Performance of Cell-Free Massive MIMO with Rician Fading and Phase Shifts (2)

系统模型

a cell-free Massive MIMO system with

  • M M M APs (single antenna)
  • K K K UEs (single antenna)

如果假设小尺度衰落系数(或相移)之间不存在相关性,那么将每个天线作为一个独立的AP可以直接扩展到多天线的AP情况。
see Cell-free massive mimo systems with multi-antenna users.
However, for a more realistic analysis, single-antenna results can be generalized to multi-antenna case by taking the spatial correlations between antennas into account. It will result in non-diagonal covariance matrices.

The channels are assumed to be constant and frequency-flat in a coherence block of length τ c \tau_c τc​ samples (channel uses). The length of each coherence block is determined by the carrier frequency and external factors such as the propagation environment and UE mobility.

The channel h m , k h_{m,k} hm,k​ between UE k k k and the AP m m m is modeled as
h m , k = h ˉ m , k e j φ m , k + g m , k h_{m,k} = \bar{h}_{m,k}e^{j \varphi_{m,k}} + g_{m,k} hm,k​=hˉm,k​ejφm,k​+gm,k​

  • Rician fading model: ∣ h m , k ∣ |h_{m,k}| ∣hm,k​∣ is Rice distributed, but h m , k h_{m,k} hm,k​ is not Gaussian distributed (many prior works that neglected the phase shift).
  • NLoS propagation small-scale fading: g m , k ∼ C N ( 0 , β m , k ) g_{m,k} \sim \mathcal{CN}(0, \beta_{m,k}) gm,k​∼CN(0,βm,k​)
  • variance β m , k \beta_{m,k} βm,k​ models large-scale fading, including geometric pathloss and shadowing
  • LoS component: h ˉ m , k ≥ 0 \bar{h}_{m,k} \ge 0 hˉm,k​≥0 and φ m , k ∼ U ( − π , π ) \varphi_{m,k} \sim \mathcal{U}(-\pi, \pi) φm,k​∼U(−π,π)

All APs are connected to a central processing unit (CPU) via a fronthaul network that is error free.
The system operates in time division duplex (TDD) mode and the uplink (UL) and DL channels are estimated by exploiting only UL pilot transmission and channel reciprocity.

补充:

  • 一个指数分布的概率密度函数是:
    f ( x ; λ ) = { λ e − λ x , x ≥ 0 , 0 , x < 0. {\displaystyle f(x;\lambda )=\left\{{\begin{matrix}\lambda e^{-\lambda x}&,\;x\geq 0,\\0&,\;x<0.\end{matrix}}\right.} f(x;λ)={λe−λx0​,x≥0,,x<0.​

  • r ∼ Rayleigh ( σ ) r \sim \text{Rayleigh}(\sigma) r∼Rayleigh(σ) is Rayleigh distributed if r = X 2 + Y 2 {\displaystyle r={\sqrt {X^{2}+Y^{2}}}} r=X2+Y2 ​ where X ∼ N ( 0 , σ 2 ) {\displaystyle X\sim N(0,\sigma ^{2})} X∼N(0,σ2) and Y ∼ N ( 0 , σ 2 ) {\displaystyle Y\sim N(0,\sigma ^{2})} Y∼N(0,σ2) are independent normal random variables.

  • The PDF of the Rayleigh distribution is f ( x ; σ ) = x σ 2 e − x 2 / ( 2 σ 2 ) , x ≥ 0 , {\displaystyle f(x;\sigma )={\frac {x}{\sigma ^{2}}}e^{-x^{2}/(2\sigma ^{2})},\quad x\geq 0,} f(x;σ)=σ2x​e−x2/(2σ2),x≥0,
    where σ \sigma σ is the scale parameter of the distribution. The CDF is F ( x ; σ ) = 1 − e − x 2 / ( 2 σ 2 ) F(x;\sigma )=1-e^{-x^{2}/(2\sigma ^{2})} F(x;σ)=1−e−x2/(2σ2) for x ∈ [ 0 , ∞ ) x\in [0,\infty ) x∈[0,∞).

