数据结构之树结构实际应用

一、堆排序

1.基本介绍


2.基本思想

3.代码实现

package com.atguigu.tree;import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;public class HeapSort {public static void main(String[] args) {//要求将数组进行升序排序//int arr[] = {4, 6, 8, 5, 9};// 创建要给80000个的随机的数组int[] arr = new int[8000000];for (int i = 0; i < 8000000; i++) {arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数}System.out.println("排序前");Date data1 = new Date();SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");String date1Str = simpleDateFormat.format(data1);System.out.println("排序前的时间是=" + date1Str);heapSort(arr);Date data2 = new Date();String date2Str = simpleDateFormat.format(data2);System.out.println("排序前的时间是=" + date2Str);//System.out.println("排序后=" + Arrays.toString(arr));}//编写一个堆排序的方法public static void heapSort(int arr[]) {int temp = 0;System.out.println("堆排序!!");//      //分步完成
//      adjustHeap(arr, 1, arr.length);
//      System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//
//      adjustHeap(arr, 0, arr.length);
//      System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4//完成我们最终代码//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆for(int i = arr.length / 2 -1; i >=0; i--) {adjustHeap(arr, i, arr.length);}/** 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。*/for(int j = arr.length-1;j >0; j--) {//交换temp = arr[j];arr[j] = arr[0];arr[0] = temp;adjustHeap(arr, 0, j); }//System.out.println("数组=" + Arrays.toString(arr)); }//将一个数组(二叉树), 调整成一个大顶堆/*** 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆* 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}* 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}* @param arr 待调整的数组* @param i 表示非叶子结点在数组中索引* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少*/public  static void adjustHeap(int arr[], int i, int lenght) {int temp = arr[i];//先取出当前元素的值,保存在临时变量//开始调整//说明//1. k = i * 2 + 1 k 是 i结点的左子结点for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值k++; // k 指向右子结点}if(arr[k] > temp) { //如果子结点大于父结点arr[i] = arr[k]; //把较大的值赋给当前结点i = k; //!!! i 指向 k,继续循环比较} else {break;//!}}//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)arr[i] = temp;//将temp值放到调整后的位置}}

二、赫夫曼树

1.基本介绍

2.基本概念


3.创建思路

4.代码实现

package com.atguigu.huffmantree;import java.util.ArrayList;
import java.util.Collections;
import java.util.List;public class HuffmanTree {public static void main(String[] args) {int arr[] = { 13, 7, 8, 3, 29, 6, 1 };Node root = createHuffmanTree(arr);//测试一把preOrder(root); //}//编写一个前序遍历的方法public static void preOrder(Node root) {if(root != null) {root.preOrder();}else{System.out.println("是空树,不能遍历~~");}}// 创建赫夫曼树的方法/*** * @param arr 需要创建成哈夫曼树的数组* @return 创建好后的赫夫曼树的root结点*/public static Node createHuffmanTree(int[] arr) {// 第一步为了操作方便// 1. 遍历 arr 数组// 2. 将arr的每个元素构成成一个Node// 3. 将Node 放入到ArrayList中List<Node> nodes = new ArrayList<Node>();for (int value : arr) {nodes.add(new Node(value));}//我们处理的过程是一个循环的过程while(nodes.size() > 1) {//排序 从小到大 Collections.sort(nodes);System.out.println("nodes =" + nodes);//取出根节点权值最小的两颗二叉树 //(1) 取出权值最小的结点(二叉树)Node leftNode = nodes.get(0);//(2) 取出权值第二小的结点(二叉树)Node rightNode = nodes.get(1);//(3)构建一颗新的二叉树Node parent = new Node(leftNode.value + rightNode.value);parent.left = leftNode;parent.right = rightNode;//(4)从ArrayList删除处理过的二叉树nodes.remove(leftNode);nodes.remove(rightNode);//(5)将parent加入到nodesnodes.add(parent);}//返回哈夫曼树的root结点return nodes.get(0);}
}// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {int value; // 结点权值char c; //字符Node left; // 指向左子结点Node right; // 指向右子结点//写一个前序遍历public void preOrder() {System.out.println(this);if(this.left != null) {this.left.preOrder();}if(this.right != null) {this.right.preOrder();}}public Node(int value) {this.value = value;}@Overridepublic String toString() {return "Node [value=" + value + "]";}@Overridepublic int compareTo(Node o) {// TODO Auto-generated method stub// 表示从小到大排序return this.value - o.value;}}

