱状图

展示多个基因的plots:

genelist = c("PPBP","LYZ","MS4A1","GNLY","LTB","NKG7","IFITM2","CD14","S100A9")
###
for(i in genelist){MyPlot <- gene.plot(my.obj, gene = i,interactive = F,plot.data.type = "umap",cell.transparency = 1)NameCol=paste("PL",i,sep="_")eval(call("<-", as.name(NameCol), MyPlot))
}
###
library(cowplot)
filenames <- ls(pattern="PL_")
plot_grid(plotlist=mget(filenames[1:9]))

热图分析:

# 获取top10高变基因
MyGenes <- top.markers(marker.genes, topde = 10, min.base.mean = 0.2,filt.ambig = F)
MyGenes <- unique(MyGenes)
# plot
heatmap.gg.plot(my.obj, gene = MyGenes, interactive = T, out.name = "plot", cluster.by = "clusters")
# or
heatmap.gg.plot(my.obj, gene = MyGenes, interactive = F, cluster.by = "clusters")

  • R语言 - 热图美化

4. 使用ImmGen进行细胞类型预测

注意ImmGen是小鼠基因组数据,此处的样本数据是人的。对于157个ULI-RNA-Seq(Ultra-low-input RNA-seq)样本,使用的metadata是:

https://github.com/rezakj/scSeqR/blob/dev/doc/uli_RNA_metadat.txt

# 绘制cluster8中top40基因(平均表达值最小为0.2)在不同细胞的表达分布图
Cluster = 8
MyGenes <- top.markers(marker.genes, topde = 40, min.base.mean = 0.2, cluster = Cluster)
# 画图
cell.type.pred(immgen.data = "rna", gene = MyGenes, plot.type = "point.plot")
# and
cell.type.pred(immgen.data = "uli.rna", gene = MyGenes, plot.type = "point.plot", top.cell.types = 50)
# or
cell.type.pred(immgen.data = "rna", gene = MyGenes, plot.type = "heatmap")
# and
cell.type.pred(immgen.data = "uli.rna", gene = MyGenes, plot.type = "heatmap")# And finally check the genes in the cells and find the common ones to predict
# heatmap.gg.plot(my.obj, gene = MyGenes, interactive = F, cluster.by = "clusters")# 可以看出来cluster 8更像B细胞!# for tissue type prediction use this:
#cell.type.pred(immgen.data = "mca", gene = MyGenes, plot.type = "point.plot")

  • cellassign:用于肿瘤微环境分析的单细胞注释工具(9月Nature)

5. Pathway analysis

# cluster7的KEGG Pathway
# pathways.kegg(my.obj, clust.num = 7)
# this function is being improved and soon will be available 这个函数还要改进,很快就能用了

  • Pathview包:整合表达谱数据可视化KEGG通路

  • KEGG在线数据库使用攻略

对cluster进行QC:

clust.stats.plot(my.obj, plot.type = "box.mito", interactive = F)  # 每个cluster中细胞的线粒体基因分布图
clust.stats.plot(my.obj, plot.type = "box.gene", interactive = F)  # 每个cluster中细胞的基因分布图

6. 差异表达分析

diff.res <- run.diff.exp(my.obj, de.by = "clusters", cond.1 = c(1,4), cond.2 = c(2))  # cluster之间的比较得到差异表达基因
diff.res1 <- as.data.frame(diff.res)
diff.res1 <- subset(diff.res1, padj < 0.05)   # 筛选padj < 0.05的基因
head(diff.res1)
#             baseMean        1_4           2 foldChange log2FoldChange         pval
#AAK1       0.19554589 0.26338228 0.041792762 0.15867719      -2.655833 8.497012e-33
#ABHD14A    0.09645732 0.12708519 0.027038379 0.21275791      -2.232715 1.151865e-11
#ABHD14B    0.19132829 0.23177944 0.099644572 0.42991118      -1.217889 3.163623e-09
#ABLIM1     0.06901900 0.08749258 0.027148089 0.31029018      -1.688310 1.076382e-06
#AC013264.2 0.07383608 0.10584821 0.001279649 0.01208947      -6.370105 1.291674e-19
#AC092580.4 0.03730859 0.05112053 0.006003441 0.11743700      -3.090041 5.048838e-07padj
#AAK1       1.294690e-28
#ABHD14A    1.708446e-07
#ABHD14B    4.636290e-05
#ABLIM1     1.540087e-02
#AC013264.2 1.950557e-15
#AC092580.4 7.254675e-03# more examples 注意参数“de.by”设置的是不同差异比较方式
diff.res <- run.diff.exp(my.obj, de.by = "conditions", cond.1 = c("WT"), cond.2 = c("KO"))  #  WT vs KO
diff.res <- run.diff.exp(my.obj, de.by = "clusters", cond.1 = c(1,4), cond.2 = c(2))  # cluster 1 and 2 vs. 4
diff.res <- run.diff.exp(my.obj, de.by = "clustBase.condComp", cond.1 = c("WT"), cond.2 = c("KO"), base.cond = 1)  #  cluster 1 WT vs cluster 1 KO
diff.res <- run.diff.exp(my.obj, de.by = "condBase.clustComp", cond.1 = c(1), cond.2 = c(2), base.cond = "WT") # cluster 1 vs cluster 2 but only the WT sample

