从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

创建型模式(5种):用于描述“怎样创建对象”,它的主要特点是“将对象的创建与使用分离”。

A、单例模式(Singleton)

单例(Singleton)模式:某个类只能生成一个实例,该类提供了一个全局访问点供外部获取该实例,其拓展是有限多例模式。

这样的模式有几个好处:

  1. 某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
  2. 省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
  3. 有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

优点:只有一个实例,节约了内存资源,提高了系统性能

缺点:
    没有抽象层,不能扩展
    职责过重,违背了单一性原则

首先我们写一个简单的单例类:

public class Singleton {/* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */private static Singleton instance = null;/* 私有构造方法,防止被实例化 */private Singleton() {}/* 静态工程方法,创建实例 */public static Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;}/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */public Object readResolve() {return instance;}
}

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

public static synchronized Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;}

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

public static Singleton getInstance() {if (instance == null) {synchronized (instance) {if (instance == null) {instance = new Singleton();}}}return instance;}

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

①:A、B线程同时进入了第一个if判断

②:A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

③:由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

④:B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

⑥:此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

private static class SingletonFactory{         private static Singleton instance = new Singleton();         }
public static Singleton getInstance(){         return SingletonFactory.instance;         } 

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

public class Singleton {/* 私有构造方法,防止被实例化 */private Singleton() {}/* 此处使用一个内部类来维护单例 */private static class SingletonFactory {private static Singleton instance = new Singleton();}/* 获取实例 */public static Singleton getInstance() {return SingletonFactory.instance;}/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */public Object readResolve() {return getInstance();}
}

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

public class SingletonTest {private static SingletonTest instance = null;private SingletonTest() {}private static synchronized void syncInit() {if (instance == null) {instance = new SingletonTest();}}public static SingletonTest getInstance() {if (instance == null) {syncInit();}return instance;}
}

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

public class SingletonTest {private static SingletonTest instance = null;private Vector properties = null;public Vector getProperties() {return properties;}private SingletonTest() {}private static synchronized void syncInit() {if (instance == null) {instance = new SingletonTest();}}public static SingletonTest getInstance() {if (instance == null) {syncInit();}return instance;}public void updateProperties() {SingletonTest shadow = new SingletonTest();properties = shadow.getProperties();}
}

通过单例模式的学习告诉我们:

  1. 单例模式理解起来简单,但是具体实现起来还是有一定的难度。
  2. synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

拓展:多例设计模式

单例设计模式只留下一个类的一个实例化对象,而多例设计模式,会定义出多个对象。例如:定义一个表示星期的操作类,这个类的对象只能有7个实例化对象(星期一 ~ 星期日);定义一个表示性别的类,只能有2个实例化对象(男、女);定义一个表示颜色的操作类,只能有3个实例化对象(红、绿、蓝)。这种情况下,这样的类就不应该由用户无限制地去创造实例化对象,应该只使用有限的几个,这个就属于多例设计模式。不管是单例设计模式还是多例设计模式,有一个核心不可动摇,即构造器方法私有化。

class Sex{private String title;private static final Sex MALE = new Sex("男");private static final Sex FEMALE = new Sex("女");private Sex(String title){        //构造器私有化this.title = title;}public String toString(){return this.title;}public static Sex getInstance(int ch){switch(ch){case 1:return MALE;case 2:return FEMALE;default:return null;}}
}public class TestDemo{public static void main(String args[]){Sex sex = Sex.getInstance(2);System.out.println(sex);}
}==========程序执行结果=========
女

B、工厂方法模式(Factory Method)

工厂方法模式分为三种:

1、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

举例如下:(我们举一个发送邮件和短信的例子)

首先,创建二者的共同接口:

public interface Sender {public void Send();
}

其次,创建实现类:

public class MailSender implements Sender {@Overridepublic void Send() {System.out.println("this is mailsender!");}
}
public class SmsSender implements Sender {@Overridepublic void Send() {System.out.println("this is sms sender!");}
}

最后,建工厂类:

public class SendFactory {public Sender produce(String type) {if ("mail".equals(type)) {return new MailSender();} else if ("sms".equals(type)) {return new SmsSender();} else {System.out.println("请输入正确的类型!");return null;}}
}

我们来测试下:

public class FactoryTest {public static void main(String[] args) {SendFactory factory = new SendFactory();Sender sender = factory.produce("sms");sender.Send();}
}

输出:this is sms sender!

2、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

将上面的代码做下修改,改动下SendFactory类就行,如下:

public class SendFactory {public Sender produceMail(){return new MailSender();}public Sender produceSms(){return new SmsSender();}
}

测试类如下:

public class FactoryTest {public static void main(String[] args) {SendFactory factory = new SendFactory();Sender sender = factory.produceMail();sender.Send();}
}

输出:this is mailsender!

3、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

public class SendFactory {public static Sender produceMail(){return new MailSender();}public static Sender produceSms(){return new SmsSender();}
}
public class FactoryTest {public static void main(String[] args) {   Sender sender = SendFactory.produceMail();sender.Send();}
}

输出:this is mailsender!