  • if r = ∣ h ∣ 2 r = \vert h \vert^2 r=∣h∣2 has an exponential distribution r ∼ E x p o n e n t i a l ( λ ) { r \sim \mathrm {Exponential} (\lambda )} r∼Exponential(λ), then let s = r = ∣ h ∣ s={\sqrt {r}}= \vert h \vert s=r ​=∣h∣, we have s ∼ R a y l e i g h ( 1 / 2 λ ) s \sim \mathrm {Rayleigh} (1/{\sqrt {2\lambda }}) s∼Rayleigh(1/2λ ​).

    • That is, if ∣ h ∣ ∼ R a y l e i g h ( σ ) \vert h \vert \sim \mathrm {Rayleigh} ( \sigma ) ∣h∣∼Rayleigh(σ), we have ∣ h ∣ 2 ∼ E x p o n e n t i a l ( 1 2 σ 2 ) \vert h \vert^2 \sim \mathrm {Exponential} ( \frac{1}{2 \sigma^2}) ∣h∣2∼Exponential(2σ21​).
  • The Rice distribution is a generalization of the Rayleigh distribution: R a y l e i g h ( σ ) = R i c e ( 0 , σ ) {\displaystyle \mathrm {Rayleigh} (\sigma )=\mathrm {Rice} (0,\sigma )} Rayleigh(σ)=Rice(0,σ).

  • R ∼ R i c e ( ∣ ν ∣ , σ ) {\displaystyle R\sim \mathrm {Rice} \left(|\nu |,\sigma \right)} R∼Rice(∣ν∣,σ) has a Rice distribution if R = X 2 + Y 2 R={\sqrt {X^{2}+Y^{2}}} R=X2+Y2 ​ where X ∼ N ( ν cos ⁡ θ , σ 2 ) X\sim N\left(\nu \cos \theta ,\sigma ^{2}\right) X∼N(νcosθ,σ2) and Y ∼ N ( ν sin ⁡ θ , σ 2 ) Y\sim N\left(\nu \sin \theta ,\sigma ^{2}\right) Y∼N(νsinθ,σ2) are statistically independent normal random variables and θ \theta θ is any real number.

  • The probability density function is f ( x ∣ ν , σ ) = x σ 2 exp ⁡ ( − ( x 2 + ν 2 ) 2 σ 2 ) I 0 ( x ν σ 2 ) f(x\mid \nu ,\sigma )={\frac {x}{\sigma ^{2}}}\exp \left({\frac {-(x^{2}+\nu ^{2})}{2\sigma ^{2}}}\right)I_{0}\left({\frac {x\nu }{\sigma ^{2}}}\right) f(x∣ν,σ)=σ2x​exp(2σ2−(x2+ν2)​)I0​(σ2xν​),
    where I 0 ( z ) I_0(z) I0​(z) is the modified Bessel function of the first kind with order zero.
    The distribution is often also rewritten using the Shape Parameter K = ν 2 2 σ 2 K={\frac {\nu ^{2}}{2\sigma ^{2}}} K=2σ2ν2​

  • If the random variable X X X has Rician distribution (unit power in direct and scattered paths), whose PDF is given by
    f X ( x ) = 2 x α exp ( − ( x 2 + ν 2 ) α ) I 0 ( 2 x ν α ) f_X(x)=\frac{2x}{\alpha}\text{exp}\left(\frac{-(x^2+\nu^2)}{\alpha}\right)I_0\left(\frac{2x\nu}{\alpha}\right) fX​(x)=α2x​exp(α−(x2+ν2)​)I0​(α2xν​)

let σ 2 = α / 2 \sigma^2 = \alpha/2 σ2=α/2, we have K = ν 2 / σ 2 K=\nu^2/\sigma^2 K=ν2/σ2 and
f Y ( y ) = ∫ 0 ∞ d x 2 x α exp ( − ( x 2 + ν 2 ) α ) I 0 ( 2 x ν α ) δ ( y − x 2 ) f_Y(y)=\int_0^\infty dx\ \frac{2x}{\alpha}\text{exp}\left(\frac{-(x^2+\nu^2)}{\alpha}\right)I_0\left(\frac{2x\nu}{\alpha}\right)\delta(y-x^2) fY​(y)=∫0∞​dx α2x​exp(α−(x2+ν2)​)I0​(α2xν​)δ(y−x2)
= ∫ 0 ∞ d x 2 x α exp ( − ( x 2 + ν 2 ) α ) I 0 ( 2 x ν α ) δ ( x − y ) 2 y = \int_0^\infty dx\ \frac{2x}{\alpha}\text{exp}\left(\frac{-(x^2+\nu^2)} {\alpha}\right)I_0\left(\frac{2x\nu}{\alpha}\right)\frac{\delta(x-\sqrt{y})}{2\sqrt{y}} =∫0∞​dx α2x​exp(α−(x2+ν2)​)I0​(α2xν​)2y ​δ(x−y ​)​

