文章转载自:https://blog.csdn.net/zengxiantao1994/article/details/72787849

极大似然估计-形象解释看这篇文章:https://www.zhihu.com/question/24124998

贝叶斯定理-形象解释看这篇文章:https://www.zhihu.com/question/19725590/answer/217025594

极大似然估计

以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:

贝叶斯决策

首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:

其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

设:

由已知可得:

男性和女性穿凉鞋相互独立,所以

(若只考虑分类问题,只需要比较后验概率的大小,的取值并不重要)。

由贝叶斯公式算出:

问题引出

但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率和类条件概率(各类的总体分布)都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。

重要前提

上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

 重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。

极大似然估计

极大似然估计的原理,用一张图片来说明,如下图所示:

总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:

似然函数(linkehood function):联合概率密度函数称为相对于的θ的似然函数。

如果是参数空间中能使似然函数最大的θ值,则应该是“最可能”的参数值,那么就是θ的极大似然估计量。它是样本集的函数,记作:

求解极大似然函数

ML估计:求使得出现该组样本的概率最大的θ值。

实际中为了便于分析,定义了对数似然函数:

1. 未知参数只有一个(θ为标量)

在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:

2.未知参数有多个(θ为向量)

则θ可表示为具有S个分量的未知向量:

记梯度算子:

若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。

方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

极大似然估计的例子

例1:设样本服从正态分布,则似然函数为:

它的对数:

求导,得方程组:

联合解得:

似然方程有唯一解:,而且它一定是最大值点,这是因为当时,非负函数。于是U和的极大似然估计为

例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

对样本

很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过,因此,a和b的极大似然估计:

总结

求最大似然估计量的一般步骤:

(1)写出似然函数;

(2)对似然函数取对数,并整理;

(3)求导数;

(4)解似然方程。

最大似然估计的特点:

1.比其他估计方法更加简单;

2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

转载于:https://www.cnblogs.com/wangdy0707/p/8872606.html

极大似然估计与贝叶斯定理相关推荐

  1. 西瓜书——极大似然估计和朴素贝叶斯

    1.贝叶斯判定准则 贝叶斯判定准则:为最小化风险,只需要在每个样本上选择那个能使条件风险R(c∣x)R(c|x)R(c∣x)最小的类别标记,即h∗(x)=argminc∈yR(c∣x)h^*(x) = ...

  2. 浅议极大似然估计(MLE)背后的思想原理

    1. 概率思想与归纳思想 0x1:归纳推理思想 所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.抽象地来说,由个别事实概括出一般结论的推理称为归纳推 ...

  3. 为什么对高斯分布的方差的极大似然估计是有偏的?

    本文要证明为什么对高斯分布的方差的极大似然估计是有偏的.同时,也说明为什么求样本方差时,分母是N-1而不是N. 首先,明白两点,(1)极大似然法得到的高斯方差是什么形式(2)什么是有偏. (1)先说第 ...

  4. 交叉熵损失函数、修正Huber损失、极大似然估计、负对数似然、似然与交叉熵、KL散度

    交叉熵损失函数.修正Huber损失.极大似然估计.负对数似然.似然与交叉熵.KL散度 目录

  5. 极大似然估计(Maximum Likelihood Estimattion Theory)是什么?极大似然估计的本质思想是什么?为什么极大似然可以作为损失函数使用?负对数似然损失函数(Negative

    极大似然估计(Maximum Likelihood Estimattion Theory)是什么?极大似然估计的本质思想是什么?为什么极大似然可以作为损失函数使用?负对数似然损失函数(Negative ...

  6. 人工智能科普|极大似然估计——机器学习重要知识点

    https://www.toutiao.com/a6649579620909711879/ 2019-01-23 14:45:03 经常有许多对人工智能领域跃跃欲试的小伙伴在后台发私信问我" ...

  7. 极大似然估计的理解与应用

    http://www.cnblogs.com/xing901022/p/8418894.html 极大似然估计是概率论中一个很常用的估计方法,在机器学习中的逻辑回归中就是基于它计算的损失函数,因此还是 ...

  8. 极大似然估计_干货|一文理解极大似然估计

    一.什么是极大似然估计 极大似然估计是一种参数估计的方法.它要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大. 通俗 ...

  9. 极大似然估计_计量经济学 | 极大似然估计

    写在前面:本文写作于被新冠病毒 (COVID-19) 笼罩下的英国.前段时间本人的恩师.苏格兰老爷爷.英国伯明翰大学Emeritus讲席教授Peter Sinclair确诊新冠病毒,实乃不幸.在此祝P ...

最新文章

  1. 怎么一键排版_做了这么久的PPT!终于找到可以自动排版的插件了
  2. 【Flask】ORM一对一关联关系
  3. iOS客户端开发流程
  4. springboot 获取application参数_(最新 9000 字 )Spring Boot 配置特性解析
  5. Java 打印目录结构
  6. python spark安装_windows下安装spark-python
  7. parrot linux iso下载,Parrot 4.7 发布,基于Debian的数字取证和隐私保护Linux发行版
  8. 判断连个单链表是否交叉,并找到交叉点
  9. Linux服务器部署python项目
  10. USB转TTL|mcuisp使用
  11. java 资源描述文件_j2me新手必看-Java应用描述文件(JAD)编辑器
  12. Linux 各类软件整理汇总
  13. java反向代理开源_树莓派反向代理方法大全
  14. 阿里巴巴推进中国中产阶级奢侈消费
  15. 猪悟能论坛看贴工具(Discuz!7版) v1.0
  16. python脚本名_python获取类名函数名、脚本路径
  17. 普通的朋友与真正的朋友
  18. CodeForces 158B Taxi(代数算式解题)
  19. 程序员进阶的一些实用工具
  20. php版微政务模块下载,国微cms小学幼儿园方案(原PHP168 S系列) v20170220

热门文章

  1. bert 中文 代码 谷歌_如何用最强模型BERT做NLP迁移学习?
  2. 您的光纤电缆和测试仪是否准备好用于400G以太网?
  3. 后端技术:Nginx + Spring Boot 实现负载均衡
  4. 程序员如何与人打交道
  5. 收藏 | Redis 超详细总结笔记总
  6. 腾讯、阿里、网易、杰士邦等30家中秋月饼设计盘点!(完整版)
  7. java文件流null_JAVA 获取资源文件对象为NULL
  8. java生成动态验证码_动态生成验证码案例
  9. python (第二章)数据结构
  10. 如何移除项目中无用的 console.log 代码