数据库锁设计的初衷是处理并发问题。作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则。而锁就是用来实现这些访问规则的重要数据结构。

根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。

一、全局锁

顾名思义,全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。当我们不需要锁定整个数据库时,可以使用unlock tables解除。

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。但是注意,在备份过程中整个库完全处于只读状态,听上去就很危险:

  • 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
  • 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。

看来加全局锁不太好。但是细想一下,备份为什么要加锁呢?我们来看一下不加锁会有什么问题。假设我们有一个A表和B表,B表每增加一个元素需要A表减少一个元素。

现在我们发起一个逻辑备份,假设备份期间,一个事务使得A表减少B表增加。如果时间顺序上是先备份A表,然后执行事务,然后备份B表,此时会发生:A还没减少,此时备份了A表,执行事务后A减少B增加,此时备份B表,B表是增加后的结果,所以最终得到的备份是A没减少但B却增加了。也就是说,不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。

说到视图,我们在前面讲事务隔离的时候,讲到在可重复读隔离级别下开启一个事务是可以得到一致性视图的。

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

所以有了这个功能,为什么还需要 FTWRL 呢?一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。

所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。

设置全库只读,还可以使用 set global readonly=true 的方式,但是建议使用 FTWRL 方式,主要有两个原因:

  • 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,所以不建议使用。
  • 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,如果我们要对里面任何一个表做加字段操作,都是会被锁住的。

但是,即使没有被全局锁住,加字段也不是就能一帆风顺的,因为还会碰到接下来我们要介绍的表级锁。

二、表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。

另一类表级的锁是 MDL(metadata lock,元数据锁)。元数据锁是server层的锁,主要用于隔离DML(Data Manipulation Language,数据操纵语言,如增删查改)和DDL(Data Definaition Language,数据定义语言,如改变表头新增一列)操作之间的干扰。每执行一条DML、DDL语句时都会申请MDL锁,DML操作需要MDL读锁,DDL操作需要MDL写锁:

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

MDL加锁过程是系统自动控制,无法直接干预,申请MDL锁的操作会形成一个队列,队列中写锁获取优先级高于读锁。一旦出现写锁等待,不但当前操作会被阻塞,同时还会阻塞后续该表的所有操作。事务一旦申请到MDL锁后,直到事务执行完才会将锁释放。

虽然 MDL 锁是系统默认会加的,但却是我们不能忽略的一个机制,比如下面这个例子(给一个小表加个字段,导致整个库挂了):假设表 t 是一个小表。(备注:这里的实验环境是 MySQL 5.6。)

我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。

之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。

如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。

如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这时客户端就会不断的和数据库建立连接,把连接池打满导致库不可用,这个库的线程很快就会爆满。

现在我们知道了,事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

基于上面的分析,我们来讨论一个问题,如何安全地给小表加字段?

首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,我们可以查到当前执行中的事务。如果我们要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

再考虑一下这个场景。如果我们要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而我们不得不加个字段,这时该怎么做呢?

这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

MariaDB 已经合并了 AliSQL 的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。

ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ...

三、行锁

MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB 是支持行锁的(InnoDB同时支持表锁和行锁,默认采用行锁),这也是 MyISAM 被 InnoDB 替代的重要原因之一。

顾名思义,行锁就是针对数据表中行记录的锁。这很好理解,比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。

3.1 从两阶段说起

首先看下一个例子,在下面的操作序列中,事务 B 的 update 语句执行时会是什么现象呢?假设字段 id 是表 t 的主键。

这个问题的结论取决于事务 A 在执行完两条 update 语句后,持有哪些锁,以及在什么时候释放。我们可以进行验证:实际上事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。

所以我们知道了事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。也就是说,在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。在整个过程中,锁的添加与释放分到两个阶段进行,之间不允许交叉加锁和释放锁, 这个就是两阶段锁协议。

知道了这个设定,对我们使用事务有什么帮助呢?那就是,如果我们的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放,例子如下:

假设我们负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:

  1. 从顾客 A 账户余额中扣除电影票价;
  2. 给影院 B 的账户余额增加这张电影票价;
  3. 记录一条交易日志。

也就是说,要完成这个交易,我们需要 update 两条记录,并 insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,到底该怎样安排这三个语句在事务中的顺序呢?

