Python Numpy教程介绍了Python基础、Python Numpy的矩阵和矩阵运算、SciPy的图像读写处理函数、matplotlib的绘图和图像显示(plot和imshow)等。这些都是深度学习中对于矩阵操作和图像操作常用的。

From and thanks to: Justin Johnson。这个教程是CS231n Convolutional Neural Networks for Visual Recognition课程的一部分。

目录

Python

Python versions

Basic data types

Containers

Functions

Classes

Numpy

Arrays

Array indexing

Datatypes

Array math

Broadcasting

Numpy Documentation

SciPy

Image operations

MATLAB files

Distance between points

Matplotlib

Plotting

Subplots

Images

Python

Python is a high-level, dynamically typed multiparadigm programming language. Python code is often said to be almost like pseudocode, since it allows you to express very powerful ideas in very few lines of code while being very readable. As an example, here is an implementation of the classic quicksort algorithm in Python:

def quicksort(arr):

if len(arr) <= 1:

return arr

pivot = arr[len(arr) // 2]

left = [x for x in arr if x < pivot]

middle = [x for x in arr if x == pivot]

right = [x for x in arr if x > pivot]

return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

# Prints "[1, 1, 2, 3, 6, 8, 10]"

Python versions

There are currently two different supported versions of Python, 2.7 and 3.5. Somewhat confusingly, Python 3.0 introduced many backwards-incompatible changes to the language, so code written for 2.7 may not work under 3.5 and vice versa. For this class all code will use Python 3.5.

You can check your Python version at the command line by running python --version.

Basic data types

Like most languages, Python has a number of basic types including integers, floats, booleans, and strings. These data types behave in ways that are familiar from other programming languages.

Numbers: Integers and floats work as you would expect from other languages:

x = 3

print(type(x)) # Prints ""

print(x)       # Prints "3"

print(x + 1)   # Addition; prints "4"

print(x - 1)   # Subtraction; prints "2"

print(x * 2)   # Multiplication; prints "6"

print(x ** 2)  # Exponentiation; prints "9"

x += 1

print(x)  # Prints "4"

x *= 2

print(x)  # Prints "8"

y = 2.5

print(type(y)) # Prints ""

print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"

Note that unlike many languages, Python does not have unary increment (x++) or decrement (x--) operators.

Python also has built-in types for complex numbers; you can find all of the details in the documentation.

Booleans: Python implements all of the usual operators for Boolean logic, but uses English words rather than symbols (&&, ||, etc.):

t = True

f = False

print(type(t)) # Prints ""

print(t and f) # Logical AND; prints "False"

print(t or f)  # Logical OR; prints "True"

print(not t)   # Logical NOT; prints "False"

print(t != f)  # Logical XOR; prints "True"

Strings: Python has great support for strings:

hello = 'hello'    # String literals can use single quotes

world = "world"    # or double quotes; it does not matter.

print(hello)       # Prints "hello"

print(len(hello))  # String length; prints "5"

hw = hello + ' ' + world  # String concatenation

print(hw)  # prints "hello world"

hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting

print(hw12)  # prints "hello world 12"

String objects have a bunch of useful methods; for example:

s = "hello"

print(s.capitalize())  # Capitalize a string; prints "Hello"

print(s.upper())       # Convert a string to uppercase; prints "HELLO"

print(s.rjust(7))      # Right-justify a string, padding with spaces; prints "  hello"

print(s.center(7))     # Center a string, padding with spaces; prints " hello "

print(s.replace('l', '(ell)'))  # Replace all instances of one substring with another;

# prints "he(ell)(ell)o"

print('  world '.strip())  # Strip leading and trailing whitespace; prints "world"

You can find a list of all string methods in the documentation.

Containers

Python includes several built-in container types: lists, dictionaries, sets, and tuples.

