1.介绍Linux休眠提供了一种类似于Windows的休眠方式,使用户能够通过休眠操作,保存系统当前的内存数据到硬盘,即s w a p分区中。当计算机重新启动后,系统重新装载保存的内存数据,包括进程数据,寄存器数值等,并恢复到关机前的状态。由于不需要重新装载文档,应用程序也不用重新打开,因此休眠启动方式要比正常的启动过程快得多。

2.Linux休眠原理要实现操作系统的休眠,首先要理解linux的内存管理机制。标准L i n u x的分页是三级页表结构:页目录、中间页目录和页。i 3 8 6采用的是两级页表结构:页目录和页,不支持中间页目录。4 G的线性地址空间,只有一个页目录,它最多有1024个目录项,每个目录项又含有1024个页面项,每个页面有4 K字节。分页机制通过把线性地址空间中的页,重新定位到物理地址空间来进行管理,因为每个页面的整个4K字节作为一个单位进行映射,并且每个页面都对齐4K字节的边界,因此,线性地址的低12位经过分页机制直接地作为物理地址的低1 2位使用。下图所示是x86下线性地址映射为物理地址的过程:休眠过程可以分为两个阶段,一是SUSPEND阶段,二是R E S U M E阶段, R E S U M E过程是S U S P E N D的逆过程。S U S P E N D阶段保存进程数据到硬盘中,并关机;RESUME阶段,从硬盘中读取保存的进程数据,并恢复到关机前的原始状态。休眠需要解决的问题中,最重要的部分是内存数据的保存和如何恢复保存的内存数据。我们可以很容易获取内存页面数据,SUSPEND的过程中,主要任务就是要保存这些需要保存的页面,但是,作为存储页面地址的页表也需要保存下来,因为页表仅仅是一个中间转换作用的链表,所以,可以在S U S P E N D的过程中,临时建立,然后将内存页面地址记录在页表中。RESUME的阶段,将保存的页面和页表写到内存页中,完成后,只要重新修改页目录数据,就完成内存数据还原动作了。经过以上分析,可以得到休眠的大体原理图,如下所示:如图所示,实现S U S P E N D需要完成三个主要步骤:冻结系统中的活动进程,准备保存内存数据,写内存数据到硬盘。冻结活动进程:包括三类主要的活动源,即,用户空间进程和内核线程,设备驱动和活动的计时器;准备保存数据:计算需要保存的内存页数,分配内存以保存进程数据,复制进程数据到分配的内存中;保存数据到硬盘:写需要保存的内存页到硬盘中。RESUME是SUSPEND的逆过程,要完成分配内存以读取硬盘中的进程数据,读取硬盘数据,重新映射页表地址,更新段描述符表等。

3 Linux软件休眠实现休眠以模块方式实现,用户可以根据自己的需要选择是否装载此模块。但是,因为休眠在R E S U M E的过程中,需要恢复关机前的内存数据,以及c p u状态等,所以,此模块的装载应该通过ramdisk的init自动装载,并且要在mount root文件系统之前。

3.1 SUSPEND阶段3.1.1冻结活动进程进程执行时,它会根据具体情况改变状态。Linux中的进程状态主要有以下几种:T A S K _ R U N N I N G可运行T

A S K _ I N T E R R U P T I B L E可中断的等待状态T A S K _ U N I N T E

R R U P T I B L E不可中断的等待状态T A S K _ Z O M B I E僵死T A S K _ S T O P P E D暂停T A S K _ S W A P P I N G换入/换出操作系统在运行过程中,一般有十几个,甚至几十个进程在运行。S U S P E N D进程获得执行的资源而执行,即当前进程(current),是不能被冻结和中止执行,否则后续的操作会得不到完全执行;另外,进程标志为P F _ N O F R E E E Z

E和P F _ F R O Z E N的;以及进程状态为T A S K _ Z O M B I E、T A S K _ D E A D、T A S K _ S T O P P E

D,这些进程是不能冻结的或者不需要冻结的。除此之外,其余的进程需要冻结,也就是改变进程标志为P F _ F R E E Z E。进程标志改为P F _ F R E E Z E后,相应的进程会因为获不到资源,从而处于静止状态。3.1.2准备保存数据检测所有内存页,如果页面标识不是PG_reserved,则需要保存的页面数加1。内存检测完成后,得到需要保存的页面数目,即nr_copy_pages。for (pfn = 0; pfn < max_pfn; pfn++){page =

pfn_to_page(pfn);if (!PageReserved(page)){….nr_copy_pages ++….}…由nr_copy_pages数目,得到内存中对应数目的空闲页面作为页表目录数,同时分配nr_copy_pages个空闲页,页地址由页表目录记录管理。除了进程数据外,当前寄存器的数据,包括描述符表,段寄存器,控制寄存器,以及通用寄存器的值,都作为全局变量保存下来。复制需要保存的内存页面到新分配的空闲页中。for (pfn = 0; pfn