画差异表达基因的火山图和MA图:

# Volcano Plot
volcano.ma.plot(diff.res,sig.value = "pval",sig.line = 0.05,plot.type = "volcano",interactive = F)# MA Plot
volcano.ma.plot(diff.res,sig.value = "pval",sig.line = 0.05,plot.type = "ma",interactive = F)

  • 什么?你做的差异基因方法不合适?

7. 合并,重置,重命名和删除cluster

# 如果你想要合并cluster 2和cluster 3
my.obj <- change.clust(my.obj, change.clust = 3, to.clust = 2)# 重置为原来的分类
my.obj <- change.clust(my.obj, clust.reset = T)# 可以将cluster7编号重命名为细胞类型-"B Cell".
my.obj <- change.clust(my.obj, change.clust = 7, to.clust = "B Cell")# 删除cluster1
my.obj <- clust.rm(my.obj, clust.to.rm = 1)# 进行tSNE对细胞重新定位
my.obj <- run.tsne(my.obj, clust.method = "gene.model", gene.list = "my_model_genes.txt")# Use this for plotting as you make the changes
cluster.plot(my.obj,cell.size = 1,plot.type = "tsne",cell.color = "black",back.col = "white",col.by = "clusters",cell.transparency = 0.5,clust.dim = 2,interactive = F)

Cell gating:可以框出指定的信息

my.plot <- gene.plot(my.obj, gene = "GNLY",plot.type = "scatterplot",clust.dim = 2,interactive = F)cell.gating(my.obj, my.plot = my.plot)# or#my.plot <- cluster.plot(my.obj,
#    cell.size = 1,
#    cell.transparency = 0.5,
#    clust.dim = 2,
#    interactive = F)

下载细胞ID之后,用下面的命令重命名这些cluste****r

my.obj <- gate.to.clust(my.obj, my.gate = "cellGating.txt", to.clust = 10)

8. 伪时序分析

注意参数“type”

MyGenes <- top.markers(marker.genes, topde = 50, min.base.mean = 0.2)
MyGenes <- unique(MyGenes)pseudotime.tree(my.obj,marker.genes = MyGenes,type = "unrooted",clust.method = "complete")# orpseudotime.tree(my.obj,marker.genes = MyGenes,type = "classic",clust.method = "complete")

9. 应用monocle进行伪时序分析

library(monocle)MyMTX <- my.obj@main.data
GeneAnno <- as.data.frame(row.names(MyMTX))
colnames(GeneAnno) <- "gene_short_name"
row.names(GeneAnno) <- GeneAnno$gene_short_name
cell.cluster <- (my.obj@best.clust)
Ha <- data.frame(do.call('rbind', strsplit(as.character(row.names(cell.cluster)),'_',fixed=TRUE)))[1]
clusts <- paste("cl.",as.character(cell.cluster$clusters),sep="")
cell.cluster <- cbind(cell.cluster,Ha,clusts)
colnames(cell.cluster) <- c("Clusts","iCellR.Conds","iCellR.Clusts")
Samp <- new("AnnotatedDataFrame", data = cell.cluster)
Anno <- new("AnnotatedDataFrame", data = GeneAnno)
my.monoc.obj <- newCellDataSet(as.matrix(MyMTX),phenoData = Samp, featureData = Anno)## find disperesedgenes
my.monoc.obj <- estimateSizeFactors(my.monoc.obj)
my.monoc.obj <- estimateDispersions(my.monoc.obj)
disp_table <- dispersionTable(my.monoc.obj)unsup_clustering_genes <- subset(disp_table, mean_expression >= 0.1)
my.monoc.obj <- setOrderingFilter(my.monoc.obj, unsup_clustering_genes$gene_id)# tSNE
my.monoc.obj <- reduceDimension(my.monoc.obj, max_components = 2, num_dim = 10,reduction_method = 'tSNE', verbose = T)
# cluster
my.monoc.obj <- clusterCells(my.monoc.obj, num_clusters = 10)## plot conditions and clusters based on iCellR analysis
A <- plot_cell_clusters(my.monoc.obj, 1, 2, color = "iCellR.Conds")
B <- plot_cell_clusters(my.monoc.obj, 1, 2, color = "iCellR.Clusts")## plot clusters based monocle analysis
C <- plot_cell_clusters(my.monoc.obj, 1, 2, color = "Cluster")# get marker genes from iCellR analysis
MyGenes <- top.markers(marker.genes, topde = 30, min.base.mean = 0.2)
my.monoc.obj <- setOrderingFilter(my.monoc.obj, MyGenes)my.monoc.obj <- reduceDimension(my.monoc.obj, max_components = 2,method = 'DDRTree')
# order cells
my.monoc.obj <- orderCells(my.monoc.obj)# plot based on iCellR analysis and marker genes from iCellR
D <- plot_cell_trajectory(my.monoc.obj, color_by = "iCellR.Clusts")## heatmap genes from iCellRplot_pseudotime_heatmap(my.monoc.obj[MyGenes,],cores = 1,cluster_rows = F,use_gene_short_name = T,show_rownames = T)