Lists

A list is the Python equivalent of an array, but is resizeable and can contain elements of different types:

xs = [3, 1, 2]    # Create a list

print(xs, xs[2])  # Prints "[3, 1, 2] 2"

print(xs[-1])     # Negative indices count from the end of the list; prints "2"

xs[2] = 'foo'     # Lists can contain elements of different types

print(xs)         # Prints "[3, 1, 'foo']"

xs.append('bar')  # Add a new element to the end of the list

print(xs)         # Prints "[3, 1, 'foo', 'bar']"

x = xs.pop()      # Remove and return the last element of the list

print(x, xs)      # Prints "bar [3, 1, 'foo']"

As usual, you can find all the gory details about lists in the documentation.

Slicing: In addition to accessing list elements one at a time, Python provides concise syntax to access sublists; this is known as slicing:

nums = list(range(5))     # range is a built-in function that creates a list of integers

print(nums)               # Prints "[0, 1, 2, 3, 4]"

print(nums[2:4])          # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"

print(nums[2:])           # Get a slice from index 2 to the end; prints "[2, 3, 4]"

print(nums[:2])           # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"

print(nums[:])            # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"

print(nums[:-1])          # Slice indices can be negative; prints "[0, 1, 2, 3]"

nums[2:4] = [8, 9]        # Assign a new sublist to a slice

print(nums)               # Prints "[0, 1, 8, 9, 4]"

We will see slicing again in the context of numpy arrays.

Loops: You can loop over the elements of a list like this:

animals = ['cat', 'dog', 'monkey']

for animal in animals:

print(animal)

# Prints "cat", "dog", "monkey", each on its own line.

If you want access to the index of each element within the body of a loop, use the built-in enumerate function:

animals = ['cat', 'dog', 'monkey']

for idx, animal in enumerate(animals):

print('#%d: %s' % (idx + 1, animal))

# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

List comprehensions: When programming, frequently we want to transform one type of data into another. As a simple example, consider the following code that computes square numbers:

nums = [0, 1, 2, 3, 4]

squares = []

for x in nums:

squares.append(x ** 2)

print(squares)   # Prints [0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:

nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]

print(squares)   # Prints [0, 1, 4, 9, 16]

List comprehensions can also contain conditions:

nums = [0, 1, 2, 3, 4]

even_squares = [x ** 2 for x in nums if x % 2 == 0]

print(even_squares)  # Prints "[0, 4, 16]"

Dictionaries

A dictionary stores (key, value) pairs, similar to a Map in Java or an object in Javascript. You can use it like this:

d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data

print(d['cat'])       # Get an entry from a dictionary; prints "cute"

print('cat' in d)     # Check if a dictionary has a given key; prints "True"

d['fish'] = 'wet'     # Set an entry in a dictionary

print(d['fish'])      # Prints "wet"

# print(d['monkey'])  # KeyError: 'monkey' not a key of d

print(d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"

print(d.get('fish', 'N/A'))    # Get an element with a default; prints "wet"

del d['fish']         # Remove an element from a dictionary

print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

You can find all you need to know about dictionaries in the documentation.

Loops: It is easy to iterate over the keys in a dictionary:

d = {'person': 2, 'cat': 4, 'spider': 8}

for animal in d:

legs = d[animal]

print('A %s has %d legs' % (animal, legs))

# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

If you want access to keys and their corresponding values, use the items method:

d = {'person': 2, 'cat': 4, 'spider': 8}

for animal, legs in d.items():

print('A %s has %d legs' % (animal, legs))

# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily construct dictionaries. For example:

nums = [0, 1, 2, 3, 4]

even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}

print(even_num_to_square)  # Prints "{0: 0, 2: 4, 4: 16}"

Sets

A set is an unordered collection of distinct elements. As a simple example, consider the following:

animals = {'cat', 'dog'}

print('cat' in animals)   # Check if an element is in a set; prints "True"

print('fish' in animals)  # prints "False"

animals.add('fish')       # Add an element to a set

print('fish' in animals)  # Prints "True"

print(len(animals))       # Number of elements in a set; prints "3"

animals.add('cat')        # Adding an element that is already in the set does nothing

print(len(animals))       # Prints "3"

animals.remove('cat')     # Remove an element from a set

print(len(animals))       # Prints "2"

As usual, everything you want to know about sets can be found in the documentation.