试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果我们把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。这里体现的一个安排事务语句的原则是:如果我们的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁的申请时机尽量往后放。

现在我们解决了影响并发度的一个问题,但是还有其他的问题存在,假如这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,MySQL 就挂了。我们登上服务器一看,CPU 消耗接近 100%,但整个数据库每秒就执行不到 100 个事务。这是什么原因呢?这里,就引入了死锁和死锁检测的概念了(调整语句顺序并不能完全避免死锁)。

3.2 死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。这里用数据库中的行锁举个例子。

这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

在 InnoDB 中,innodb_lock_wait_timeout 的默认值是 50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过 50s 才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。

但是,我们又不可能直接把这个时间设置成一个很小的值,比如 1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。

所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且 innodb_deadlock_detect 的默认值本身就是 on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。

可以想象一下这个过程:每当一个事务被锁的时候,我们都需要判断是否出现了循环等待,也就是死锁。

那如果是我们上面说到的所有事务都要更新同一行的场景呢?

每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。

根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的 CPU 资源。

一种头痛医头的方法,就是如果我们能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

另一个思路是控制并发度。根据上面的分析,我们可以发现:如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。

一个直接的想法是在客户端做并发控制。但是注意客户端是很多的,因此即使每个客户端的并发都很小,但是汇总到数据库服务端以后,峰值并发数也会很大。因此,并发控制要做在数据库服务端。如果有中间件,可以考虑在中间件实现;如果团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。

但是如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?

这时我们可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。

这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成 0 的时候,代码要有特殊处理。

减少死锁的主要思想:控制访问相同资源的并发事务量。

四、锁的对比

4.1 表级锁与行级锁

  • 表级锁具有开销小、加锁快的特性;表级锁的锁定粒度较大,发生锁冲突的概率高,支持的并发度低;
  • 行级锁具有开销大,加锁慢的特性;行级锁的锁定粒度较小,发生锁冲突的概率低,支持的并发度高。

所以表级锁适用于并发较低、以查询为主的应用,例如中小型的网站;MyISAM 和 MEMORY 存储引擎采用表级锁;而行级锁适用于按索引条件高并发更新少量不同数据,同时又有并发查询的应用,例如 OLTP 系统;InnoDB 和 NDB 存储引擎实现了行级锁。

参考:
mysql锁系列之MDL元数据锁之一
mysql MDL读写锁阻塞,以及online ddl造成的“插队”现象

MySQL中的锁机制-全局锁/表锁/行锁相关推荐

  1. mysql某个表被行锁了_MySQL中的锁(表锁、行锁)

    锁是计算机协调多个进程或纯线程并发访问某一资源的机制.在数据库中,除传统的计算资源(CPU.RAM.I/O)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所在有数 ...

  2. MySQL锁机制详解-表锁与行锁

    文章目录 1. 数据库锁理论 2. 锁的分类 2.1 按数据操作的类型分类 2.2 按数据操作的颗粒度分类 3. 表锁的应用 3.1 表锁相关命令 3.2 给表加表共享读锁 3.3 给表加表独占写锁 ...

  3. mysql某个表被行锁了_MySQL 行锁和表锁的含义及区别详解

    一.前言 对于行锁和表锁的含义区别,在面试中应该是高频出现的,我们应该对MySQL中的锁有一个系统的认识,更详细的需要自行查阅资料,本篇为概括性的总结回答. MySQL常用引擎有MyISAM和Inno ...

  4. 利用锁机制解决商品表和库存表并发问题

    利用锁机制解决商品表和库存表并发问题 参考文章: (1)利用锁机制解决商品表和库存表并发问题 (2)https://www.cnblogs.com/hgj123/p/4817923.html 备忘一下 ...

