一、多传感器融合多传感器信息融合(Multi-sensor Information Fusion,MSIF),就是利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。

多传感器信息融合技术的基本原理就像人的大脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环 境的一致性解释。在这个过程中要充分地利用多源数据进行合理支配与使用,而信息融合的最终目标则是基于各传感器获得的分离观测信息,通过对信息多级别、多方面组合导出更多有用信息。

这不仅是利用了多个传感器相互协同操作的优势,而且也综合处理了其它信息源的数据来提高整个传感器系统的智能化。

二、融合体系

在信息融合处理过程中,根据对原始数据处理方法的不同,信息融合系统的体系结构主要有三种:集中式、分布式和混合式。1.集中式:集中式将各传感器获得的原始数据直接送至中央处理器进行融合处理,可以实现实时融合,其数据处理的精度高,算法灵活,缺点是对处理器要求高,可靠性较低,数据量大,故难于实现。2.分布式:每个传感器对获得的原始数据先进行局部处理,包括对原始数据的预处理、分类及提取特征信息,并通过各自的决策准则分别作出决策,然后将结果送入融合中心进行融合以获得最终的决策。分布式对通信带宽需求低、计算速度快、可靠性和延续性好,但跟踪精度没有集中式高。3.混合式:大多情况是把上述二者进行不同的组合,形成一种混合式结构。它保留了上述两类系统的优点,但在通信和计算上要付出较昂贵的代价。但是,此类系统也有上述两类系统难以比拟的优势,在实际场合往往采用此类结构。三、多传感器融合特点多传感器融合 系统具有四个显著的特点:1.信息的冗余性:对于环境的某个特征,可以通过多个传感器(或者单个传感器的多个不同时刻)得到它的多份信息,这些信息是冗余的,并且具有不同的可靠性,通过融合处理,可以从中提取出更加准确和可靠的信息。此外,信息的冗余性可以提高系统的稳定性,从而能够避免因单个传感器失效而对整个系统所造成的影响。2.信息的互补性:不同种类的传感器可以为系统提供不同性质的信息,这些信息所描述的对象是不同的环境特征,它们彼此之间具有互补性。如果定义一个由所有特征构成的坐标空间,那么每个传感器所提供的信息只属于整个空间的一个子空间,和其他传感器形成的空间相互独立。3.信息处理的及时性:各传感器的处理过程相互独立,整个处理过程可以采用并行导热处理机制,从而使系统具有更快的处理速度,提供更加及时的处理结果。4.信息处理的低成本性:多个传感器可以花费更少的代价来得到相当于单传感器所能得到的信息量。另一方面,如果不将单个传感器所提供的信息用来实现其他功能,单个传感器的成本和多传感器的成本之和是相当的。四、在自动驾驶中的应用自动驾驶车上使用了多种多样的传感器,不同类型的传感器间在功用上互相补充,提高自动驾驶系统的安全系数。自动驾驶要求传感器融合具备一个必须的性质——实时性。

MSDF面临的主要挑战是如何将收集来的大量数据集中在一起,并做出正确决策。如果MSDF出错,意味着下游阶段要么没有必要的信息,要是使用了错误的信息做出了错误的决策。可以看到,自动驾驶汽车会通过安装在车身周围的摄像头收集视觉数据,也会通过雷达(激光雷达、毫米波雷达等)来收集诸如周围物体运动速度的数据,但是这些数据是从不同角度来描述现实世界的同一样或不同样的物体。使用越多的传感器,对计算能力的要求就越高,这意味着自动驾驶汽车必须搭载更多的计算机处理器和内存,这也会增加汽车的重量,需要更多的功率,还会产生更多的热量。诸如此类的缺点还有很多。智能汽车的显著特点在于智能,意思就是说汽车自己能通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标。目前而言,车载感知模块包括视觉感知模块、毫米波雷达、超声波雷达、360°环视系统等,多源传感器的协同作用识别道路车道线、行人车辆等障碍物,为安全驾驶保驾护航。因此,感知信息也需要融合,感知信息也需要相互补充。五、多传感器融合的四个关键方法