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered, you cannot make assumptions about the order in which you visit the elements of the set:

animals = {'cat', 'dog', 'fish'}

for idx, animal in enumerate(animals):

print('#%d: %s' % (idx + 1, animal))

# Prints "#1: fish", "#2: dog", "#3: cat"

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehensions:

from math import sqrt

nums = {int(sqrt(x)) for x in range(30)}

print(nums)  # Prints "{0, 1, 2, 3, 4, 5}"

Tuples

A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to a list; one of the most important differences is that tuples can be used as keys in dictionaries and as elements of sets, while lists cannot. Here is a trivial example:

d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys

t = (5, 6)        # Create a tuple

print(type(t))    # Prints ""

print(d[t])       # Prints "5"

print(d[(1, 2)])  # Prints "1"

The documentation has more information about tuples.

Functions

Python functions are defined using the def keyword. For example:

def sign(x):

if x > 0:

return 'positive'

elif x < 0:

return 'negative'

else:

return 'zero'

for x in [-1, 0, 1]:

print(sign(x))

# Prints "negative", "zero", "positive"

We will often define functions to take optional keyword arguments, like this:

def hello(name, loud=False):

if loud:

print('HELLO, %s!' % name.upper())

else:

print('Hello, %s' % name)

hello('Bob') # Prints "Hello, Bob"

hello('Fred', loud=True)  # Prints "HELLO, FRED!"

There is a lot more information about Python functions in the documentation.

Classes

The syntax for defining classes in Python is straightforward:

class Greeter(object):

# Constructor

def __init__(self, name):

self.name = name  # Create an instance variable

# Instance method

def greet(self, loud=False):

if loud:

print('HELLO, %s!' % self.name.upper())

else:

print('Hello, %s' % self.name)

g = Greeter('Fred')  # Construct an instance of the Greeter class

g.greet()            # Call an instance method; prints "Hello, Fred"

g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"

You can read a lot more about Python classes in the documentation.

Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. If you are already familiar with MATLAB, you might find this tutorial useful to get started with Numpy.

Arrays

A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the size of the array along each dimension.

We can initialize numpy arrays from nested Python lists, and access elements using square brackets:

import numpy as np

a = np.array([1, 2, 3])   # Create a rank 1 array

print(type(a))            # Prints ""

print(a.shape)            # Prints "(3,)"

print(a[0], a[1], a[2])   # Prints "1 2 3"

a[0] = 5                  # Change an element of the array

print(a)                  # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array

print(b.shape)                     # Prints "(2, 3)"

print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"

Numpy also provides many functions to create arrays:

import numpy as np

a = np.zeros((2,2))   # Create an array of all zeros

print(a)              # Prints "[[ 0.  0.]

#          [ 0.  0.]]"

b = np.ones((1,2))    # Create an array of all ones

print(b)              # Prints "[[ 1.  1.]]"

c = np.full((2,2), 7)  # Create a constant array

print(c)               # Prints "[[ 7.  7.]

#          [ 7.  7.]]"

d = np.eye(2)         # Create a 2x2 identity matrix

print(d)              # Prints "[[ 1.  0.]

#          [ 0.  1.]]"

e = np.random.random((2,2))  # Create an array filled with random values

print(e)                     # Might print "[[ 0.91940167  0.08143941]

#               [ 0.68744134  0.87236687]]"

You can read about other methods of array creation in the documentation.

Array indexing

Numpy offers several ways to index into arrays.

Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you must specify a slice for each dimension of the array:

import numpy as np

# Create the following rank 2 array with shape (3, 4)

# [[ 1  2  3  4]

#  [ 5  6  7  8]

#  [ 9 10 11 12]]

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Use slicing to pull out the subarray consisting of the first 2 rows

# and columns 1 and 2; b is the following array of shape (2, 2):

# [[2 3]

#  [6 7]]

b = a[:2, 1:3]

# A slice of an array is a view into the same data, so modifying it

# will modify the original array.

print(a[0, 1])   # Prints "2"

b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1]

print(a[0, 1])   # Prints "77"

You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower rank than the original array. Note that this is quite different from the way that MATLAB handles array slicing:

import numpy as np

# Create the following rank 2 array with shape (3, 4)

# [[ 1  2  3  4]

#  [ 5  6  7  8]

#  [ 9 10 11 12]]

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Two ways of accessing the data in the middle row of the array.

# Mixing integer indexing with slices yields an array of lower rank,

# while using only slices yields an array of the same rank as the

# original array:

row_r1 = a[1, :]    # Rank 1 view of the second row of a

row_r2 = a[1:2, :]  # Rank 2 view of the second row of a

print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"

print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"

# We can make the same distinction when accessing columns of an array:

col_r1 = a[:, 1]

col_r2 = a[:, 1:2]

print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)"

print(col_r2, col_r2.shape)  # Prints "[[ 2]

#          [ 6]

#          [10]] (3, 1)"

Integer array indexing: When you index into numpy arrays using slicing, the resulting array view will always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary arrays using the data from another array. Here is an example:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.

# The returned array will have shape (3,) and

print(a[[0, 1, 2], [0, 1, 0]])  # Prints "[1 4 5]"

# The above example of integer array indexing is equivalent to this:

print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]"

# When using integer array indexing, you can reuse the same

# element from the source array:

print(a[[0, 0], [1, 1]])  # Prints "[2 2]"

# Equivalent to the previous integer array indexing example

print(np.array([a[0, 1], a[0, 1]]))  # Prints "[2 2]"

One useful trick with integer array indexing is selecting or mutating one element from each row of a matrix:

import numpy as np

# Create a new array from which we will select elements

a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)  # prints "array([[ 1,  2,  3],

#                [ 4,  5,  6],

#                [ 7,  8,  9],

#                [10, 11, 12]])"

# Create an array of indices

b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b

print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"

# Mutate one element from each row of a using the indices in b

a[np.arange(4), b] += 10

print(a)  # prints "array([[11,  2,  3],

#                [ 4,  5, 16],

#                [17,  8,  9],

#                [10, 21, 12]])

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array. Frequently this type of indexing is used to select the elements of an array that satisfy some condition. Here is an example:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;

# this returns a numpy array of Booleans of the same

# shape as a, where each slot of bool_idx tells

# whether that element of a is > 2.

print(bool_idx)      # Prints "[[False False]

#          [ True  True]

#          [ True  True]]"

# We use boolean array indexing to construct a rank 1 array

# consisting of the elements of a corresponding to the True values

# of bool_idx

print(a[bool_idx])  # Prints "[3 4 5 6]"

# We can do all of the above in a single concise statement:

print(a[a > 2])     # Prints "[3 4 5 6]"

For brevity we have left out a lot of details about numpy array indexing; if you want to know more you should read the documentation.

Datatypes

Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you create an array, but functions that construct arrays usually also include an optional argument to explicitly specify the datatype. Here is an example:

import numpy as np

x = np.array([1, 2])   # Let numpy choose the datatype

print(x.dtype)         # Prints "int64"

x = np.array([1.0, 2.0])   # Let numpy choose the datatype

print(x.dtype)             # Prints "float64"

x = np.array([1, 2], dtype=np.int64)   # Force a particular datatype

print(x.dtype)                         # Prints "int64"

You can read all about numpy datatypes in the documentation.