= 1 α exp ⁡ ( − ( y + ν 2 ) α ) I 0 ( 2 ν y α ) = 1 2 σ 2 exp ⁡ ( − ( y + ν 2 ) 2 σ 2 ) I 0 ( 2 ν y 2 σ 2 ) , =\frac{1}{\alpha}\exp\left(\frac{-(y+\nu^2)}{\alpha}\right)I_0\left(\frac{2\nu\sqrt{y}}{\alpha}\right) {=} \frac{1}{2 \sigma^2}\exp\left(\frac{-(y+\nu^2)}{ 2\sigma^2}\right)I_0\left(\frac{2\nu\sqrt{y}}{ 2\sigma^2}\right) , =α1​exp(α−(y+ν2)​)I0​(α2νy ​​)=2σ21​exp(2σ2−(y+ν2)​)I0​(2σ22νy ​​),

为了简化计算,我们假设 2 σ 2 = 1 2 \sigma^2=1 2σ2=1
1 2 σ 2 exp ⁡ ( − ( y + ν 2 ) 2 σ 2 ) I 0 ( 2 ν y 2 σ 2 ) ⟹ 2 σ 2 = 1 exp ⁡ ( − K − y ) I 0 ( 4 K y ) \boxed{ \frac{1}{2 \sigma^2}\exp\left(\frac{-(y+\nu^2)}{ 2\sigma^2}\right)I_0\left(\frac{2\nu\sqrt{y}}{ 2\sigma^2}\right) \overset{2\sigma^2 = 1}{\Longrightarrow} \exp\left( -K-y\right)I_0\left(\sqrt{ 4K y} \right)} 2σ21​exp(2σ2−(y+ν2)​)I0​(2σ22νy ​​)⟹2σ2=1​exp(−K−y)I0​(4Ky ​)​
同时我们可得
if ∣ h ∣ ∼ R a y l e i g h ( σ ) \vert h \vert \sim \mathrm {Rayleigh} ( \sigma ) ∣h∣∼Rayleigh(σ), we have ∣ h ∣ 2 ∼ E x p o n e n t i a l ( 1 2 σ 2 ) \vert h \vert^2 \sim \mathrm {Exponential} ( \frac{1}{2 \sigma^2}) ∣h∣2∼Exponential(2σ21​).
y = ∣ h ∣ 2 ∼ E x p o n e n t i a l ( 1 2 σ 2 ) = e − y \boxed{ y = \vert h \vert^2 \sim \mathrm {Exponential} ( \frac{1}{2 \sigma^2}) = e^{- y} } y=∣h∣2∼Exponential(2σ21​)=e−y​

the modified Bessel functions of the first kind are defined as
I α ( x ) = i − α J α ( i x ) = ∑ m = 0 ∞ 1 m ! Γ ( m + α + 1 ) ( x 2 ) 2 m + α , I_{\alpha }(x) = i^{-\alpha }J_{\alpha }(ix)=\sum _{m=0}^{\infty }{\frac {1}{m!\,\Gamma (m+\alpha +1)}}\left({\frac {x}{2}}\right)^{2m+\alpha }, Iα​(x)=i−αJα​(ix)=m=0∑∞​m!Γ(m+α+1)1​(2x​)2m+α,

Performance of Cell-Free Massive MIMO with Rician Fading and Phase Shifts (2)相关推荐

  1. aspose.cell for java 去水印_【Java编程基本功】(十)输出杨辉三角,输出*号,数组移动...

    不知道,小伙伴们有没有试着去敲一下代码呢其实学习就是这样的,没有捷径可走,要想比别人做的好,唯有比别人更努力.希望都小伙伴们可以坚持的学下去一起加油吧~ 第三十一题 打印出杨辉三角形(要求打印出10行 ...

  2. Deep Learning for Massive MIMO CSI Feedback-学习笔记

    文章学习资源:https://sci-hub.do/10.1109/lwc.2018.2818160 学习笔记,不完全翻译,上下文大致理解,大家多多提意见. Abstract: In frequenc ...