  • Harmonize

假设有两种不同的传感器,称它们为传感器X和传感器Z。它们都能够感知自动驾驶汽车的外部世界。在现实世界中存在一个物体,这个物体可能是人,也可能是车,甚至是一条狗,传感器X和传感器Z都能够检测到这个物体。这就意味着传感器对这个物体进行了双重检测,这种双重检测意味着两种不同类型的传感器都有关于该物体的数据报告,对于该物体有两个维度不同的认知。假设,传感器X表示该物体高6英尺,宽2英尺;传感器Z表示该物体以每秒3英尺的速度正朝着自动驾驶车辆方向移动。结合两个传感器采集到的数据,就可以得出一条相对准确的信息:有一个高约6英尺,宽2英尺的物体正在以每秒钟3英尺的速度移动。假设这两自动驾驶汽车上只安装了X传感器,那么就无法得知该物体的大小;若Z传感器坏了,那么就只有物体的大小信息,无法检测该物体的运动状态。这也就是最近业内广泛讨论的“在自动驾驶汽车上应该安装哪些传感器”的问题。此前,特斯拉埃隆•马斯克(Elon Musk)旗帜鲜明地声称,特斯拉不会安装激光雷达。尽管马斯克自己也认为,L5自动驾驶不会通过激光雷达来实现这个想法最终可能被验证为错误的,这依旧没有改变马斯克的决定。一些反对的声音称,不配备激光雷达的特斯拉,无法通过其他的传感器获取如同激光雷达效果相同的感官输入,也无法提供补偿和三角测量。但是另一些支持者认为,激光雷达不值得花费如此高昂的费用成本,不值得为其增大计算能力,也不值得为其增加认知时间。

  • Reconcile

在同一个视场(Field of View,FOV)内,假设传感器X探测到一个物体,而传感器Z没有探测到。注意,这与物体完全在传感器Z的FOV之外的情况有很大的不。一方面,系统会认为传感器X是正确的,Z是错误的,可能是因为Z有故障,或者有模糊探测,或者是其他的一些什么原因。另一个方面,也许传感器X是错误的,X可能是报告了一个“幽灵”(实际上并不存在的东西),而传感器Z报告那里没有东西是正确的。

  • Integrate

假设我们有两个物体a和b,分别在传感器X和传感器Z的视场FOV内(a在X视场内,b在Z视场内)。也就是说,Z无法直接检测到a,X也无法直接检测到b。目前,想要实现的效果是,能否将X和Z的报告整合在一起,让它们在各自的视场内探测物体同时,判断是否为X视场中的物体正在向Z视场移动,预先提醒Z将有物体进入探测区域。

  • Synthesize

第四种方法Synthesize是将感知数据融合在一起,你可能会遇到这样的情况,传感器X和传感器Z都没有在各自的视场内探测到物体。在这种情况下,没有传感器知道这个物体的存在,但是可以通过一些其他的感观数据,比如声音,间接地弄清楚在视场之外的物体情况。自动驾驶汽车是时刻运动的,所以要求这种预判是瞬间发生的,像上文提到的一样,是实时的。多传感器信息融合技术应用至今,有着非常多的应用方法,在所有方法当中较为成熟的方法包括了聚类分析法、证据理论法、DS 算法、最优理论法等。

说明:来源清研车联,文章观点仅供分享交流,不代表汽车技术课程的立场,转载请注明出处,如涉及版权等问题,请您告知我们将及时沟通处理。

近期公开课程

1、11.21-22  智能汽车HMI创新设计方法

2、12.17-18  ISO26262功能安全软硬件设计及及测试

3、12.26-27  动力电池热管理与结构仿真

新上线云课堂课程

1、动力系统构型及驾驶功能控制(1小时45分钟)

2、混合动力电驱动系统控制 (1小时08分钟)

视频课程可登录官网www.auttra.com或点击下方“阅读原文”进入公众号学习。

往期公开课

智能驾驶系统架构及测试与评价技术

基于MATLAB环境搭建满足AUTOSAR标准的模型

车载以太网的开发与设计

新能源汽车电驱动系统与驱动电机设计开发

整车热管理开发设计

云课堂其它精彩课程车载以太网协议架构中的SOME/IP(一)(二)车载以太网概述

车载以太网物理层(一)(二)

Modeling Advanced Topics (高级建模技巧)

AVB-TSN基础课程(一)(二)Modeling Advanced Topics (高级建模技巧)如何在MATLAB平台上搭建满足AUTOSAR标准的模型(上)(下)AUTOSAR Overview and Objectives

电动汽车技术概述(一)(二)

电池包弱电电连接方式(上)(下)

方形电池强电连接方式

圆柱形&软包电池强电连接方式

车载充电机开发设计

车载充电机的测试技术

车载充电机工作原理

48V整体设计过程(2)

48V整体设计过程(1)

48V弱混技术介绍

温度对电池性能和安全的影响

动力电池

整车EMC测试(上)

CNA远程刷新与诊断(1-6)

混动与电动车驱动设计(上)(下)

插电式混动(PHEV)系统架构

纯电动驱动系统架构

了解公开课、视频课程详情及观看

点击左下角阅读原文

d-s 多传感器信息融合 matlab实现_自动驾驶中的多传感器融合相关推荐

  1. 【自动驾驶传感器融合系列】02自动驾驶中的多传感器同步理论

    [自动驾驶传感器融合系列]02自动驾驶中的多传感器同步理论 文前白话 1.传感器时空同步概念 2.传感器时间同步 · 时间硬同步 · 时间软同步 3.传感器时空同步 文前白话 同步理论整体架构: 1. ...