Array math

Basic mathematical functions operate elementwise on arrays, and are available both as operator overloads and as functions in the numpy module:

import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)

y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum; both produce the array

# [[ 6.0  8.0]

#  [10.0 12.0]]

print(x + y)

print(np.add(x, y))

# Elementwise difference; both produce the array

# [[-4.0 -4.0]

#  [-4.0 -4.0]]

print(x - y)

print(np.subtract(x, y))

# Elementwise product; both produce the array

# [[ 5.0 12.0]

#  [21.0 32.0]]

print(x * y)

print(np.multiply(x, y))

# Elementwise division; both produce the array

# [[ 0.2         0.33333333]

#  [ 0.42857143  0.5       ]]

print(x / y)

print(np.divide(x, y))

# Elementwise square root; produces the array

# [[ 1.          1.41421356]

#  [ 1.73205081  2.        ]]

print(np.sqrt(x))

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead use the dotfunction to compute inner products of vectors, to multiply a vector by a matrix, and to multiply matrices. dot is available both as a function in the numpy module and as an instance method of array objects:

import numpy as np

x = np.array([[1,2],[3,4]])

y = np.array([[5,6],[7,8]])

v = np.array([9,10])

w = np.array([11, 12])

# Inner product of vectors; both produce 219

print(v.dot(w))

print(np.dot(v, w))

# Matrix / vector product; both produce the rank 1 array [29 67]

print(x.dot(v))

print(np.dot(x, v))

# Matrix / matrix product; both produce the rank 2 array

# [[19 22]

#  [43 50]]

print(x.dot(y))

print(np.dot(x, y))

Numpy provides many useful functions for performing computations on arrays; one of the most useful is sum:

import numpy as np

x = np.array([[1,2],[3,4]])

print(np.sum(x))  # Compute sum of all elements; prints "10"

print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"

print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"

You can find the full list of mathematical functions provided by numpy in the documentation.

Apart from computing mathematical functions using arrays, we frequently need to reshape or otherwise manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to transpose a matrix, simply use the T attribute of an array object:

import numpy as np

x = np.array([[1,2], [3,4]])

print(x)    # Prints "[[1 2]

#          [3 4]]"

print(x.T)  # Prints "[[1 3]

#          [2 4]]"

# Note that taking the transpose of a rank 1 array does nothing:

v = np.array([1,2,3])

print(v)    # Prints "[1 2 3]"

print(v.T)  # Prints "[1 2 3]"

Numpy provides many more functions for manipulating arrays; you can see the full list in the documentation.

Broadcasting

Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when performing arithmetic operations. Frequently we have a smaller array and a larger array, and we want to use the smaller array multiple times to perform some operation on the larger array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like this:

import numpy as np

# We will add the vector v to each row of the matrix x,

# storing the result in the matrix y

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

y = np.empty_like(x)   # Create an empty matrix with the same shape as x

# Add the vector v to each row of the matrix x with an explicit loop

for i in range(4):

y[i, :] = x[i, :] + v

# Now y is the following

# [[ 2  2  4]

#  [ 5  5  7]

#  [ 8  8 10]

#  [11 11 13]]

print(y)

This works; however when the matrix x is very large, computing an explicit loop in Python could be slow. Note that adding the vector v to each row of the matrix x is equivalent to forming a matrix vv by stacking multiple copies of v vertically, then performing elementwise summation of x and vv. We could implement this approach like this:

import numpy as np

# We will add the vector v to each row of the matrix x,

# storing the result in the matrix y

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

vv = np.tile(v, (4, 1))   # Stack 4 copies of v on top of each other

print(vv)                 # Prints "[[1 0 1]

#          [1 0 1]

#          [1 0 1]

#          [1 0 1]]"

y = x + vv  # Add x and vv elementwise

print(y)  # Prints "[[ 2  2  4

#          [ 5  5  7]

#          [ 8  8 10]

#          [11 11 13]]"

Numpy broadcasting allows us to perform this computation without actually creating multiple copies of v. Consider this version, using broadcasting:

import numpy as np

# We will add the vector v to each row of the matrix x,

# storing the result in the matrix y

x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

v = np.array([1, 0, 1])

y = x + v  # Add v to each row of x using broadcasting

print(y)  # Prints "[[ 2  2  4]

#          [ 5  5  7]

#          [ 8  8 10]

#          [11 11 13]]"

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broadcasting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the sum was performed elementwise.