三、赫夫曼编码

1.基本介绍

2.原理





3.数据压缩



4.文件压缩



package com.atguigu.huffmancode;import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;public class HuffmanCode {public static void main(String[] args) {//测试压缩文件
//      String srcFile = "d://Uninstall.xml";
//      String dstFile = "d://Uninstall.zip";
//
//      zipFile(srcFile, dstFile);
//      System.out.println("压缩文件ok~~");//测试解压文件String zipFile = "d://Uninstall.zip";String dstFile = "d://Uninstall2.xml";unZipFile(zipFile, dstFile);System.out.println("解压成功!");/*String content = "i like like like java do you like a java";byte[] contentBytes = content.getBytes();System.out.println(contentBytes.length); //40byte[] huffmanCodesBytes= huffmanZip(contentBytes);System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) + " 长度= " + huffmanCodesBytes.length);//测试一把byteToBitString方法//System.out.println(byteToBitString((byte)1));byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes);System.out.println("原来的字符串=" + new String(sourceBytes)); // "i like like like java do you like a java"*///如何将 数据进行解压(解码)  //分步过程/*List<Node> nodes = getNodes(contentBytes);System.out.println("nodes=" + nodes);//测试一把,创建的赫夫曼树System.out.println("赫夫曼树");Node huffmanTreeRoot = createHuffmanTree(nodes);System.out.println("前序遍历");huffmanTreeRoot.preOrder();//测试一把是否生成了对应的赫夫曼编码Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);System.out.println("~生成的赫夫曼编码表= " + huffmanCodes);//测试byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes);System.out.println("huffmanCodeBytes=" + Arrays.toString(huffmanCodeBytes));//17//发送huffmanCodeBytes 数组 */}//编写一个方法,完成对压缩文件的解压/*** * @param zipFile 准备解压的文件* @param dstFile 将文件解压到哪个路径*/public static void unZipFile(String zipFile, String dstFile) {//定义文件输入流InputStream is = null;//定义一个对象输入流ObjectInputStream ois = null;//定义文件的输出流OutputStream os = null;try {//创建文件输入流is = new FileInputStream(zipFile);//创建一个和  is关联的对象输入流ois = new ObjectInputStream(is);//读取byte数组  huffmanBytesbyte[] huffmanBytes = (byte[])ois.readObject();//读取赫夫曼编码表Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject();//解码byte[] bytes = decode(huffmanCodes, huffmanBytes);//将bytes 数组写入到目标文件os = new FileOutputStream(dstFile);//写数据到 dstFile 文件os.write(bytes);} catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());} finally {try {os.close();ois.close();is.close();} catch (Exception e2) {// TODO: handle exceptionSystem.out.println(e2.getMessage());}}}//编写方法,将一个文件进行压缩/*** * @param srcFile 你传入的希望压缩的文件的全路径* @param dstFile 我们压缩后将压缩文件放到哪个目录*/public static void zipFile(String srcFile, String dstFile) {//创建输出流OutputStream os = null;ObjectOutputStream oos = null;//创建文件的输入流FileInputStream is = null;try {//创建文件的输入流is = new FileInputStream(srcFile);//创建一个和源文件大小一样的byte[]byte[] b = new byte[is.available()];//读取文件is.read(b);//直接对源文件压缩byte[] huffmanBytes = huffmanZip(b);//创建文件的输出流, 存放压缩文件os = new FileOutputStream(dstFile);//创建一个和文件输出流关联的ObjectOutputStreamoos = new ObjectOutputStream(os);//把 赫夫曼编码后的字节数组写入压缩文件oos.writeObject(huffmanBytes); //我们是把//这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用//注意一定要把赫夫曼编码 写入压缩文件oos.writeObject(huffmanCodes);}catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());}finally {try {is.close();oos.close();os.close();}catch (Exception e) {// TODO: handle exceptionSystem.out.println(e.getMessage());}}}//完成数据的解压//思路//1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28]//   重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..."