  5. innodb 悲观锁 乐观锁_mysql乐观锁、悲观锁、共享锁、排它锁、行锁、表锁

    mysql乐观锁.悲观锁.共享锁.排它锁.行锁.表锁 乐观锁 总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使 ...

  6. 在MySQL中如何有效的删除一个大表?

    在MySQL中如何有效的删除一个大表? Oracle大表的删除: http://blog.itpub.net/26736162/viewspace-2141248/ 在DROP TABLE 过程中,所 ...

  7. SQL SERVER的锁机制(二)——概述(锁的兼容性与可以锁定的资源)

    二.完整的锁兼容性矩阵(见下图) 对上图的是代码说明:见下图. 三.下表列出了数据库引擎可以锁定的资源. 名称 资源 缩写 编码 呈现锁定时,描述该资源的方式 说明 数据行 RID RID 9 文件编 ...

  8. Linux 锁机制(3)之自旋锁

    Linux 锁机制(3)之自旋锁 1. 自旋锁 1.1 两种锁 1.2 自旋锁 1.3 自旋名字来源:自旋锁一直循环等待,直到获取锁为止. 1.4 自旋锁优点: 2 自旋锁特点/使用: 2.1 临界区 ...

  9. mysql查看当前数据库中表明,MySQL中查看当前数据库的所有表

    关键词 MySQL数据库 表 摘要 本文介绍在MySQL数据库中,如何列出并查看当前数据库的所有表. 本文介绍在MySQL数据库中,如何列出并查看当前数据库的所有表. 我们创建一个数据库之后,数据库里 ...

  10. MySQL中的锁机制、MyISAM表锁、MyISAM表级锁争用情况、MyISAM并发插入Concurrent Inserts、MyISAM的锁调度

    前言: 关于读锁.写锁.乐观锁.悲观锁.行锁.表锁的理解可以看看以前我写的: 读锁.写锁.乐观锁.悲观锁.行锁.表锁 内部锁:在MySQL服务器内部执行的锁,以管理多个会话对表内容的争用.这种类型的锁 ...

最新文章

  1. 线性代数可以速成吗_广播/学习吉他速成靠谱吗?真的可以速成吗?
  2. java 双向链表例子_Java双向链表按照顺序添加节点的方法实例_Java_软件编程
  3. 你是第几名:Excel 中 Large 和 Small 的用法
  4. 数据库备份DBS商业化发布
  5. 轻松学DIV教程(div+css布局)
  6. CentOS 7 LNMP环境搭建 Zabbix3.4
  7. 28.开始画面和异形窗口
  8. 聚合广告SDK开发(一)——基础知识
  9. 思科模拟器(学生版)、汉化包的下载及其安装步骤
  10. DRF 的SQL 语句
  11. 《指导生活的算法》读后感
  12. JVM--基础--19.4--垃圾收集器--Parallel Scavenge
  13. 独家 | A/B测试的定义、操作方法、案例与实用工具分享
  14. 第五十九章 CSP的常见问题 - 会话和许可证,为什么我要经常登录?
  15. 已安装这个产品的两一个版本,无法下一步安装(0x80070666)
  16. 微信小程序 —— 苹果机的兼容总结
  17. 鱼眼图像(fisheye image)通过几何变换形成透视图(a perspective view)[存疑]
  18. idea全局替换yml 报错:you have entered malformed replacement
  19. 来世,别让我这么晚说爱你
  20. 嵌入式常用的英文缩写词汇

热门文章

  1. KMP算法 学习笔记
  2. Flutter动画系列之SizeTransition
  3. Springmvc 应用Mongodb分页实现
  4. 月薪30K大佬源码阅读的经验总结,干货不容错过
  5. python基础篇——列表与列表算法(下)
  6. python面向对象——类(下)
  7. 8s pod 查看 的yaml_k8s之深入解剖Pod(二)
  8. python函数后面的点_对python函数后面有多个括号的理解?
  9. php mysql 组件_Ubuntu20.04安装apache、mysql、php、phpmyadmin、wordpress(一)
  10. java编译速度_[译] Kotlin VS Java:编译速度大比拼