Broadcasting two arrays together follows these rules:

If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both shapes have the same length.The two arrays are said to be compatible in a dimension if they have the same size in the dimension, or if one of the arrays has size 1 in that dimension.The arrays can be broadcast together if they are compatible in all dimensions.After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes of the two input arrays.In any dimension where one array had size 1 and the other array had size greater than 1, the first array behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation or this explanation.

Functions that support broadcasting are known as universal functions. You can find the list of all universal functions in the documentation.

Here are some applications of broadcasting:

import numpy as np

# Compute outer product of vectors

v = np.array([1,2,3])  # v has shape (3,)

w = np.array([4,5])    # w has shape (2,)

# To compute an outer product, we first reshape v to be a column

# vector of shape (3, 1); we can then broadcast it against w to yield

# an output of shape (3, 2), which is the outer product of v and w:

# [[ 4  5]

#  [ 8 10]

#  [12 15]]

print(np.reshape(v, (3, 1)) * w)

# Add a vector to each row of a matrix

x = np.array([[1,2,3], [4,5,6]])

# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),

# giving the following matrix:

# [[2 4 6]

#  [5 7 9]]

print(x + v)

# Add a vector to each column of a matrix

# x has shape (2, 3) and w has shape (2,).

# If we transpose x then it has shape (3, 2) and can be broadcast

# against w to yield a result of shape (3, 2); transposing this result

# yields the final result of shape (2, 3) which is the matrix x with

# the vector w added to each column. Gives the following matrix:

# [[ 5  6  7]

#  [ 9 10 11]]

print((x.T + w).T)

# Another solution is to reshape w to be a column vector of shape (2, 1);

# we can then broadcast it directly against x to produce the same

# output.

print(x + np.reshape(w, (2, 1)))

# Multiply a matrix by a constant:

# x has shape (2, 3). Numpy treats scalars as arrays of shape ();

# these can be broadcast together to shape (2, 3), producing the

# following array:

# [[ 2  4  6]

#  [ 8 10 12]]

print(x * 2)

Broadcasting typically makes your code more concise and faster, so you should strive to use it where possible.

Numpy Documentation

This brief overview has touched on many of the important things that you need to know about numpy, but is far from complete. Check out the numpy reference to find out much more about numpy.

SciPy

Numpy provides a high-performance multidimensional array and basic tools to compute with and manipulate these arrays. SciPy builds on this, and provides a large number of functions that operate on numpy arrays and are useful for different types of scientific and engineering applications.

The best way to get familiar with SciPy is to browse the documentation. We will highlight some parts of SciPy that you might find useful for this class.

Image operations

SciPy provides some basic functions to work with images. For example, it has functions to read images from disk into numpy arrays, to write numpy arrays to disk as images, and to resize images. Here is a simple example that showcases these functions:

from scipy.misc import imread, imsave, imresize

# Read an JPEG image into a numpy array

img = imread('assets/cat.jpg')

print(img.dtype, img.shape)  # Prints "uint8 (400, 248, 3)"

# We can tint the image by scaling each of the color channels

# by a different scalar constant. The image has shape (400, 248, 3);

# we multiply it by the array [1, 0.95, 0.9] of shape (3,);

# numpy broadcasting means that this leaves the red channel unchanged,

# and multiplies the green and blue channels by 0.95 and 0.9

# respectively.

img_tinted = img * [1, 0.95, 0.9]

# Resize the tinted image to be 300 by 300 pixels.

img_tinted = imresize(img_tinted, (300, 300))

# Write the tinted image back to disk

imsave('assets/cat_tinted.jpg', img_tinted)

Left: The original image. Right: The tinted and resized image.

MATLAB files

The functions scipy.io.loadmat and scipy.io.savemat allow you to read and write MATLAB files. You can read about them in the documentation.

Distance between points

SciPy defines some useful functions for computing distances between sets of points.