//2.  赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码  =》 "i like like like java do you like a java"//编写一个方法,完成对压缩数据的解码/*** * @param huffmanCodes 赫夫曼编码表 map* @param huffmanBytes 赫夫曼编码得到的字节数组* @return 就是原来的字符串对应的数组*/private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) {//1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111...StringBuilder stringBuilder = new StringBuilder();//将byte数组转成二进制的字符串for(int i = 0; i < huffmanBytes.length; i++) {byte b = huffmanBytes[i];//判断是不是最后一个字节boolean flag = (i == huffmanBytes.length - 1);stringBuilder.append(byteToBitString(!flag, b));}//把字符串安装指定的赫夫曼编码进行解码//把赫夫曼编码表进行调换,因为反向查询 a->100 100->aMap<String, Byte>  map = new HashMap<String,Byte>();for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) {map.put(entry.getValue(), entry.getKey());}//创建要给集合,存放byteList<Byte> list = new ArrayList<>();//i 可以理解成就是索引,扫描 stringBuilder for(int  i = 0; i < stringBuilder.length(); ) {int count = 1; // 小的计数器boolean flag = true;Byte b = null;while(flag) {//1010100010111...//递增的取出 key 1 String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符b = map.get(key);if(b == null) {//说明没有匹配到count++;}else {//匹配到flag = false;}}list.add(b);i += count;//i 直接移动到 count }//当for循环结束后,我们list中就存放了所有的字符  "i like like like java do you like a java"//把list 中的数据放入到byte[] 并返回byte b[] = new byte[list.size()];for(int i = 0;i < b.length; i++) {b[i] = list.get(i);}return b;}/*** 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码* @param b 传入的 byte* @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位* @return 是该b 对应的二进制的字符串,(注意是按补码返回)*/private static String byteToBitString(boolean flag, byte b) {//使用变量保存 bint temp = b; //将 b 转成 int//如果是正数我们还存在补高位if(flag) {temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001}String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码if(flag) {return str.substring(str.length() - 8);} else {return str;}}//使用一个方法,将前面的方法封装起来,便于我们的调用./*** * @param bytes 原始的字符串对应的字节数组* @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)*/private static byte[] huffmanZip(byte[] bytes) {List<Node> nodes = getNodes(bytes);//根据 nodes 创建的赫夫曼树Node huffmanTreeRoot = createHuffmanTree(nodes);//对应的赫夫曼编码(根据 赫夫曼树)Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);return huffmanCodeBytes;}//编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]/*** * @param bytes 这时原始的字符串对应的 byte[]* @param huffmanCodes 生成的赫夫曼编码map* @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();* 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"* => 对应的 byte[] huffmanCodeBytes  ,即 8位对应一个 byte,放入到 huffmanCodeBytes* huffmanCodeBytes[0] =  10101000(补码) => byte  [推导  10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]* huffmanCodeBytes[1] = -88*/private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {//1.利用 huffmanCodes 将  bytes 转成  赫夫曼编码对应的字符串StringBuilder stringBuilder = new StringBuilder();//遍历bytes 数组 for(byte b: bytes) {stringBuilder.append(huffmanCodes.get(b));}//System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());//将 "1010100010111111110..." 