  • NBT|45种单细胞轨迹推断方法比较,110个实际数据集和229个合成数据集

10. iCellR应用于scVDJ-seq数据

# first prepare the files.
# this function would filter the files, calculate clonotype frequencies and proportions and add conditions to the cell ids.
my.vdj.1 <- prep.vdj(vdj.data = "all_contig_annotations.csv", cond.name = "WT")
my.vdj.2 <- prep.vdj(vdj.data = "all_contig_annotations.csv", cond.name = "KO")
my.vdj.3 <- prep.vdj(vdj.data = "all_contig_annotations.csv", cond.name = "Ctrl")# concatenate all the conditions
my.vdj.data <- rbind(my.vdj.1, my.vdj.2, my.vdj.3)# see head of the file
head(my.vdj.data)
#  raw_clonotype_id               barcode is_cell                   contig_id
#1       clonotype1 WT_AAACCTGAGCTAACTC-1    True AAACCTGAGCTAACTC-1_contig_1
#2       clonotype1 WT_AAACCTGAGCTAACTC-1    True AAACCTGAGCTAACTC-1_contig_2
#3       clonotype1 WT_AGTTGGTTCTCGCATC-1    True AGTTGGTTCTCGCATC-1_contig_3
#4       clonotype1 WT_TGACAACCAACTGCTA-1    True TGACAACCAACTGCTA-1_contig_1
#5       clonotype1 WT_TGTCCCAGTCAAACTC-1    True TGTCCCAGTCAAACTC-1_contig_1
#6       clonotype1 WT_TGTCCCAGTCAAACTC-1    True TGTCCCAGTCAAACTC-1_contig_2
#  high_confidence length chain  v_gene d_gene  j_gene c_gene full_length
#1            True    693   TRA TRAV8-1   None  TRAJ21   TRAC        True
#2            True    744   TRB  TRBV28  TRBD1 TRBJ2-1  TRBC2        True
#3            True    647   TRA TRAV8-1   None  TRAJ21   TRAC        True
#4            True    508   TRB  TRBV28  TRBD1 TRBJ2-1  TRBC2        True
#5            True    660   TRA TRAV8-1   None  TRAJ21   TRAC        True
#6            True    770   TRB  TRBV28  TRBD1 TRBJ2-1  TRBC2        True
#  productive             cdr3                                          cdr3_nt
#1       True      CAVKDFNKFYF                TGTGCCGTGAAAGACTTCAACAAATTTTACTTT
#2       True CASSLFSGTGTNEQFF TGTGCCAGCAGTTTATTTTCCGGGACAGGGACGAATGAGCAGTTCTTC
#3       True      CAVKDFNKFYF                TGTGCCGTGAAAGACTTCAACAAATTTTACTTT
#4       True CASSLFSGTGTNEQFF TGTGCCAGCAGTTTATTTTCCGGGACAGGGACGAATGAGCAGTTCTTC
#5       True      CAVKDFNKFYF                TGTGCCGTGAAAGACTTCAACAAATTTTACTTT
#6       True CASSLFSGTGTNEQFF TGTGCCAGCAGTTTATTTTCCGGGACAGGGACGAATGAGCAGTTCTTC
#  reads umis       raw_consensus_id my.raw_clonotype_id clonotype.Freq
#1  1241    2 clonotype1_consensus_1          clonotype1            120
#2  2400    4 clonotype1_consensus_2          clonotype1            120
#3  1090    2 clonotype1_consensus_1          clonotype1            120
#4  2455    4 clonotype1_consensus_2          clonotype1            120
#5  1346    2 clonotype1_consensus_1          clonotype1            120
#6  3073    8 clonotype1_consensus_2          clonotype1            120
#  proportion total.colonotype
#1 0.04098361             1292
#2 0.04098361             1292
#3 0.04098361             1292
#4 0.04098361             1292
#5 0.04098361             1292
#6 0.04098361             1292# add it to iCellR object
add.vdj(my.obj, vdj.data = my.vdj.data)

reference

如果想尝试一下,这里有传送门哦!

