ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析

目录

利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析

设计思路

输出结果

核心代码


相关文章
ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析
ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析实现

利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析

设计思路

输出结果

train_boston_data.shape (1460, 81)Id  MSSubClass MSZoning  ...  SaleType  SaleCondition SalePrice
0   1          60       RL  ...        WD         Normal    208500
1   2          20       RL  ...        WD         Normal    181500
2   3          60       RL  ...        WD         Normal    223500
3   4          70       RL  ...        WD        Abnorml    140000
4   5          60       RL  ...        WD         Normal    250000[5 rows x 81 columns]
train_t.head()    LotFrontage  GarageArea  SalePrice
0         65.0         548     208500
1         80.0         460     181500
2         68.0         608     223500
3         60.0         642     140000
4         84.0         836     250000
after scale,train_t.head()    LotFrontage  GarageArea  SalePrice
0     0.207668    0.386460   0.276159
1     0.255591    0.324401   0.240397
2     0.217252    0.428773   0.296026
3     0.191693    0.452750   0.185430
4     0.268371    0.589563   0.331126LotFrontage  GarageArea
0     0.207668    0.386460
1     0.255591    0.324401
2     0.217252    0.428773
3     0.191693    0.452750
4     0.268371    0.589563Id  MSSubClass  LotFrontage  ...    MoSold    YrSold  SalePrice
Id             1.000000    0.011156    -0.010601  ...  0.021172  0.000712  -0.021917
MSSubClass     0.011156    1.000000    -0.386347  ... -0.013585 -0.021407  -0.084284
LotFrontage   -0.010601   -0.386347     1.000000  ...  0.011200  0.007450   0.351799
LotArea       -0.033226   -0.139781     0.426095  ...  0.001205 -0.014261   0.263843
OverallQual   -0.028365    0.032628     0.251646  ...  0.070815 -0.027347   0.790982
OverallCond    0.012609   -0.059316    -0.059213  ... -0.003511  0.043950  -0.077856
YearBuilt     -0.012713    0.027850     0.123349  ...  0.012398 -0.013618   0.522897
YearRemodAdd  -0.021998    0.040581     0.088866  ...  0.021490  0.035743   0.507101
MasVnrArea    -0.050298    0.022936     0.193458  ... -0.005965 -0.008201   0.477493
BsmtFinSF1    -0.005024   -0.069836     0.233633  ... -0.015727  0.014359   0.386420
BsmtFinSF2    -0.005968   -0.065649     0.049900  ... -0.015211  0.031706  -0.011378
BsmtUnfSF     -0.007940   -0.140759     0.132644  ...  0.034888 -0.041258   0.214479
TotalBsmtSF   -0.015415   -0.238518     0.392075  ...  0.013196 -0.014969   0.613581
1stFlrSF       0.010496   -0.251758     0.457181  ...  0.031372 -0.013604   0.605852
2ndFlrSF       0.005590    0.307886     0.080177  ...  0.035164 -0.028700   0.319334
LowQualFinSF  -0.044230    0.046474     0.038469  ... -0.022174 -0.028921  -0.025606
GrLivArea      0.008273    0.074853     0.402797  ...  0.050240 -0.036526   0.708624
BsmtFullBath   0.002289    0.003491     0.100949  ... -0.025361  0.067049   0.227122
BsmtHalfBath  -0.020155   -0.002333    -0.007234  ...  0.032873 -0.046524  -0.016844
FullBath       0.005587    0.131608     0.198769  ...  0.055872 -0.019669   0.560664
HalfBath       0.006784    0.177354     0.053532  ... -0.009050 -0.010269   0.284108
BedroomAbvGr   0.037719   -0.023438     0.263170  ...  0.046544 -0.036014   0.168213
KitchenAbvGr   0.002951    0.281721    -0.006069  ...  0.026589  0.031687  -0.135907
TotRmsAbvGrd   0.027239    0.040380     0.352096  ...  0.036907 -0.034516   0.533723
Fireplaces    -0.019772   -0.045569     0.266639  ...  0.046357 -0.024096   0.466929
GarageYrBlt    0.000072    0.085072     0.070250  ...  0.005337 -0.001014   0.486362
GarageCars     0.016570   -0.040110     0.285691  ...  0.040522 -0.039117   0.640409
GarageArea     0.017634   -0.098672     0.344997  ...  0.027974 -0.027378   0.623431
WoodDeckSF    -0.029643   -0.012579     0.088521  ...  0.021011  0.022270   0.324413
OpenPorchSF   -0.000477   -0.006100     0.151972  ...  0.071255 -0.057619   0.315856
EnclosedPorch  0.002889   -0.012037     0.010700  ... -0.028887 -0.009916  -0.128578
3SsnPorch     -0.046635   -0.043825     0.070029  ...  0.029474  0.018645   0.044584
ScreenPorch    0.001330   -0.026030     0.041383  ...  0.023217  0.010694   0.111447
PoolArea       0.057044    0.008283     0.206167  ... -0.033737 -0.059689   0.092404
MiscVal       -0.006242   -0.007683     0.003368  ... -0.006495  0.004906  -0.021190
MoSold         0.021172   -0.013585     0.011200  ...  1.000000 -0.145721   0.046432
YrSold         0.000712   -0.021407     0.007450  ... -0.145721  1.000000  -0.028923
SalePrice     -0.021917   -0.084284     0.351799  ...  0.046432 -0.028923   1.000000[38 rows x 38 columns]
k_means_cluster_centers [[0.1938454  0.21080405][0.25140958 0.44595543]]
k_means_labels_unique [0 1]
0 [1 1 1 ... 0 0 0]
0 [1 1 1 ... 0 0 0] [False False False ...  True  True  True]
1 [1 1 1 ... 0 0 0]
1 [1 1 1 ... 0 0 0] [ True  True  True ... False False False]