转成 byte[]//统计返回  byte[] huffmanCodeBytes 长度//一句话 int len = (stringBuilder.length() + 7) / 8;int len;if(stringBuilder.length() % 8 == 0) {len = stringBuilder.length() / 8;} else {len = stringBuilder.length() / 8 + 1;}//创建 存储压缩后的 byte数组byte[] huffmanCodeBytes = new byte[len];int index = 0;//记录是第几个bytefor (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8String strByte;if(i+8 > stringBuilder.length()) {//不够8位strByte = stringBuilder.substring(i);}else{strByte = stringBuilder.substring(i, i + 8);} //将strByte 转成一个byte,放入到 huffmanCodeByteshuffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);index++;}return huffmanCodeBytes;}//生成赫夫曼树对应的赫夫曼编码//思路://1. 将赫夫曼编码表存放在 Map<Byte,String> 形式//   生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径static StringBuilder stringBuilder = new StringBuilder();//为了调用方便,我们重载 getCodesprivate static Map<Byte, String> getCodes(Node root) {if(root == null) {return null;}//处理root的左子树getCodes(root.left, "0", stringBuilder);//处理root的右子树getCodes(root.right, "1", stringBuilder);return huffmanCodes;}/*** 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合* @param node  传入结点* @param code  路径: 左子结点是 0, 右子结点 1* @param stringBuilder 用于拼接路径*/private static void getCodes(Node node, String code, StringBuilder stringBuilder) {StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);//将code 加入到 stringBuilder2stringBuilder2.append(code);if(node != null) { //如果node == null不处理//判断当前node 是叶子结点还是非叶子结点if(node.data == null) { //非叶子结点//递归处理//向左递归getCodes(node.left, "0", stringBuilder2);//向右递归getCodes(node.right, "1", stringBuilder2);} else { //说明是一个叶子结点//就表示找到某个叶子结点的最后huffmanCodes.put(node.data, stringBuilder2.toString());}}}//前序遍历的方法private static void preOrder(Node root) {if(root != null) {root.preOrder();}else {System.out.println("赫夫曼树为空");}}/*** * @param bytes 接收字节数组* @return 返回的就是 List 形式   [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],*/private static List<Node> getNodes(byte[] bytes) {//1创建一个ArrayListArrayList<Node> nodes = new ArrayList<Node>();//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]Map<Byte, Integer> counts = new HashMap<>();for (byte b : bytes) {Integer count = counts.get(b);if (count == null) { // Map还没有这个字符数据,第一次counts.put(b, 1);} else {counts.put(b, count + 1);}}//把每一个键值对转成一个Node 对象,并加入到nodes集合//遍历mapfor(Map.Entry<Byte, Integer> entry: counts.entrySet()) {nodes.add(new Node(entry.getKey(), entry.getValue()));}return nodes;}//可以通过List 创建对应的赫夫曼树private static Node createHuffmanTree(List<Node> nodes) {while(nodes.size() > 1) {//排序, 从小到大Collections.sort(nodes);//取出第一颗最小的二叉树Node leftNode = nodes.get(0);//取出第二颗最小的二叉树Node rightNode = nodes.get(1);//创建一颗新的二叉树,它的根节点 没有data, 只有权值Node parent = new Node(null, leftNode.weight + rightNode.weight);parent.left = leftNode;parent.right = rightNode;//将已经处理的两颗二叉树从nodes删除nodes.remove(leftNode);nodes.remove(rightNode);//将新的二叉树,加入到nodesnodes.add(parent);}//nodes 最后的结点,就是赫夫曼树的根结点return nodes.get(0);}}//创建Node ,待数据和权值
class Node implements Comparable<Node>  {Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32int weight; //权值, 表示字符出现的次数Node left;//Node right;public Node(Byte data, int weight) {this.data = data;this.weight = weight;}@Overridepublic int compareTo(Node o) {// 从小到大排序return this.weight - o.weight;}public String toString() {return "Node [data = " + data + " weight=" + weight + "]";}//前序遍历public void preOrder() {System.out.println(this);if(this.left != null) {this.left.preOrder();}if(this.right != null) {this.right.preOrder();}}
}