  • https://github.com/rezakj/iCellR

让你的单细胞数据动起来!|iCellR(二)相关推荐

  1. 让你的单细胞数据动起来!|iCellR(一)

    今天在翻阅single cell 的github时候,我看见了这个R包,允许我们处理各种来自单细胞测序技术的数据,如scRNA-seq,scVDJ-seq和CITE-Seq. 单细胞转录组教程汇总 想 ...

  2. Nature Methods | 用深度多任务神经网络探索单细胞数据

    1.研究背景 在生物医学领域,分析大规模.高维度的单细胞数据,并且处理由分批实验效应和不同制备造成的数据噪声是当前的挑战:单细胞数据的大规模.高维度处理比较困难,需要考虑数据中不同程度的噪声.分批效应 ...

  3. SingleR包注释单细胞数据

    SingleR包通过利用纯细胞类型的参考转录组数据集独立推断每个单细胞的起源细胞,从单细胞RNA测序数据执行无偏细胞类型识别. 1. 载入单细胞数据 # if (!requireNamespace(& ...

  4. 单细胞数据整合方法 | Comprehensive Integration of Single-Cell Data

    操作代码:https://satijalab.org/seurat/ 依赖的算法 CCA CANONICAL CORRELATION ANALYSIS | R DATA ANALYSIS EXAMPL ...

  5. 五分钟让你的数据动起来,动态数据可视化极简教程

    之前发了一条动态数据可视化的视频,有很多朋友来咨询怎么制作的,其实制作过程难度不大,上手很快,特地为大家整理了一篇制作教程,五分钟让你的数据动起来! 为什么做动态数据可视化? 动态数据可视化主要应用的 ...

  6. 推荐几个单细胞数据分享和展示平台 | 短视频演示

    Broad的单细胞数据分享和展示平台 可选择子类展示 映射单个基因的颜色到t-SNE/UMAP图 分屏展示Cluster着色图和单基因着色图 多基因热图.Dotplot.Boxplot.Violinp ...

  7. 这个R包自动注释单细胞数据的平均准确率为83%,使用后我的结果出现了点问题|附全代码...

    估计大家都有一个这样的感觉就是单细胞数据具有一定的数据依赖性,好多的marker在相同的组织中,别人的数据就表达的十分明显,在你的数据中就是不太显著,比如NK细胞的KLRF1.于是,细胞自动注释也就应 ...

  8. Nat. Commun. | 基于最优传输的单细胞数据集成统一计算框架

    本文介绍由同济大学控制科学与工程系的洪奕光和中国科学院数学与系统科学研究院的万林共同通讯发表在 Nature Communications 的研究成果:单细胞数据集成可以提供细胞的全面分子视图.然而, ...

  9. 使用对比学习处理大规模多模态单细胞数据

    目录 摘要 引言 Results Overview of Concerto 对比学习的embedding通过微调显著提高了自动细胞分类的性能,并支持跨组织的新细胞类型发现. 其他结果 摘要 单细胞数据 ...

最新文章

  1. 修改 mysql 支持远程连接
  2. Java Socket实现WebSocket服务器
  3. 写 Python 爬虫 5 年,复制粘贴一直是我赖以生存的核心技能,直到我看到这些腾讯阿里大佬们的技术公众号,太强了...
  4. qqp2011java_腾讯开放平台中实现QQ登陆的功能
  5. jupyter问题: failed to create cublas handle: CUBLAS_STATUS_ALLOC_FAILED
  6. 【LeetCode】Copy List with Random Pointer
  7. Kettle8.2输入组件之Get data from xml
  8. 计算机485通讯原理图,485通讯接线图.pdf
  9. 淘宝消费者行为分析实例(pandas, matplotlib, pyechart)(超详细)
  10. web端如何获取笔压 web端获取笔压的js库
  11. 【P3369 普通平衡树】 Splay
  12. 【API】开源免费接口管理
  13. 【为什么换了固态硬盘电脑会快?详解硬盘与内存的关系】
  14. php7安装(多个php版本共存)
  15. make install clean的意思
  16. SQL之数据定义、数据操纵
  17. 使用一片四运放LM324组成所需电路
  18. 文件夹.EXE病毒清理
  19. 虚拟机Ubuntu磁盘扩容
  20. crontab的安装和使用

热门文章

  1. 作者:兰艳艳,女,中国科学院计算技术研究所副研究员、硕士生导师。
  2. Android中文API(99)—— RelativeLayout
  3. iPhone失去反应咋办?
  4. 数据安全备份刻不容缓 在线备份业务前景广阔
  5. android自定义控件(6)-详解在onMeasure()方法中如何测量一个控件尺寸
  6. php 比较字符串或文章的相似度
  7. block的使用(六)
  8. cookie保存分页参数
  9. 轻松搞定RabbitMQ(二)——工作队列之消息分发机制
  10. 40种网站设计常用技巧