The function scipy.spatial.distance.pdist computes the distance between all pairs of points in a given set:

import numpy as np

from scipy.spatial.distance import pdist, squareform

# Create the following array where each row is a point in 2D space:

# [[0 1]

#  [1 0]

#  [2 0]]

x = np.array([[0, 1], [1, 0], [2, 0]])

print(x)

# Compute the Euclidean distance between all rows of x.

# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],

# and d is the following array:

# [[ 0.          1.41421356  2.23606798]

#  [ 1.41421356  0.          1.        ]

#  [ 2.23606798  1.          0.        ]]

d = squareform(pdist(x, 'euclidean'))

print(d)

You can read all the details about this function in the documentation.

A similar function (scipy.spatial.distance.cdist) computes the distance between all pairs across two sets of points; you can read about it in the documentation.

Matplotlib

Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot module, which provides a plotting system similar to that of MATLAB.

Plotting

The most important function in matplotlib is plot, which allows you to plot 2D data. Here is a simple example:

import numpy as np

import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on a sine curve

x = np.arange(0, 3 * np.pi, 0.1)

y = np.sin(x)

# Plot the points using matplotlib

plt.plot(x, y)

plt.show()  # You must call plt.show() to make graphics appear.

Running this code produces the following plot:

With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend, and axis labels:

import numpy as np

import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on sine and cosine curves

x = np.arange(0, 3 * np.pi, 0.1)

y_sin = np.sin(x)

y_cos = np.cos(x)

# Plot the points using matplotlib

plt.plot(x, y_sin)

plt.plot(x, y_cos)

plt.xlabel('x axis label')

plt.ylabel('y axis label')

plt.title('Sine and Cosine')

plt.legend(['Sine', 'Cosine'])

plt.show()

You can read much more about the plot function in the documentation.

Subplots

You can plot different things in the same figure using the subplot function. Here is an example:

import numpy as np

import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on sine and cosine curves

x = np.arange(0, 3 * np.pi, 0.1)

y_sin = np.sin(x)

y_cos = np.cos(x)

# Set up a subplot grid that has height 2 and width 1,

# and set the first such subplot as active.

plt.subplot(2, 1, 1)

# Make the first plot

plt.plot(x, y_sin)

plt.title('Sine')

# Set the second subplot as active, and make the second plot.

plt.subplot(2, 1, 2)

plt.plot(x, y_cos)

plt.title('Cosine')

# Show the figure.

plt.show()

You can read much more about the subplot function in the documentation.

Images

You can use the imshow function to show images. Here is an example:

import numpy as np

from scipy.misc import imread, imresize

import matplotlib.pyplot as plt

img = imread('assets/cat.jpg')

img_tinted = img * [1, 0.95, 0.9]

# Show the original image

plt.subplot(1, 2, 1)

plt.imshow(img)

# Show the tinted image

plt.subplot(1, 2, 2)

# A slight gotcha with imshow is that it might give strange results

# if presented with data that is not uint8. To work around this, we

# explicitly cast the image to uint8 before displaying it.

plt.imshow(np.uint8(img_tinted))

plt.show()

python矩阵教程_Python Numpy Tutorial / Python Numpy 教程 (矩阵和图像操作)相关推荐

  1. python数组初始化_Python科学计算库Numpy数组的初始化和基本操作

    umPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵 ...

  2. python微信爬取教程_PYTHON爬虫之旅系列教程之【利用Python开发微信公众平台一】...

    感谢大家的等待,好啦,都准备好瓜子.板凳,老司机要发车啦-- 本系列课程讲述"PYTHON爬虫之旅",具体大纲可参考:[PYTHON爬虫之旅]概要目录. 本节课讲述如何利用Pyth ...

  3. python图形化界面教程_python图形化界面开发教程

    python图形化界面开发教程内容摘要 python图形化界面开发教程白萝卜:泰兴电工教程,白了点,白兰地是在红葡萄酒的基础.基金从业资格教程学校,白开水.苜蓿干草.提摩西干草.兔粮方法:白居易< ...

  4. python gui模板_Python GUI 编程(Tkinter) | 菜鸟教程

    Python GUI编程(Tkinter) Python 提供了多个图形开发界面的库,几个常用 Python GUI 库如下: Tkinter: Tkinter 模块(Tk 接口)是 Python 的 ...