四、二叉排序树

1.需求

2.解决方案

3.二叉排序树介绍

4.二叉排序树创建和遍历

5.二叉排序树的删除




package com.atguigu.binarysorttree;public class BinarySortTreeDemo {public static void main(String[] args) {int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};BinarySortTree binarySortTree = new BinarySortTree();//循环的添加结点到二叉排序树for(int i = 0; i< arr.length; i++) {binarySortTree.add(new Node(arr[i]));}//中序遍历二叉排序树System.out.println("中序遍历二叉排序树~");binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12//测试一下删除叶子结点binarySortTree.delNode(12);binarySortTree.delNode(5);binarySortTree.delNode(10);binarySortTree.delNode(2);binarySortTree.delNode(3);binarySortTree.delNode(9);binarySortTree.delNode(1);binarySortTree.delNode(7);System.out.println("root=" + binarySortTree.getRoot());System.out.println("删除结点后");binarySortTree.infixOrder();}}//创建二叉排序树
class BinarySortTree {private Node root;public Node getRoot() {return root;}//查找要删除的结点public Node search(int value) {if(root == null) {return null;} else {return root.search(value);}}//查找父结点public Node searchParent(int value) {if(root == null) {return null;} else {return root.searchParent(value);}}//编写方法: //1. 返回的 以node 为根结点的二叉排序树的最小结点的值//2. 删除node 为根结点的二叉排序树的最小结点/*** * @param node 传入的结点(当做二叉排序树的根结点)* @return 返回的 以node 为根结点的二叉排序树的最小结点的值*/public int delRightTreeMin(Node node) {Node target = node;//循环的查找左子节点,就会找到最小值while(target.left != null) {target = target.left;}//这时 target就指向了最小结点//删除最小结点delNode(target.value);return target.value;}//删除结点public void delNode(int value) {if(root == null) {return;}else {//1.需求先去找到要删除的结点  targetNodeNode targetNode = search(value);//如果没有找到要删除的结点if(targetNode == null) {return;}//如果我们发现当前这颗二叉排序树只有一个结点if(root.left == null && root.right == null) {root = null;return;}//去找到targetNode的父结点Node parent = searchParent(value);//如果要删除的结点是叶子结点if(targetNode.left == null && targetNode.right == null) {//判断targetNode 是父结点的左子结点,还是右子结点if(parent.left != null && parent.left.value == value) { //是左子结点parent.left = null;} else if (parent.right != null && parent.right.value == value) {//是由子结点parent.right = null;}} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点int minVal = delRightTreeMin(targetNode.right);targetNode.value = minVal;} else { // 删除只有一颗子树的结点//如果要删除的结点有左子结点 if(targetNode.left != null) {if(parent != null) {//如果 targetNode 是 parent 的左子结点if(parent.left.value == value) {parent.left = targetNode.left;} else { //  targetNode 是 parent 的右子结点parent.right = targetNode.left;} } else {root = targetNode.left;}} else { //如果要删除的结点有右子结点 if(parent != null) {//如果 targetNode 是 parent 的左子结点if(parent.left.value == value) {parent.left = targetNode.right;} else { //如果 targetNode 是 parent 的右子结点parent.right = targetNode.right;}} else {root = targetNode.right;}}}}}//添加结点的方法public void add(Node node) {if(root == null) {root = node;//如果root为空则直接让root指向node} else {root.add(node);}}//中序遍历public void infixOrder() {if(root != null) {root.infixOrder();} else {System.out.println("二叉排序树为空,不能遍历");}}
}//创建Node结点
class Node {int value;Node left;Node right;public Node(int value) {this.value = value;}//查找要删除的结点/*** * @param value 希望删除的结点的值* @return 如果找到返回该结点,否则返回null*/public Node search(int value) {if(value == this.value) { //找到就是该结点return this;} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找//如果左子结点为空if(this.left  == null) {return null;}return this.left.search(value);} else { //如果查找的值不小于当前结点,向右子树递归查找if(this.right == null) {return null;}return this.right.search(value);}}//查找要删除结点的父结点/*** * @param value 要找到的结点的值* @return 返回的是要删除的结点的父结点,如果没有就返回null*/public Node searchParent(int value) {//如果当前结点就是要删除的结点的父结点,就返回if((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {return this;} else {//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空if(value < this.value && this.left != null) {return this.left.searchParent(value); //向左子树递归查找} else if (value >= this.value && this.right != null) {return this.right.searchParent(value); //向右子树递归查找} else {return null; // 没有找到父结点}}}@Overridepublic String toString() {return "Node [value=" + value + "]";}//添加结点的方法//递归的形式添加结点,注意需要满足二叉排序树的要求public void add(Node node) {if(node == null) {return;}//判断传入的结点的值,和当前子树的根结点的值关系if(node.value < this.value) {//如果当前结点左子结点为nullif(this.left == null) {this.left = node;} else {//递归的向左子树添加this.left.add(node);}} else { //添加的结点的值大于 当前结点的值if(this.right == null) {this.right = node;} else {//递归的向右子树添加this.right.add(node);}}}//中序遍历public void infixOrder() {if(this.left != null) {this.left.infixOrder();}System.out.println(this);if(this.right != null) {this.right.infixOrder();}}}