核心代码

class KMeans Found at: sklearn.cluster._kmeansclass KMeans(TransformerMixin, ClusterMixin, BaseEstimator):"""K-Means clustering.Read more in the :ref:`User Guide <k_means>`.Parameters----------n_clusters : int, default=8The number of clusters to form as well as the number ofcentroids to generate.init : {'k-means++', 'random', ndarray, callable}, default='k-means++'Method for initialization:'k-means++' : selects initial cluster centers for k-meanclustering in a smart way to speed up convergence. See sectionNotes in k_init for more details.'random': choose `n_clusters` observations (rows) at random from datafor the initial centroids.If an ndarray is passed, it should be of shape (n_clusters, n_features)and gives the initial centers.If a callable is passed, it should take arguments X, n_clusters and arandom state and return an initialization.n_init : int, default=10Number of time the k-means algorithm will be run with differentcentroid seeds. The final results will be the best output ofn_init consecutive runs in terms of inertia.max_iter : int, default=300Maximum number of iterations of the k-means algorithm for asingle run.tol : float, default=1e-4Relative tolerance with regards to Frobenius norm of the differencein the cluster centers of two consecutive iterations to declareconvergence.It's not advised to set `tol=0` since convergence might never bedeclared due to rounding errors. Use a very small number instead.precompute_distances : {'auto', True, False}, default='auto'Precompute distances (faster but takes more memory).'auto' : do not precompute distances if n_samples * n_clusters > 12million. This corresponds to about 100MB overhead per job usingdouble precision.True : always precompute distances.False : never precompute distances... deprecated:: 0.23'precompute_distances' was deprecated in version 0.22 and will beremoved in 0.25. It has no effect.verbose : int, default=0Verbosity mode.random_state : int, RandomState instance, default=NoneDetermines random number generation for centroid initialization. Usean int to make the randomness deterministic.See :term:`Glossary <random_state>`.copy_x : bool, default=TrueWhen pre-computing distances it is more numerically accurate to centerthe data first. If copy_x is True (default), then the original data isnot modified. If False, the original data is modified, and put backbefore the function returns, but small numerical differences may beintroduced by subtracting and then adding the data mean. Note that ifthe original data is not C-contiguous, a copy will be made even ifcopy_x is False. If the original data is sparse, but not in CSR format,a copy will be made even if copy_x is False.n_jobs : int, default=NoneThe number of OpenMP threads to use for the computation. Parallelism issample-wise on the main cython loop which assigns each sample to itsclosest center.``None`` or ``-1`` means using all processors... deprecated:: 0.23``n_jobs`` was deprecated in version 0.23 and will be removed in0.25.algorithm : {"auto", "full", "elkan"}, default="auto"K-means algorithm to use. The classical EM-style algorithm is "full".The "elkan" variation is more efficient on data with well-definedclusters, by using the triangle inequality. However it's more memoryintensive due to the allocation of an extra array of shape(n_samples, n_clusters).For now "auto" (kept for backward compatibiliy) chooses "elkan" but itmight change in the future for a better heuristic... versionchanged:: 0.18Added Elkan algorithmAttributes----------cluster_centers_ : ndarray of shape (n_clusters, n_features)Coordinates of cluster centers. If the algorithm stops before fullyconverging (see ``tol`` and ``max_iter``), these will not beconsistent with ``labels_``.labels_ : ndarray of shape (n_samples,)Labels of each pointinertia_ : floatSum of squared distances of samples to their closest cluster center.n_iter_ : intNumber of iterations run.See also--------MiniBatchKMeansAlternative online implementation that does incremental updatesof the centers positions using mini-batches.For large scale learning (say n_samples > 10k) MiniBatchKMeans isprobably much faster than the default batch implementation.Notes-----The k-means problem is solved using either Lloyd's or Elkan's algorithm.The average complexity is given by O(k n T), were n is the number ofsamples and T is the number of iteration.The worst case complexity is given by O(n^(k+2/p)) withn = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,'How slow is the k-means method?' SoCG2006)In practice, the k-means algorithm is very fast (one of the fastestclustering algorithms available), but it falls in local minima. That's whyit can be useful to restart it several times.If the algorithm stops before fully converging (because of ``tol`` or``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent,i.e. the ``cluster_centers_`` will not be the means of the points in eachcluster. Also, the estimator will reassign ``labels_`` after the lastiteration to make ``labels_`` consistent with ``predict`` on the trainingset.Examples-------->>> from sklearn.cluster import KMeans>>> import numpy as np>>> X = np.array([[1, 2], [1, 4], [1, 0],...               [10, 2], [10, 4], [10, 0]])>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)>>> kmeans.labels_array([1, 1, 1, 0, 0, 0], dtype=int32)>>> kmeans.predict([[0, 0], [12, 3]])array([1, 0], dtype=int32)>>> kmeans.cluster_centers_array([[10.,  2.],[ 1.,  2.]])"""@_deprecate_positional_argsdef __init__(self, n_clusters=8, *, init='k-means++', n_init=10, max_iter=300, tol=1e-4, precompute_distances='deprecated', verbose=0, random_state=None, copy_x=True, n_jobs='deprecated', algorithm='auto'):self.n_clusters = n_clustersself.init = initself.max_iter = max_iterself.tol = tolself.precompute_distances = precompute_distancesself.n_init = n_initself.verbose = verboseself.random_state = random_stateself.copy_x = copy_xself.n_jobs = n_jobsself.algorithm = algorithmdef _check_test_data(self, X):X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32], order='C', accept_large_sparse=False)n_samples, n_features = X.shapeexpected_n_features = self.cluster_centers_.shape[1]if not n_features == expected_n_features:raise ValueError("Incorrect number of features. ""Got %d features, expected %d" % (n_features, expected_n_features))return Xdef fit(self, X, y=None, sample_weight=None):"""Compute k-means clustering.Parameters----------X : {array-like, sparse matrix} of shape (n_samples, n_features)Training instances to cluster. It must be noted that the datawill be converted to C ordering, which will cause a memorycopy if the given data is not C-contiguous.If a sparse matrix is passed, a copy will be made if it's not inCSR format.y : IgnoredNot used, present here for API consistency by convention.sample_weight : array-like of shape (n_samples,), default=NoneThe weights for each observation in X. If None, all observationsare assigned equal weight... versionadded:: 0.20Returns-------selfFitted estimator."""random_state = check_random_state(self.random_state)if self.precompute_distances != 'deprecated':warnings.warn("'precompute_distances' was deprecated in version ""0.23 and will be removed in 0.25. It has no ""effect", FutureWarning)if self.n_jobs != 'deprecated':warnings.warn("'n_jobs' was deprecated in version 0.23 and will be"" removed in 0.25.", FutureWarning)self._n_threads = self.n_jobselse:self._n_threads = Noneself._n_threads = _openmp_effective_n_threads(self._n_threads)n_init = self.n_initif n_init <= 0:raise ValueError("Invalid number of initializations."" n_init=%d must be bigger than zero." % n_init)if self.max_iter <= 0:raise ValueError('Number of iterations should be a positive number,'' got %d instead' % self.max_iter)X = self._validate_data(X, accept_sparse='csr', dtype=[np.float64, np.float32], order='C', copy=self.copy_x, accept_large_sparse=False)# verify that the number of samples given is larger than kif _num_samples(X) < self.n_clusters:raise ValueError("n_samples=%d should be >= n_clusters=%d" % (_num_samples(X), self.n_clusters))tol = _tolerance(X, self.tol)# Validate init arrayinit = self.initif hasattr(init, '__array__'):init = check_array(init, dtype=X.dtype.type, copy=True, order='C')_validate_center_shape(X, self.n_clusters, init)if n_init != 1:warnings.warn('Explicit initial center position passed: ''performing only one init in k-means instead of n_init=%d' % n_init, RuntimeWarning, stacklevel=2)n_init = 1 # subtract of mean of x for more accurate distance computationsif not sp.issparse(X):X_mean = X.mean(axis=0) # The copy was already done aboveX -= X_meanif hasattr(init, '__array__'):init -= X_mean# precompute squared norms of data pointsx_squared_norms = row_norms(X, squared=True)best_labels, best_inertia, best_centers = None, None, Nonealgorithm = self.algorithmif algorithm == "elkan" and self.n_clusters == 1:warnings.warn("algorithm='elkan' doesn't make sense for a single ""cluster. Using 'full' instead.", RuntimeWarning)algorithm = "full"if algorithm == "auto":algorithm = "full" if self.n_clusters == 1 else "elkan"if algorithm == "full":kmeans_single = _kmeans_single_lloydelif algorithm == "elkan":kmeans_single = _kmeans_single_elkanelse:raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got"" {}".format(str(algorithm))) # seeds for the initializations of the kmeans