  2. 巨卷时代!如何入门学习自动驾驶中的感知定位融合?

    星球介绍 自动驾驶之心知识星球是国内首个以自动驾驶技术栈为主线的交流学习社区,这是一个前沿技术发布和学习的地方,由上海交大校友创办!主要切入自动驾驶感知(分类.目标检测.语义分割.实例分割.全景分割. ...

  3. 汽车电子专业知识篇(三)-自动驾驶中的多传感器融合

    多传感器融合 多传感器信息融合(Multi-sensor Information Fusion,MSIF),就是利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成 ...

  4. 多帧点云数据拼接合并_自动驾驶:Lidar 3D传感器点云数据和2D图像数据的融合标注...

    自动驾驶汽车的发展已经见证了硬件传感器记录感官数据的容量和准确度的发展.传感器的数量增加了,新一代传感器正在记录更高的分辨率和更准确的测量结果. 在本文中,我们将探讨传感器融合如何在涉及环环相扣的数据 ...

  5. 重磅!国内首个面向自动驾驶领域的多传感器数据融合系统课程

    应用背景介绍 多传感器融合是一项结合多传感器数据的综合性前沿内容,主要包括Camera.激光雷达.IMU.毫米波雷达等传感器的融合,在自动驾驶.移动机器人的感知和定位领域中占有非常重要的地位: 随着A ...

  6. 特征级融合_自动驾驶系统入门(七)- 多传感器信息融合

    1.MISF - Multi-sensor Information Fusion 基础解析 1.1 基本概念 利用计算机技术将多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需的 ...

  7. 自动驾驶中的9种传感器融合算法

    来源丨AI 修炼之路 在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程.该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性.冗余性以及最终的安全性. 为了更好地理解,让我们考虑一个简单 ...

  8. 论文阅读综述:自动驾驶感知的多模态传感器融合Multi-modal Sensor Fusion for Auto Driving Perception: A Survey

    题目:Multi-modal Sensor Fusion for Auto Driving Perception: A Survey 用于自动驾驶感知的多模态传感器融合:综述 链接:https://a ...

  9. 如何将一个向量投影到一个平面上_自动驾驶视觉融合相机校准与激光点云投影...

    点云PCL免费知识星球,点云论文速读. 标题:自动驾驶视觉融合-相机校准与激光点云投影 作者:williamhyin 来源:https://zhuanlan.zhihu.com/p/136263753 ...

最新文章

  1. 2019年第一个工作日!
  2. 记一次坑爹的 “跨域” 问题
  3. linux异机拷贝,rman恢复异机数据库
  4. C++——《算法分析与设计》实验报告——贪心算法与回溯法
  5. linux错误代码0x8008005,利用Windows10自带Linux学习(附带:0x8007019e错误解决方法)...
  6. ios html图片相对路径,iOS 下加载本地HTML/js/css/image 等路径问题
  7. LoadRunner录制第一个脚本Virtual User Generator
  8. 机器学习入门——详解主成分分析
  9. 基于C#的MongoDB数据库开发应用(2)--MongoDB数据库的C#开发
  10. Windows2008计算机设置,Windows Server 2008 R2 个人使用优化设置
  11. rabbitmq安装erlang,报错configure: error: /bin/sh ‘/app/otp_src_20.2/erts/configure‘ failed for erts
  12. 最新京东批量试用助手
  13. python提取身份证信息_Python3 简单抓取身份证地址信息
  14. 微信小程序调查问卷避坑
  15. masm5安装教程_MASM5.0汇编器使用
  16. SSM+服装管理系统 毕业设计-附源码080948
  17. 精通CSS.DIV网页样式与布局(四) ——页面背景
  18. 论文研读-基于决策变量分析的大规模多目标进化算法
  19. 面向机密计算的Enclave容器技术栈
  20. 是否有 API 可供云对接?

热门文章

  1. CSS设置段落的垂直对齐
  2. 【数据结构-图】1.图的构造和遍历(基本理论+代码)
  3. 【Mybatis 之应用篇】 3_Lombok、多对一处理和一对多处理
  4. 为什么同样是上亿的并发,购票系统就要比电商系统技术挑战更大?
  5. 蓝桥杯-矩阵相乘(java)
  6. python豆瓣爬虫爬取评论做成词云
  7. 《R语言实战》第2章
  8. 面向对象中的session版的购物车
  9. c语言位运算 求1个整数的二进制数有多少个1
  10. linux shell获取字符串第1个字符