五、平衡二叉树

1.二叉排序树可能存在的问题

2.基本介绍

3.左旋转

4.右旋转

5.双旋转

package com.atguigu.avl;public class AVLTreeDemo {public static void main(String[] args) {//int[] arr = {4,3,6,5,7,8};//int[] arr = { 10, 12, 8, 9, 7, 6 };int[] arr = { 10, 11, 7, 6, 8, 9 };  //创建一个 AVLTree对象AVLTree avlTree = new AVLTree();//添加结点for(int i=0; i < arr.length; i++) {avlTree.add(new Node(arr[i]));}//遍历System.out.println("中序遍历");avlTree.infixOrder();System.out.println("在平衡处理~~");System.out.println("树的高度=" + avlTree.getRoot().height()); //3System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2System.out.println("当前的根结点=" + avlTree.getRoot());//8}}// 创建AVLTree
class AVLTree {private Node root;public Node getRoot() {return root;}// 查找要删除的结点public Node search(int value) {if (root == null) {return null;} else {return root.search(value);}}// 查找父结点public Node searchParent(int value) {if (root == null) {return null;} else {return root.searchParent(value);}}// 编写方法:// 1. 返回的 以node 为根结点的二叉排序树的最小结点的值// 2. 删除node 为根结点的二叉排序树的最小结点/*** * @param node*            传入的结点(当做二叉排序树的根结点)* @return 返回的 以node 为根结点的二叉排序树的最小结点的值*/public int delRightTreeMin(Node node) {Node target = node;// 循环的查找左子节点,就会找到最小值while (target.left != null) {target = target.left;}// 这时 target就指向了最小结点// 删除最小结点delNode(target.value);return target.value;}// 删除结点public void delNode(int value) {if (root == null) {return;} else {// 1.需求先去找到要删除的结点 targetNodeNode targetNode = search(value);// 如果没有找到要删除的结点if (targetNode == null) {return;}// 如果我们发现当前这颗二叉排序树只有一个结点if (root.left == null && root.right == null) {root = null;return;}// 去找到targetNode的父结点Node parent = searchParent(value);// 如果要删除的结点是叶子结点if (targetNode.left == null && targetNode.right == null) {// 判断targetNode 是父结点的左子结点,还是右子结点if (parent.left != null && parent.left.value == value) { // 是左子结点parent.left = null;} else if (parent.right != null && parent.right.value == value) {// 是由子结点parent.right = null;}} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点int minVal = delRightTreeMin(targetNode.right);targetNode.value = minVal;} else { // 删除只有一颗子树的结点// 如果要删除的结点有左子结点if (targetNode.left != null) {if (parent != null) {// 如果 targetNode 是 parent 的左子结点if (parent.left.value == value) {parent.left = targetNode.left;} else { // targetNode 是 parent 的右子结点parent.right = targetNode.left;}} else {root = targetNode.left;}} else { // 如果要删除的结点有右子结点if (parent != null) {// 如果 targetNode 是 parent 的左子结点if (parent.left.value == value) {parent.left = targetNode.right;} else { // 如果 targetNode 是 parent 的右子结点parent.right = targetNode.right;}} else {root = targetNode.right;}}}}}// 添加结点的方法public void add(Node node) {if (root == null) {root = node;// 如果root为空则直接让root指向node} else {root.add(node);}}// 中序遍历public void infixOrder() {if (root != null) {root.infixOrder();} else {System.out.println("二叉排序树为空,不能遍历");}}
}// 创建Node结点