runs.seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)for seed in seeds:# run a k-means oncelabels, inertia, centers, n_iter_ = kmeans_single(X, sample_weight, self.n_clusters, max_iter=self.max_iter, init=init, verbose=self.verbose, tol=tol, x_squared_norms=x_squared_norms, random_state=seed, n_threads=self._n_threads)# determine if these results are the best so farif best_inertia is None or inertia < best_inertia:best_labels = labels.copy()best_centers = centers.copy()best_inertia = inertiabest_n_iter = n_iter_if not sp.issparse(X):if not self.copy_x:X += X_meanbest_centers += X_meandistinct_clusters = len(set(best_labels))if distinct_clusters < self.n_clusters:warnings.warn("Number of distinct clusters ({}) found smaller than ""n_clusters ({}). Possibly due to duplicate points ""in X.".format(distinct_clusters, self.n_clusters), ConvergenceWarning, stacklevel=2)self.cluster_centers_ = best_centersself.labels_ = best_labelsself.inertia_ = best_inertiaself.n_iter_ = best_n_iterreturn selfdef fit_predict(self, X, y=None, sample_weight=None):"""Compute cluster centers and predict cluster index for each sample.Convenience method; equivalent to calling fit(X) followed bypredict(X).Parameters----------X : {array-like, sparse matrix} of shape (n_samples, n_features)New data to transform.y : IgnoredNot used, present here for API consistency by convention.sample_weight : array-like of shape (n_samples,), default=NoneThe weights for each observation in X. If None, all observationsare assigned equal weight.Returns-------labels : ndarray of shape (n_samples,)Index of the cluster each sample belongs to."""return self.fit(X, sample_weight=sample_weight).labels_def fit_transform(self, X, y=None, sample_weight=None):"""Compute clustering and transform X to cluster-distance space.Equivalent to fit(X).transform(X), but more efficiently implemented.Parameters----------X : {array-like, sparse matrix} of shape (n_samples, n_features)New data to transform.y : IgnoredNot used, present here for API consistency by convention.sample_weight : array-like of shape (n_samples,), default=NoneThe weights for each observation in X. If None, all observationsare assigned equal weight.Returns-------X_new : array of shape (n_samples, n_clusters)X transformed in the new space."""# Currently, this just skips a copy of the data if it is not in# np.array or CSR format already.# XXX This skips _check_test_data, which may change the dtype;# we should refactor the input validation.return self.fit(X, sample_weight=sample_weight)._transform(X)def transform(self, X):"""Transform X to a cluster-distance space.In the new space, each dimension is the distance to the clustercenters.  Note that even if X is sparse, the array returned by`transform` will typically be dense.Parameters----------X : {array-like, sparse matrix} of shape (n_samples, n_features)New data to transform.Returns-------X_new : ndarray of shape (n_samples, n_clusters)X transformed in the new space."""check_is_fitted(self)X = self._check_test_data(X)return self._transform(X)def _transform(self, X):"""guts of transform method; no input validation"""return euclidean_distances(X, self.cluster_centers_)def predict(self, X, sample_weight=None):"""Predict the closest cluster each sample in X belongs to.In the vector quantization literature, `cluster_centers_` is calledthe code book and each value returned by `predict` is the index ofthe closest code in the code book.Parameters----------X : {array-like, sparse matrix} of shape (n_samples, n_features)New data to predict.sample_weight : array-like of shape (n_samples,), default=NoneThe weights for each observation in X. If None, all observationsare assigned equal weight.Returns-------labels : ndarray of shape (n_samples,)Index of the cluster each sample belongs to."""check_is_fitted(self)X = self._check_test_data(X)x_squared_norms = row_norms(X, squared=True)return _labels_inertia(X, sample_weight, x_squared_norms, self.cluster_centers_, self._n_threads)[0]def score(self, X, y=None, sample_weight=None):"""Opposite of the value of X on the K-means objective.Parameters----------X : {array-like, sparse matrix} of shape (n_samples, n_features)New data.y : IgnoredNot used, present here for API consistency by convention.sample_weight : array-like of shape (n_samples,), default=NoneThe weights for each observation in X. If None, all observationsare assigned equal weight.Returns-------score : floatOpposite of the value of X on the K-means objective."""check_is_fitted(self)X = self._check_test_data(X)x_squared_norms = row_norms(X, squared=True)return -_labels_inertia(X, sample_weight, x_squared_norms, self.cluster_centers_)[1]

ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析相关推荐

  1. ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测

    ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测 目录 利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Bos ...

  2. ML之LiRLassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估

    ML之LiR&LassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估 目录 利用boston房价数据集(PCA处理)采用线性回归和Las ...

  3. ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分

    ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集[特征列分段→独热编码]进行回归预测(房价预测)+预测新数据得分 导读 对Boston(波士顿房价)数据集进行特征工程,分 ...

  4. TF之LSTM:利用LSTM算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)

    TF之LSTM:利用LSTM算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测) 相关文章 DL之LSTM:利用LSTM算法对Boston(波士顿房价)数据集[13+1, ...

  5. 【Python机器学习】Sklearn库中Kmeans类、超参数K值确定、特征归一化的讲解(图文解释)

    一.局部最优解 采用随机产生初始簇中心 的方法,可能会出现运行 结果不一致的情况.这是 因为不同的初始簇中心使 得算法可能收敛到不同的 局部极小值. 不能收敛到全局最小值,是最优化计算中常常遇到的问题 ...

  6. 力扣LeetCode算法题第2题-两数之和(二)

    力扣算法题第二题,两数相加算法题: 要求: //给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. //如果,我们将 ...

  7. ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能)

    ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能) 目录 输出结果 设计思路 实现代码 输出结果 设计思路 1.使用均匀分布函数随机三个簇,每个簇周围1 ...

  8. ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类

    ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 metrics.adjusted_ran ...

  9. 『ML』利用K-Means聚类算法对未标注数据分组——《机器学习实战》学习笔记(Ch10)

    本节用Python实现K-Means算法,对未标注的数据进行聚类. 在做完聚类后,如何对于聚类结果进行评估?请看 用Python实现聚类效果的评估(轮廓系数.互信息) 导航 K-Means简介 代码实 ...

最新文章

  1. EXCEL数字前补零且转换成文本型
  2. K8S仪表板Service unavailable故障的解决办法
  3. Java-if选择结构
  4. 【jvm】jvm jstack使用 Java线程Dump分析
  5. Odoo10教程---模块化二:模型间关系,继承,计算字段等
  6. html语言ppt,HTML语言课件.ppt
  7. Aave 上线 AMM Market,允许 Uniswap 和 Balancer 的流动性提供商使用 LP 代币作为抵押品
  8. Web前端开发需要掌握的技术有哪些?
  9. 前端开发常用又好用的几个软件
  10. Windows cmd下载文件
  11. boost电路输出电流公式_BOOST电路参数计算公式
  12. 安装mysql数据库,Install/Remove of the Service Denied,服务名无效,No All Pattern Found.File Already Patched?问题解决
  13. hdu 4960 Another OCD Patient(动态规划)
  14. 如何制作路演PPT?
  15. 360网站卫士php-dos,360doskill.php
  16. 【安装cad后不小心卸了,再次重新安装时显示已安装。这个怎么破?】
  17. 项目管理5阶段|一位高级项目经理的4年项目经验分享
  18. Java设计模式学习2:行为模式
  19. 特征工程 | 信息价值IV与群体稳定性PSI
  20. MyBatis-架构概述,什么是框架,三层架构,JDBC

热门文章

  1. VC++连接远程Oracle数据库
  2. 吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 3 TensorFlow Tutorial
  3. opencv摄像头 vmware虚拟机出现select timeout
  4. 3kyu Path Finder #3: the Alpinist
  5. 创智播客 大数据_华中人工智能主题产业园——武汉融创智谷
  6. 数据类型_分享redis中除5种基础数据类型以外的高级数据类型
  7. Button实现图文混排
  8. 显示ip地址及包含采集功能的全套函数源代码
  9. 浅谈如何增强ASP程序性能
  10. ubuntu解决eclipse中logcat只显示level栏