  5. python量化交易入门教程_Python期货量化交易基础教程(9)

    9.模块.包和文件: 复杂的程序设计,不可能把所有的代码都写在一个文件里,也不可能把所有文件都放在同一个文件夹里. 9.1.模块 : 模块就是以".py"为扩展名的文件,一个文件中 ...

  6. python游戏使用教程_PYTHON游戏编程入门_IT教程网

    资源名称:PYTHON游戏编程入门 内容简介: Python是一种解释型.面向对象.动态数据类型的高级程序设计语言,在游戏开发领域,Python也得到越来越广泛的应用,并由此受到重视. 本书教授用Py ...

  7. python 函数修饰_python修饰函数 python 函数有多个修饰符

    define的意思,用来定义函数. 如: def 函数名(参数1, 参数2, --, 参数N): 执行语句 # 例:简单的函数使用# 定义函数def hello(): print 'hello pyt ...

  8. Python图像处理库PIL的ImageOps模块介绍 ----- 一些基本的图像操作

    原文地址:http://blog.csdn.net/icamera0/article/details/50785776 原文博主的博客中有相当多的python图像处理操作介绍,如有需要,可移驾原博主博 ...

  9. python布尔系列_python数据分析类库系列-Numpy之布尔型索引

    我们了解了如何使用索引进行切片以及选择 ndarray 元素.当我们知道要选择的元素的确切索引时,这些方法很有用.但是,在很多情况下,我们不知道要选择的元素的索引.例如,假设有一个 10,000 x ...

  10. python 数组维度_python – 非常基本的Numpy数组维度可视化

    NumPy中ndarray的解剖结构如下所示:(来源: Physics Dept, Cornell Uni) 一旦离开2D空间并进入3D或更高维空间,行和列的概念就不再有意义了.但是你仍然可以直观地理 ...

最新文章

  1. mysql 数字区间_币投君0904丨数字货币暴跌原因何在
  2. ie下input的type属性为hidden问题
  3. Go 语言编程 — 高级数据类型 — 指针
  4. Spring资源加载器抽象和缺省实现 -- ResourceLoader + DefaultResourceLoader(摘)
  5. html登录界面_php实现登录功能
  6. 独家下载!《零售数据中台通关指南》,带你玩转新零售
  7. OD反汇编EXE添加一个启动时的消息框
  8. 【pytorch】torch.cat()函数
  9. Android图片控件,跟随列表(recyclerView)的上下滚动而同步平移。
  10. Cesium源码剖析---Post Processing之物体描边(Silhouette)
  11. [Specification by Example][ch5 Deriving scope from goals]-[读书笔记]-[4]
  12. bootstrap-内联文本元素-斜体
  13. FlinkSQL 列转行/解开map array/unnest/lateral table udtf
  14. linux ubuntu 联网问题
  15. python绘图画猫咪_使用Python的turtle画小猫咪
  16. 大数据杀熟?苹果回应:定价权在开发者那
  17. mysql 经纬度范围_MySQL之根据经纬度查询多少公里范围内的数据
  18. 程序员面试时会遇上哪些问题
  19. Gradle同步工程下载依赖慢
  20. ZYNQ Linux 移植:包含petalinux移植和手动移植debian9

热门文章

  1. 中国八横八纵大容量光纤通信网——世界级光纤通信网
  2. Python爬虫——用正则表达式爬取小说内容
  3. PAT 甲级 1014. Waiting in Line
  4. 【厚积薄发】如何优化WaitForGPU?
  5. 漏洞分析---SSLv3降级加密协议Padding Oracle攻击(POODLE)技术分析
  6. java实现空心三角形
  7. 手机如何快速转换图片格式?改图片格式手机如何操作?
  8. MSP430F149小系统开发板实现RS232串口通信
  9. win7怎样更改桌面计算机图标,教您电脑如何更改桌面图标
  10. 一万套Solidworks非标自动化设备三维图纸 3D通用模型 机械设计UG