< max_pfn; pfn++) {….if (pagedir_p) {pagedir_p->orig_address

=ADDRESS(pfn);copy_page((void *) pagedir_p->address,(void *) pagedir_p->orig_address);pagedir_p++;}….}3.1.3保存数据到swap分区

摘要:休眠操作通过保存当前系统进程数据和cpu状态数据到硬盘中,当系统断电并重新启动后,又自动读取保存的数据并恢复到原始系统状态,如此大大减少了系统的启动时间。内存管理,进程管理和swap操作等方面是休眠实现的主要涉及范围,因此对于深入理解linux操作系统有所帮助。

关键词:Linux;内核;休眠; swap__

Freezing of tasks

(C) 2007 Rafael J. Wysocki <>, GPL

I. What is the freezing of tasks?

The freezing of tasks is a mechanism by

which user space processes and some

kernel threads are controlled during hibernation or system-wide suspend (on

some

architectures).

II. How does it work?

There are four per-task flags used for

that, PF_NOFREEZE, PF_FROZEN, TIF_FREEZE

and PF_FREEZER_SKIP (the last one is auxiliary).  The tasks that have

PF_NOFREEZE unset (all user space processes and some kernel threads) are

regarded as 'freezable' and treated in a special way before the system enters a

suspend state as well as before a hibernation image is created (in what follows

we only consider hibernation, but the description also applies to suspend).

Namely, as the first step of the

hibernation procedure the function

freeze_processes() (defined in kernel/power/process.c) is called.  It

executes

try_to_freeze_tasks() that sets TIF_FREEZE for all of the freezable tasks and

either wakes them up, if they are kernel threads, or sends fake signals to

them,

if they are user space processes.  A task that has TIF_FREEZE set, should

react

to it by calling the function called refrigerator() (defined in

kernel/power/process.c), which sets the task's PF_FROZEN flag, changes its

state

to TASK_UNINTERRUPTIBLE and makes it loop until PF_FROZEN is cleared for it.

Then, we say that the task is 'frozen' and therefore the set of functions

handling this mechanism is referred to as 'the freezer' (these functions are

defined in kernel/power/process.c and include/linux/freezer.h).  User

space

processes are generally frozen before kernel threads.

It is not recommended to call

refrigerator() directly.  Instead, it is

recommended to use the try_to_freeze() function (defined in

include/linux/freezer.h), that checks the task's TIF_FREEZE flag and makes the

task enter refrigerator() if the flag is set.

For user space processes try_to_freeze()

is called automatically from the

signal-handling code, but the freezable kernel threads need to call it

explicitly in suitable places or use the wait_event_freezable() or

wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)

that combine interruptible sleep with checking if TIF_FREEZE is set and calling

try_to_freeze().  The main loop of a freezable kernel thread may look like

the

following one:

set_freezable();

do {

hub_events();

wait_event_freezable(khubd_wait,

!list_empty(&hub_event_list) ||

kthread_should_stop());

} while (!kthread_should_stop() || !list_empty(&hub_event_list));

(from

drivers/usb/core/hub.c::hub_thread()).

If a freezable kernel thread fails to call

try_to_freeze() after the freezer has

set TIF_FREEZE for it, the freezing of tasks will fail and the entire

hibernation operation will be cancelled.  For this reason, freezable

kernel

threads must call try_to_freeze() somewhere or use one of the

wait_event_freezable() and wait_event_freezable_timeout() macros.

After the system memory state has been

restored from a hibernation image and

devices have been reinitialized, the function thaw_processes() is called in

order to clear the PF_FROZEN flag for each frozen task.  Then, the tasks

that

have been frozen leave refrigerator() and continue running.

III. Which kernel threads are freezable?

Kernel threads are not freezable by

default.  However, a kernel thread may clear

PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE

directly is strongly discouraged).  From this point it is regarded as

freezable

and must call try_to_freeze() in a suitable place.

IV. Why do we do that?

Generally speaking, there is a couple of

reasons to use the freezing of tasks:

1. The principal reason is to prevent

filesystems from being damaged after

hibernation.  At the moment we have no simple means of checkpointing

filesystems, so if there are any modifications made to filesystem data and/or

metadata on disks, we cannot bring them back to the state from before the

modifications.  At the same time each hibernation image contains some

filesystem-related information that must be consistent with the state of the

on-disk data and metadata after the system memory state has been restored from

the image (otherwise the filesystems will be damaged in a nasty way, usually

making them almost impossible to repair).  We therefore freeze tasks that

might

cause the on-disk filesystems' data and metadata to be modified after the

hibernation image has been created and before the system is finally powered

off.

