1.复制过程

  1. 从节点执行 slaveof 命令。

  2. 从节点只是保存了 slaveof 命令中主节点的信息,并没有立即发起复制。

  3. 从节点内部的定时任务发现有主节点的信息,开始使用 socket 连接主节点。

  4. 连接建立成功后,发送 ping 命令,希望得到 pong 命令响应,否则会进行重连。

  5. 如果主节点设置了权限,那么就需要进行权限验证,如果验证失败,复制终止。

  6. 权限验证通过后,进行数据同步,这是耗时最长的操作,主节点将把所有的数据全部发送给从节点。

  7. 当主节点把当前的数据同步给从节点后,便完成了复制的建立流程。接下来,主节点就会持续的把写命令发送给从节点,保证主从数据一致性

2.数据间的同步

上面说的复制过程,其中有一个步骤是“同步数据集”,这个就是现在讲的“数据间的同步”。

redis 同步有 2 个命令:sync 和 psync,前者是 redis 2.8 之前的同步命令,后者是 redis 2.8 为了优化 sync 新设计的命令。我们会重点关注 2.8 的 psync 命令。

psync 命令需要 3 个组件支持

  1. 主从节点各自复制偏移量  

  2. 主节点复制积压缓冲区  

  3. 主节点运行 ID

主从节点各自复制偏移量:

  1. 参与复制的主从节点都会维护自身的复制偏移量。      

  2. 主节点在处理完写入命令后,会把命令的字节长度做累加记录,统计信息在 info replication 中的 masterreploffset 指标中。      

  3. 从节点每秒钟上报自身的的复制偏移量给主节点,因此主节点也会保存从节点的复制偏移量。        

  4. 从节点在接收到主节点发送的命令后,也会累加自身的偏移量,统计信息在 info replication 中。       

  5. 通过对比主从节点的复制偏移量,可以判断主从节点数据是否一致。

主节点复制积压缓冲区:

  1. 复制积压缓冲区是一个保存在主节点的一个固定长度的先进先出的队列,默认大小 1MB。

  2. 这个队列在 slave 连接是创建。这时主节点响应写命令时,不但会把命令发送给从节点,也会写入复制缓冲区。

  3. 他的作用就是用于部分复制和复制命令丢失的数据补救。通过 info replication 可以看到相关信息。

主节点运行 ID:

  1. 每个 redis 启动的时候,都会生成一个 40 位的运行 ID。

  2. 运行 ID 的主要作用是用来识别 Redis 节点。如果使用 ip+port 的方式,那么如果主节点重启修改了 RDB/AOF 数据,从节点再基于偏移量进行复制将是不安全的。所以,当运行 id 变化后,从节点将进行全量复制。也就是说,redis 重启后,默认从节点会进行全量复制。

如果在重启时不改变运行 ID 呢?

  1. 可以通过 debug reload 命令重新加载 RDB 并保持运行 ID 不变,从而有效的避免不必要的全量复制。

  2. 缺点是:debug reload 命令会阻塞当前 Redis 节点主线程,因此对于大数据量的主节点或者无法容忍阻塞的节点,需要谨慎使用。一般通过故障转移机制可以解决这个问题。

psync 命令的使用方式:

  命令格式为  psync{runId}{offset}

  runId:从节点所复制主节点的运行 id

  offset:当前从节点已复制的数据偏移量

psync 执行流程:

流程说明:

从节点发送 psync 命令给主节点,runId 就是目标主节点的 ID,如果没有默认为 -1,offset 是从节点保存的复制偏移量,如果是第一次复制则为 -1.

主节点会根据 runid 和 offset 决定返回结果:

  1. 如果回复 +FULLRESYNC {runId} {offset} ,那么从节点将触发全量复制流程。

  2. 如果回复 +CONTINUE,从节点将触发部分复制。

  3. 如果回复 +ERR,说明主节点不支持 2.8 的 psync 命令,将使用 sync 执行全量复制。

到这里,数据之间的同步就讲的差不多了,篇幅还是比较长的。主要是针对 psync 命令相关之间的介绍。

3.全量复制

全量复制是 Redis 最早支持的复制方式,也是主从第一次建立复制时必须经历的的阶段。触发全量复制的命令是 sync 和 psync。之前说过,这两个命令的分水岭版本是 2.8,redis 2.8 之前使用 sync 只能执行全量不同,2.8 之后同时支持全量同步和部分同步。

流程如下

  1. 发送 psync 命令(spync ? -1)

  2. 主节点根据命令返回 FULLRESYNC

  3. 从节点记录主节点 ID 和 offset

  4. 主节点 bgsave 并保存 RDB 到本地

  5. 主节点发送 RBD 文件到从节点

  6. 从节点收到 RDB 文件并加载到内存中

  7. 主节点在从节点接受数据的期间,将新数据保存到“复制客户端缓冲区”,当从节点加载 RDB 完毕,再发送过去。(如果从节点花费时间过长,将导致缓冲区溢出,最后全量同步失败)

  8. 从节点清空数据后加载 RDB 文件,如果 RDB 文件很大,这一步操作仍然耗时,如果此时客户端访问,将导致数据不一致,可以使用配置slave-server-stale-data 关闭.        