  3. Massive MIMO与MU-MIMO的区别?

    原文链接: http://www.massive-mimo.net/ Multi-user MIMO (MU-MIMO) is not a new technology, but the basic ...

  4. 论文笔记《Cell-Free Massive MIMO With Radio Stripes and Sequential Uplink Processing》

    论文笔记<Cell-Free Massive MIMO With Radio Stripes and Sequential Uplink Processing> 与传统的MIMO技术相比, ...

  5. 华为持续引领,开辟5G Massive MIMO绿色新赛道

    今日,在华为举办的无线首届媒体沙龙暨MBBF2021预沟通会上,华为无线产品线首席营销官甘斌发表了"华为持续引领,开辟5G Massive MIMO绿色新赛道"的主题发言,分享了M ...

  6. 5G NR — Massive MIMO 与波束赋形

    目录 文章目录 目录 全向天线 定向天线 智能天线 MIMO 传输分集 空间复用 Massive MIMO 有源天线 波束赋型 全向天线 在移动通信最早期的 1G 时代,基站所使用的几乎都是全向天线. ...

  7. 8个问题全面了解5G关键技术Massive MIMO

    本文转自 1 什么是Massive MIMO Massive MIMO(大规模天线技术,亦称为Large Scale MIMO)是第五代移动通信(5G)中提高系统容量和频谱利用率的关键技术.它最早由美 ...

  8. 软银宣布启动5G Project:全球首家商用Massive MIMO技术

    据国外媒体报道,日本软银(SoftBank)和旗下的Wireless City Planning昨日下午召开新闻发布会,宣布面向下一代高速通信标准5G的项目"5G Project" ...

  9. 混合波束成形| 部分连接系统 :Hybrid Precoding for mmWave Massive MIMO Systems With Partially-Connected Structure

    文章目录 问题背景 系统模型 PCS-HP设计的分析 PCS-HP的分阶段设计 模拟precoding的设计 情况一 情况二 结论 相关阅读 <Hybrid Precoding for mmWa ...

最新文章

  1. 【Spark Summit EU 2016】使用Spark和StreamSets构建数据通道
  2. java虚拟机监控_Java虚拟机监控工具
  3. python对象序列化或持久化的方法
  4. ace unlck工具下载_压缩工具:WinRAR 曝出代码执行漏洞,该升级了
  5. DSOfile,修改windows系统文件摘要
  6. pause pod 什么是pod_Kubernetes 自主式Pod清单 干货太多先马住慢慢看
  7. python 测试用例 自动生成目录_如何在python中自动将测试用例添加到测试套件中...
  8. 最简单的视音频播放示例2:GDI播放YUV, RGB
  9. java new string编码_Java String 类型编码转换
  10. charset参数 sqluldr2_sqluldr2 oracle直接导出数据为文本的小工具使用
  11. 信号处理基础——傅里叶变换与短时傅里叶变换
  12. Xcode13运行iPhone14模拟器暨低版本Xcode运行高版本模拟器
  13. Lomo 照片特效 Lr 预设 Lomo Lightroom Presets
  14. MOS管的行业应用领域-KIA MOS管
  15. 2022-2028年全球与中国化学抑尘剂行业市场深度调研及投资预测分析
  16. textarea中的换行如何展示在页面
  17. Processing学习 — Processing结合Kinect2实现人影互动
  18. python 的下载安装
  19. Win系统下制作U盘CLOVER引导+安装原版Mavericks10.9
  20. 互联网其它岗位薪资排行榜

热门文章

  1. 自考计算机应用与辅助设计,黑龙江自考“计算机应用与辅助设计”考试大纲.doc...
  2. 同济大学C++mooc 第三讲、第四讲
  3. IE F12 开发人员工具控制台错误消息
  4. C++A类继承B C类_基金定投买a类还是c类好,c类基金为什么不适合定投
  5. xshell关闭后 数据库进程_关闭命令行或者xshell窗口后后台依旧执行命令
  6. getParameter方法
  7. 基于标准像素图像识别算法
  8. oracle四舍五入的函数,使用Oracle CEIL函数进行万位四舍五入
  9. 安卓实现为图片添加滤镜功能
  10. 龙头股情绪周期教程php,《龙头股情绪周期教程》全集 第9讲:题材情绪周期反包阶段(低吸、反包板)...