The majority of these are user space processes, but if any of the kernel

threads

may cause something like this to happen, they have to be freezable.

2. Next, to create the hibernation image

we need to free a sufficient amount of

memory (approximately 50% of available RAM) and we need to do that before

devices are deactivated, because we generally need them for swapping out.

Then,

after the memory for the image has been freed, we don't want tasks to allocate

additional memory and we prevent them from doing that by freezing them earlier.

[Of course, this also means that device drivers should not allocate substantial

amounts of memory from their .suspend() callbacks before hibernation, but this

is e separate issue.]

3. The third reason is to prevent user

space processes and some kernel threads

from interfering with the suspending and resuming of devices.  A user

space

process running on a second CPU while we are suspending devices may, for

example, be troublesome and without the freezing of tasks we would need some

safeguards against race conditions that might occur in such a case.

Although Linus Torvalds doesn't like the

freezing of tasks, he said this in one

of the discussions on LKML ():

"RJW:> Why we freeze tasks at all

or why we freeze kernel threads?

Linus: In many ways, 'at all'.

I _do_ realize the IO request queue

issues, and that we cannot actually do

s2ram with some devices in the middle of a DMA.  So we want to be able to

avoid *that*, there's no question about that.  And I suspect that stopping

user threads and then waiting for a sync is practically one of the easier

ways to do so.

So in practice, the 'at all' may become a

'why freeze kernel threads?' and

freezing user threads I don't find really objectionable."

Still, there are kernel threads that may

want to be freezable.  For example, if

a kernel that belongs to a device driver accesses the device directly, it in

principle needs to know when the device is suspended, so that it doesn't try to

access it at that time.  However, if the kernel thread is freezable, it

will be

frozen before the driver's .suspend() callback is executed and it will be

thawed after the driver's .resume() callback has run, so it won't be accessing

the device while it's suspended.

4. Another reason for freezing tasks is to

prevent user space processes from

realizing that hibernation (or suspend) operation takes place.  Ideally,

user

space processes should not notice that such a system-wide operation has

occurred

and should continue running without any problems after the restore (or resume

from suspend).  Unfortunately, in the most general case this is quite

difficult

to achieve without the freezing of tasks.  Consider, for example, a

process

that depends on all CPUs being online while it's running.  Since we need

to

disable nonboot CPUs during the hibernation, if this process is not frozen, it

may notice that the number of CPUs has changed and may start to work

incorrectly

because of that.

V. Are there any problems related to the

freezing of tasks?

Yes, there are.

First of all, the freezing of kernel

threads may be tricky if they depend one

on another.  For example, if kernel thread A waits for a completion (in

the

TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B

and B is frozen in the meantime, then A will be blocked until B is thawed,

which

may be undesirable.  That's why kernel threads are not freezable by

default.

Second, there are the following two

problems related to the freezing of user

space processes:

1. Putting processes into an uninterruptible sleep distorts the load average.

2. Now that we have FUSE, plus the framework for doing device drivers in

userspace, it gets even more complicated because some userspace processes are

now doing the sorts of things that kernel threads do

().

The problem 1. seems to be fixable,

although it hasn't been fixed so far.  The

other one is more serious, but it seems that we can work around it by using

hibernation (and suspend) notifiers (in that case, though, we won't be able to

avoid the realization by the user space processes that the hibernation is

taking

place).

There are also problems that the freezing

of tasks tends to expose, although

they are not directly related to it.  For example, if request_firmware()

is

called from a device driver's .resume() routine, it will timeout and eventually

fail, because the user land process that should respond to the request is

frozen

at this point.  So, seemingly, the failure is due to the freezing of

tasks.

Suppose, however, that the firmware file is located on a filesystem accessible

only through another device that hasn't been resumed yet.  In that case,

request_firmware() will fail regardless of whether or not the freezing of tasks

is used.  Consequently, the problem is not really related to the freezing

of

tasks, since it generally exists anyway.

A driver must have all firmwares it may

need in RAM before suspend() is called.

If keeping them is not practical, for example due to their size, they must be

requested early enough using the suspend notifier API described in notifiers.txt.

linux关机suspending,(转)Linux 休眠原理与实现相关推荐

  1. linux 关机命令总结,Linux关机命令总结

    在linux命令中reboot是重新启动,shutdown -r now是立即停止然后重新启动,都说他们两个是一样的,其实是有一定的区别的. shutdown命令可以安全地关闭或重启Linux系统,它 ...