  9. 从节点成功加载完 RBD 后,如果开启了 AOF,会立刻做 bgrewriteaof。

以上加粗的部分是整个全量同步耗时的地方。

注意:

  1. 如过 RDB 文件大于 6GB,并且是千兆网卡,Redis 的默认超时机制(60 秒),会导致全量复制失败。可以通过调大 repl-timeout 参数来解决此问题。

  2. Redis 虽然支持无盘复制,即直接通过网络发送给从节点,但功能不是很完善,生产环境慎用。

4.部分复制

当从节点正在复制主节点时,如果出现网络闪断和其他异常,从节点会让主节点补发丢失的命令数据,主节点只需要将复制缓冲区的数据发送到从节点就能够保证数据的一致性,相比较全量复制,成本小很多。

  1. 当从节点出现网络中断,超过了 repl-timeout 时间,主节点就会中断复制连接。

  2. 主节点会将请求的数据写入到“复制积压缓冲区”,默认 1MB。

  3. 当从节点恢复,重新连接上主节点,从节点会将 offset 和主节点 id 发送到主节点。

  4. 主节点校验后,如果偏移量的数后的数据在缓冲区中,就发送 cuntinue 响应 —— 表示可以进行部分复制。

  5. 主节点将缓冲区的数据发送到从节点,保证主从复制进行正常状态。

5.心跳

主从节点在建立复制后,他们之间维护着长连接并彼此发送心跳命令。

心跳的关键机制如下:

  1. 中从都有心跳检测机制,各自模拟成对方的客户端进行通信,通过 client list 命令查看复制相关客户端信息,主节点的连接状态为 flags = M,从节点的连接状态是 flags = S。

  2. 主节点默认每隔 10 秒对从节点发送 ping 命令,可修改配置 repl-ping-slave-period 控制发送频率。

  3. 从节点在主线程每隔一秒发送 replconf ack{offset} 命令,给主节点上报自身当前的复制偏移量。

  4. 主节点收到 replconf 信息后,判断从节点超时时间,如果超过 repl-timeout 60 秒,则判断节点下线。

注意:

为了降低主从延迟,一般把 redis 主从节点部署在相同的机房/同城机房,避免网络延迟带来的网络分区造成的心跳中断等情况。

6.异步复制

主节点不但负责数据读写,还负责把写命令同步给从节点,写命令的发送过程是异步完成,也就是说主节点处理完写命令后立即返回客户度,并不等待从节点复制完成。

异步复制的步骤很简单,如下:

  1. 主节点接受处理命令。

  2. 主节点处理完后返回响应结果 。

  3. 对于修改命令,异步发送给从节点,从节点在主线程中执行复制的命令。

总结

本文主要分析了 Redis 的复制原理,包括复制过程,数据之间的同步,全量复制的流程,部分复制的流程,心跳设计,异步复制流程。其中,可以看出,RDB 数据之间的同步非常耗时。所以,Redis 在 2.8 版本退出了类似增量复制的 psync 命令,当 Redis 主从直接发生了网络中断,不会进行全量复制,而是将数据放到缓冲区(默认 1MB)里,在通过主从之间各自维护复制 offset 来判断缓存区的数据是否溢出,如果没有溢出,只需要发送缓冲区数据即可,成本很小,反之,则要进行全量复制,因此,控制缓冲区大小非常的重要。

「更多精彩文章请关注我的公众号,喜欢的请分享给更多的朋友哦」

复制给节点的命令_深入理解redis主从复制原理相关推荐

  1. cxgrid主从表 点+号展开_深入理解Redis主从复制

    一.背景 前面的文章中,我们介绍过Redis的持久化机制,它可以实现Redis实例数据的crash-safe.但是这里有一个问题,就是Redis其实还存在着单点故障问题,比如说Redis的硬盘坏掉了, ...