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

好处:客户端不需要创建对象,明确了各个类的职责
缺点:该工厂类负责创建所有实例,如果有新的类加入,需要不断的修改工厂类,不利于后期的维护

C、抽象工厂模式

工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。

请看例子:

public interface Sender {public void Send();
}

两个实现类:

public class MailSender implements Sender {@Overridepublic void Send() {System.out.println("this is mailsender!");}}
public class MailSender implements Sender {@Overridepublic void Send() {System.out.println("this is mailsender!");}}

在提供一个接口:

public interface Provider {public Sender produce();}

两个工厂类:

    public class SendMailFactory implements Provider {@Overridepublic Sender produce(){return new MailSender();}}
public class SendSmsFactory implements Provider{@Overridepublic Sender produce() {return new SmsSender();}}

测试类:

public class Test {public static void main(String[] args) {Provider provider = new SendMailFactory();Sender sender = provider.produce();sender.Send();}}

其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

好处:如果有新的类进来,只需要添加一个对应的具体工厂类,不影响现有代码,增加了程序的扩展性
缺点:增加了代码量

Java的二十三种设计模式(单例模式、工厂方法模式、抽象工厂模式)相关推荐

  1. Java实现二十三种设计模式(五)—— 十一种行为型模式 (中)——解释器模式、迭代器模式、中介者模式、备忘录模式

    Java实现二十三种设计模式(五)-- 十一种行为型模式 (中)--解释器模式.迭代器模式.中介者模式.备忘录模式 一.解释器模式 我国 IT 界历来有一个汉语编程梦,虽然各方对于汉语编程争论不休,甚 ...

  2. Java的二十三种设计模式

    设计模式介绍及Java描述 概述 设计模式是针对某一类问题的最优解决方案,是从许多优秀的软件系统中总结出的. Java中设计模式(java design patterns)通常有23种. 模式可以分成 ...

  3. Java的二十三种设计模式(建造者模式(Builder))

    工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到 ...

  4. Java的二十三种设计模式(原型模式(Prototype))

    原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制.克隆,产生一个和原对象类似的新对象.本小结会通过对象的复制,进行讲解.在Java中 ...

  5. Java的二十三种设计模式(适配器模式(Adapter)、对象的适配器模式)

    适配器模式(Adapter) 适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题.主要分为三类:类的适配器模式.对象的适配器模式.接口的适配器模式 ...

  6. Java 二十三种设计模式

    一.单例模式 定义 Ensure a class has only one instance, and provide a global point of access to it.(确保某一个类只有 ...

  7. Java二十三种设计模式 之代理(proxy)

    Java二十三种设计模式 之代理(proxy) 今天我们学习一下静态代理和动态代理 我们来看代码(写一个坦克运行了多少时间): 第一种方法: public calss Tank implements ...

  8. 第二部分:二十三种设计模式解读——什么是工厂方法模式

    二十三种设计模式解读--什么是工厂方法模式 author:陈镇坤27 日期:2022年2月10日 修改日期:2022年6月23日 文章目录 二十三种设计模式解读--什么是工厂方法模式 一.工厂方法模式 ...

  9. 深入理解常见的二十三种设计模式

    深入理解常见的二十三种设计模式 文章目录 深入理解常见的二十三种设计模式 一.设计模式的分类 1.1 创建型(五种) 1.2 结构型(七种) 1.3 行为型(十一种) 二.创建型 2.1 单例模式 2 ...

最新文章

  1. [译] Couchbase 使用 cbbackup 备份
  2. xfce的开始菜单增加搜索框
  3. input file上传图片预览
  4. ffmpeg java调用_macos下ffmpeg使用及java调用
  5. 请画出一个抓虫系统的架构图并说明你的爬虫需要如何优化来提升性能
  6. Bpel简介及实例总结
  7. 设计模式--C++学习(4)
  8. 水印相机定位不准确怎么办_水印相机怎么定位位置
  9. vim command line quick edit
  10. 一文了解DataStore(Proto)
  11. Unity 编辑器扩展教程
  12. WS小世界网络python快速实现——调用networkx包
  13. javaweb项目页面崩溃报错
  14. 交换机工作原理和配置命令
  15. 浏览器漏洞种类复杂多样
  16. 复制链接到剪切板php,剪切复制粘贴
  17. Altium Designer--如何将图片转成PCB logo
  18. 苹果和小虫编程c语言,【OJ题库C/C++】Day12-苹果和虫子2
  19. JavaWeb_Servlet_Request_Response
  20. 最精炼的Excel金额大写公式

热门文章

  1. pyinstaller打包exe在其他机器无法运行_详解pyinstaller selenium python3 chrome打包问题!解决率100%...
  2. 相机录像出现花屏_[Unity3D]花屏问题解决
  3. 【C++】运算符重载 Operator Overload
  4. java并发编程之美-阅读记录2
  5. python基础之if、while、for语句
  6. Linux内核编译和运行
  7. 项目管理其实可以简单一点——任务分工
  8. 4 系统的 CPU 使用率很高,但为啥却找不到高 CPU的应用?
  9. linux sit0 wifi,I.MX6 AW-NB177NF wifi HAL 调试修改(示例代码)
  10. Cow Toll Paths(floyd变形)