  2. linux关机shutdown无效,Linux正确shutdown关机的姿势

    相信接触过Linux的朋友都知道要让linux系统进行关机的操作就必须输入"shutdown"命令才可以,但有时候我们会遇到"Linux shutdown命令无效,返回提 ...

  3. linux关机 hibernate,实现Linux休眠(sleep/hibernate)和挂起(suspend)

    系统要求: 1.配置并编译内核:kernel2.6 2.软件:hibernate 测试环境: 1.系统Debian testing etch 2.桌面:fluxbox 3.Thinkpad r40 细 ...

  4. Linux第四章:1.Linux关机、重启、休眠、切换用户命令大全

    一.关机.重启命令 1.立刻进行关机 shutdown now 2.立刻关闭内存(关闭内存也就关机了),这里的h是halt,停止.停下的意思 shutdown -h now 3.立刻重新启动计算机 s ...

  5. 禁止linux关机,如何在Linux中禁用关机和重新启动命令

    shutdown命令调度一个Linux系统关闭电源的时间,它也可以用于在使用特定选项调用时停止,关闭电源或重启机器 ,并重新引导系统重新启动. 默认情况下,某些Linux发行版(如Ubuntu,Lin ...

  6. linux关机_【linux】 不要再暴力关机了,讲讲我最近遇到的问题和完美解决方案...

    欢迎关注我的个人公众号:AI蜗牛车 前言 结束了每天的紧张的工作,这两天真的有些肝. 这两天打打字,突然感觉手指头疼起来了,想意识到成天打了十多个小时的键盘, 手指头都疲劳了= = 之后这两天基本上除 ...

  7. arm linux关机命令,嵌入式Linux的关闭命令是什么?

    每个人都知道linux系统和Windows是不同的. linux系统将比Windows更安全,但是使用时,它肯定比Windows系统更加稀有,尤其是对于首次使用或开始使用的用户. 对于学习liunx系 ...

  8. suse linux关机命令,suse linux 常用命令

    一.列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的"隐藏"文件 ls a* 列出当前目录下以字母a开头的所有文件 ls -l *.doc 给出当前目录 ...

  9. linux关机重启机器人,Linux Stopped (tty output) 问题

    在Linux下便遇到一个问题,让进程使用& 在后台运行时,输入enter,会导致 tty stopped 导致程序不能进行. 因为在该进程有用到串口的读取和发送了,tty串口的读写功能丧失. ...

最新文章

  1. Flutter瘦身大作战
  2. WPF中如何将ListViewItem双击事件绑定到Command
  3. 实现根据条件删除_Vue源码解析,keep-alive是如何实现缓存的?
  4. 7-36 社交网络图中结点的“重要性”计算 (30 分)(思路加详解)兄弟们PTA乙级题目冲起来
  5. java prototype是什么,java设计模式-原型模式(Prototype)
  6. curl查看swift状态命令_前端应该会的23个linux常用命令
  7. (计算机组成原理)第三章存储系统-第六节4:Cache的写策略(写回法和全写法,写分配法和非写分配法)
  8. mysql like in 数组_Web前端学习教程之常用的MySQL优化技巧
  9. 服务器上登录网页ip地址,查看服务器上登录的ip地址
  10. Windows 系统:没有远程桌面授权服务器可以提供许可证
  11. matlab中一个显示根号的技巧
  12. 表单获取焦点和失去焦点
  13. java 定义16进制_java数据类型(大小等),变量定义,各进制书写方法
  14. J2SDK和TOMCAT的安装及配置
  15. ES 之 Routing
  16. Page Size 【转】
  17. Unity 2D 摄像机平滑跟随
  18. 论文精讲 | 一种隐私保护边云协同训练
  19. 配置邮箱和邮件大小限制 !
  20. mui 框架 手机端不生效问题

热门文章

  1. Microsoft server2008的sql server身份验证出现18456错误
  2. 5年后端WEB开发者的开机必备软件(md版本)
  3. Linux实战(20):Docker部署EKL入门环境记录文档
  4. 【开发】后端框架——Mybatis
  5. 仿B站首页头部动画的实现
  6. 关于error LNK2005: char * xxx (?xx@@3PADA) already defined in xxx
  7. 计算机在未来医学中的应用,【-通信传播论文:计算机技术在医学中的应用材料】...
  8. 设置计算机ip地址时网关的作用是什么,IP地址小课堂:起到门户作用的网关到底有多重要?...
  9. 2021-11-12:前 K 个高频元素。给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。提示:1 <= nums.length <=
  10. Uos统信系统 SSH