  2. redis的zset的底层实现_深入理解Redis Zset原理

    前言 最近把 AirNet 中的空气质量排行换成了用 Zset 实现,这篇笔记就来深入了解下 Zset 的底层实现原理. Zset 编码的选择 在通过 ZADD 命令添加第一个元素到空 key 时, ...

  3. 带哨兵节点的链_深入学习Redis高可用架构:哨兵原理及实践

    原标题:深入学习Redis高可用架构:哨兵原理及实践 " 在上篇文章<深入学习 Redis 高可用的基石:主从复制>中曾提到,Redis 主从复制的作用有数据热备.负载均衡.故障 ...

  4. redis重启命令_这可能是你见过最全面的Redis主从复制原理

    全是干货的技术号: 本文已收录在github,欢迎 star/fork: https://github.com/Wasabi1234/Java-Interview-Tutorial 在Redis复制的 ...

  5. redis集群扩容和缩容_深入理解Redis Cluster集群

    一.背景 前面的文章<深入理解Redis哨兵机制>一文中介绍了Redis哨兵集群的工作原理,哨兵集群虽然满足了高可用的特性,但是依然存在这样的问题:即数据只能往一个主节点上进行写入. 只能 ...

  6. redis aof 备份和恢复_深入理解Redis持久化

    redis持久化的意义 持久化机制的介绍 RDB和AOF的基本介绍 RDB持久化机制的优点 RDB持久化机制的缺点 AOF持久化机制的优点 AOF持久化机制的缺点 RDB和AOF到底该如何选择 RDB ...

  7. 不同类的方法 事务问题_深入理解 Spring 事务原理

    Spring事务的基本原理 Spring事务的本质其实就是数据库对事务的支持,没有数据库的事务支持,spring是无法提供事务功能的.对于纯JDBC操作数据库,想要用到事务,可以按照以下步骤进行: 获 ...

  8. redis主从复制原理、断点续传、无磁盘化复制、过期key处理

    1.主从架构的核心原理: 当启动一个salve node时会发送PSYNC 命令到master. salve第一次连接master时master会根据当前数据复制一份RDB(full resynchr ...

  9. 带父节点的平衡二叉树_深入理解(二叉树、平衡二叉树、B-Tree、B+Tree )的区别

    一.背景 一般说MySQL的索引,都清楚其索引主要以B+树为主,此外还有Hash.RTree.FullText.本文简要说明一下MySQL的B+Tree索引,以及和其相关的二叉树.平衡二叉树.B-Tr ...

最新文章

  1. rpm怎样在win安装mysql_centos7.6安装mysql的正确步骤
  2. CSS:响应式下的折叠菜单(条纹式)
  3. Shell脚本笔记(三)shell中的数学计算
  4. 【备忘】visual studio调试状态下显示lua调用栈
  5. java文本框背景_background 设置文本框背景图
  6. php的异常详解,PHP5中的异常处理详解
  7. pinctrl虚拟spi的linux驱动,linux内核pinctrl驱动的理解和总结
  8. BO QUERY BUILDER - SI_INSTANCE相关属性
  9. 前端学习(310):清除浮动的方法
  10. ICBU可控文本生成技术详解
  11. C++ 拷贝构造 与 赋值运算符重载
  12. VS C#程序打包覆盖安装不能更新的解决方法
  13. RoboMaster电机驱动
  14. 海康威视 私有网盘 windows 客户端下载地址
  15. 三分钟带你了解月薪5W的web前端开发到底是干嘛!
  16. u盘显示请插磁盘f_U盘插电脑上一直显示请插入磁盘是啥意思 - 卡饭网
  17. 5G 与 WIFI6 的对比
  18. 两种方法实现奇数和偶数的和(Java)
  19. ui设计现状与意义_UI设计的现状如何?
  20. linux接路由器没反应,路由器连接网线指示灯没反应完美解决方法

热门文章

  1. python自动复制_Python自动复制日志,python,拷贝
  2. mysql+inser+select_解析MySQL中INSERT INTO SELECT的使用
  3. mysql主辅同步报错_mysql数据库主辅同步Slave_IO_Running,Slave_SQL_Running错误
  4. 速览EMNLP 2020上录取的知识图谱相关论文
  5. NeurIPS'20 | 通过文本压缩,让BERT支持长文本
  6. Spring Cloud构建微服务架构:Hystrix监控面板【Dalston版】
  7. 课程 | 《知识图谱》第二期重磅来袭!
  8. 人工智能与量子计算在有前途的新忆阻器中融合
  9. DeepMind最新研究:如何将「大语言模型」 训练到最优?
  10. 大数据建模、分析、挖掘技术应用研修班的通知