class Node {int value;Node left;Node right;public Node(int value) {this.value = value;}// 返回左子树的高度public int leftHeight() {if (left == null) {return 0;}return left.height();}// 返回右子树的高度public int rightHeight() {if (right == null) {return 0;}return right.height();}// 返回 以该结点为根结点的树的高度public int height() {return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;}//左旋转方法private void leftRotate() {//创建新的结点,以当前根结点的值Node newNode = new Node(value);//把新的结点的左子树设置成当前结点的左子树newNode.left = left;//把新的结点的右子树设置成带你过去结点的右子树的左子树newNode.right = right.left;//把当前结点的值替换成右子结点的值value = right.value;//把当前结点的右子树设置成当前结点右子树的右子树right = right.right;//把当前结点的左子树(左子结点)设置成新的结点left = newNode;}//右旋转private void rightRotate() {Node newNode = new Node(value);newNode.right = right;newNode.left = left.right;value = left.value;left = left.left;right = newNode;}// 查找要删除的结点/*** * @param value*            希望删除的结点的值* @return 如果找到返回该结点,否则返回null*/public Node search(int value) {if (value == this.value) { // 找到就是该结点return this;} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找// 如果左子结点为空if (this.left == null) {return null;}return this.left.search(value);} else { // 如果查找的值不小于当前结点,向右子树递归查找if (this.right == null) {return null;}return this.right.search(value);}}// 查找要删除结点的父结点/*** * @param value*            要找到的结点的值* @return 返回的是要删除的结点的父结点,如果没有就返回null*/public Node searchParent(int value) {// 如果当前结点就是要删除的结点的父结点,就返回if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {return this;} else {// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空if (value < this.value && this.left != null) {return this.left.searchParent(value); // 向左子树递归查找} else if (value >= this.value && this.right != null) {return this.right.searchParent(value); // 向右子树递归查找} else {return null; // 没有找到父结点}}}@Overridepublic String toString() {return "Node [value=" + value + "]";}// 添加结点的方法// 递归的形式添加结点,注意需要满足二叉排序树的要求public void add(Node node) {if (node == null) {return;}// 判断传入的结点的值,和当前子树的根结点的值关系if (node.value < this.value) {// 如果当前结点左子结点为nullif (this.left == null) {this.left = node;} else {// 递归的向左子树添加this.left.add(node);}} else { // 添加的结点的值大于 当前结点的值if (this.right == null) {this.right = node;} else {// 递归的向右子树添加this.right.add(node);}}//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转if(rightHeight() - leftHeight() > 1) {//如果它的右子树的左子树的高度大于它的右子树的右子树的高度if(right != null && right.leftHeight() > right.rightHeight()) {//先对右子结点进行右旋转right.rightRotate();//然后在对当前结点进行左旋转leftRotate(); //左旋转..} else {//直接进行左旋转即可leftRotate();}return ; //必须要!!!}//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转if(leftHeight() - rightHeight() > 1) {//如果它的左子树的右子树高度大于它的左子树的高度if(left != null && left.rightHeight() > left.leftHeight()) {//先对当前结点的左结点(左子树)->左旋转left.leftRotate();//再对当前结点进行右旋转rightRotate();} else {//直接进行右旋转即可rightRotate();}}}// 中序遍历public void infixOrder() {if (this.left != null) {this.left.infixOrder();}System.out.println(this);if (this.right != null) {this.right.infixOrder();}}}

六、多路查找树

1.二叉树的问题

2.多叉树

3.B树的基本介绍

4.2-3树基本介绍

5.2-3树应用案例

6.其他说明

7.B树


8.B+树

9.B*树

数据结构之树结构实际应用相关推荐

  1. 【JS】数据结构之树结构

    文章目录 树结构 二叉树 二叉搜索树 平衡树(AVL树) 红黑树 回顾其他数据结构(每种数据结构都有自己特定的应用场景): 数组:通过下标查询很快,插入和删除数据的时候,效率会很低,需要大量元素的位移 ...

  2. 数据结构之树结构详解

    树的定义 树是一种很特别的数据结构,树这种数据结构叫做"树"就是因为它长得像一棵树.但是这棵树画成的图长得却是一棵倒着的树,根在上,叶在下. 树是图的一种,树和图的区别就在于:树是 ...

  3. 有十五个数按由大到小顺序存放在一个数组中_数据结构基础 (代码效率优化, 线性表, 栈, 队列, 数组,字符串,树和二叉树,哈希表)...

    作者:张人大 代码效率优化 复杂度 -- 一个关于输入数据量n的函数 时间复杂度 -- 昂贵 与代码的结构设计有着紧密关系 一个顺序结构的代码,时间复杂度是O(1), 即任务与算例个数 n 无关 空间 ...

  4. b+树时间复杂度_数据结构:线性表,栈,队列,数组,字符串,树和二叉树,哈希表...

    作者:张人大 代码效率优化 复杂度 -- 一个关于输入数据量n的函数 时间复杂度 -- 昂贵 与代码的结构设计有着紧密关系 一个顺序结构的代码,时间复杂度是O(1), 即任务与算例个数 n 无关 空间 ...

  5. C# WPF MVVM 实战 – 3 – 树结构

    树结构放在 WPF ,有大家熟悉的 TreeView.Menu / MenuItem 等等,自定义的话它是 HierarchicalDataTemplate. 用上 MVVM 模式,视图与数据分离,意 ...

  6. 数据结构与算法第二章 线性表、栈、队列、数组、字符串、树、二叉树、哈希表的增删查

    03 增删查:掌握数据处理的基本操作,以不变应万变 通过前面课时的学习,相信你已经建立了利用数据结构去完成时空转移的思想.接下来,你需要在理论思想的指导下灵活使用.其实,要想灵活使用数据结构,你需要先 ...

  7. Java集合List转树结构工具类

    此版本太累赘,请转到函数版:https://blog.csdn.net/wenxingchen/article/details/115749782?spm=1001.2014.3001.5501 业务 ...

  8. 71.数据模型有哪几种?特征?

    这个我们讲过两次了,现在就直接说吧. 数据模型分为第一类和第二类. 第一类:概念模型-ER模型.面对对象模型 第二类: ①逻辑模型 根据数据结构的不同分为:层次模型.网状模型.关系模型. 层次模型(一 ...

  9. 数据库复习资料及课后习题答案

    数据库概论  1.1 基本内容分析  1.1.1 本章的重要概念  DB.DBMS和DBS的定义 (2)数据管理技术的发展阶段  人工管理阶段.文件系统阶段.数据库系统阶段和高级数据库技术阶段等各阶段 ...

最新文章

  1. 苹果6尺寸_小屏+刘海被安卓阵营抛弃,苹果却玩出了花
  2. mysql优化器分析器_MySQL查询优化器的概念和原理整个执行过程
  3. aspen变压吸附塔_空压机科普:吸附式干燥机的结构和原理
  4. OC之OBJC2_UNAVAILABLE
  5. CodeForces 15B Laser
  6. 拳王虚拟项目公社:2020主流的虚拟资源项目,最新最全自动化系统玩法
  7. [二分]TYVJ1359 收入计划
  8. 基于二进制粒子群算法的配电网故障诊断- 附代码
  9. ORACLE 10G R1手工创建数据库步骤
  10. excel使用mysql数据库查询语句_如何通过Excel查询MySQL数据库
  11. JSESSIONID理解
  12. RF修改服务器设置,3-RF服务端程序安装手册V1.0(7页)-原创力文档
  13. Python 编码检测与编码转换
  14. 聚光灯效应:为什么没有人记得你做过什么
  15. ols残差_多元回归方程的OLS残差
  16. Spring MVC之redirect、forward和普通跳转
  17. 软件开发综合实践实习小结
  18. python 选座位助手
  19. JDK14打包工具jpackage的使用
  20. 怎么看台式计算机的屏幕大小,如何在计算机上查看显示器尺寸win10

热门文章

  1. 2022-03-09 Unity 3D两个场景的切换
  2. C#leetcode刷题929独特的电子邮件地址
  3. paypal异步回调超时或无法请求到我们的服务器解决方案
  4. 预制变电站的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告
  5. 阅读基于sketch的软件定义网络测量数据平面硬件模型
  6. Centos8 安装 rdesktop
  7. 国产安全自主可控IT智能运维管理解决方案
  8. Android:通过Android.mk追加编译宏开关
  9. 《云计算白皮书(2021)》(可下载)
  10. html图片打印不出来 lodop_记录Canvas用于LODOP打印的解决过程