装饰器模式

无论何时我们想对一个对象添加额外的功能,都有下面这些不同的可选方法。

如果合理,可以直接将功能添加到对象所属的类(例如,添加一个新的方法)

使用组合

使用继承

注意,本文中的Decorator可以为装饰器或者修饰器。

与继承相比,通常应该优先选择组合,因为继承使得代码更难复用,继承关系是静态的,并且应用于整个类以及这个类的所有实例(请参考[GOF95,第31页]和网页[t.cn/RqrC8Yo])。

设计模式为我们提供第四种可选方法,以支持动态地(运行时)扩展一个对象的功能,这种方法就是修饰器。修饰器(Decorator)模式能够以透明的方式(不会影响其他对象)动态地将功能添加到一个对象中(请参考[GOF95,第196页])。

在许多编程语言中,使用子类化(继承)来实现修饰器模式(请参考[GOF95,第198页])。在Python中,我们可以(并且应该)使用内置的修饰器特性。一个Python修饰器就是对Python语法的一个特定改变,用于扩展一个类、方法或函数的行为,而无需使用继承。从实现的角度来说,Python修饰器是一个可调用对象(函数、方法、类),接受一个函数对象fin作为输入,并返回另一个函数对象fout(请参考网页)。这意味着可以将任何具有这些属性的可调用对象当作一个修饰器。在第1章和第2章中已经看到如何使用内置的property修饰器让一个方法表现为一个变量。在5.4节,我们将学习如何实现及使用我们自己的修饰器。

修饰器模式和Python修饰器之间并不是一对一的等价关系。Python修饰器能做的实际上比修饰器模式多得多,其中之一就是实现修饰器模式(请参考[Eckel08,第59页]和网页[t.cn/RqrlLcQ])。

#!/usr/bin/env python

"""https://docs.python.org/2/library/functools.html#functools.wraps"""

"""https://stackoverflow.com/questions/739654/how-can-i-make-a-chain-of-function-decorators-in-python/739665#739665"""

from functools import wraps

def makebold(fn):

return getwrapped(fn, "b")

def makeitalic(fn):

return getwrapped(fn, "i")

def getwrapped(fn, tag):

@wraps(fn)

def wrapped():

return "%s%s>" % (tag, fn(), tag)

return wrapped

@makebold

@makeitalic

def hello():

"""a decorated hello world"""

return "hello world"

if __name__ == '__main__':

print('result:{} name:{} doc:{}'.format(hello(), hello.__name__, hello.__doc__))

### OUTPUT ###

# result:hello world name:hello doc:a decorated hello world

result:hello world name:hello doc:a decorated hello world

# http://stackoverflow.com/questions/3118929/implementing-the-decorator-pattern-in-python

class foo(object):

def f1(self):

print("original f1")

def f2(self):

print("original f2")

class foo_decorator(object):

def __init__(self, decoratee):

self._decoratee = decoratee

def f1(self):

print("decorated f1")

self._decoratee.f1()

def __getattr__(self, name):

return getattr(self._decoratee, name) # 这个不是delegation么

u = foo()

v = foo_decorator(u)

v.f1()

v.f2()

decorated f1

original f1

original f2

现实中的例子

该模式虽名为修饰器,但这并不意味着它应该只用于让产品看起来更漂亮。修饰器模式通常用于扩展一个对象的功能。这类扩展的实际例子有,给枪加一个消音器、使用不同的照相机镜头(在可拆卸镜头的照相机上)等。

下图由sourcemaking.com提供,展示了我们可以如何使用一些专用配件来修饰一把枪,使其 无声、更准以及更具破坏力(请参考网页[t.cn/RqrC8Yo])。注意,图中使用了子类化,但是在 Python中,这并不是必需的,因为可以使用语言内置的修饰器特性。

软件中的例子

Django框架大量地使用修饰器,其中一个例子是视图修饰器。Django的视图(View)修饰器 可用于以下几种用途(请参考网页[t.cn/RqrlJbA])。

限制某些HTTP请求对视图的访问控制特定视图上的缓存行为

按单个视图控制压缩

基于特定HTTP请求头控制缓存

Grok框架也使用修饰器来实现不同的目标,比如下面几种情况。

将一个函数注册为事件订阅者

以特定权限保护一个方法

实现适配器模式

应用案例

当用于实现横切关注点(cross-cutting concerns)时,修饰器模式会大显神威(请参考[Lott14,第223页]和网页[t.cn/Rqrl6O0])。以下是横切关注点的一些例子。

数据校验

事务处理(这里的事务类似于数据库事务,意味着要么所有步骤都成功完成,要么事务失败) 缓存

日志

监控

调试

业务规则

压缩

加密

一般来说,应用中有些部件是通用的,可应用于其他部件,这样的部件被看作横切关注点。

使用修饰器模式的另一个常见例子是图形用户界面(Graphical User Interface,GUI)工具集。在一个GUI工具集中,我们希望能够将一些特性,比如边框、阴影、颜色以及滚屏,添加到单个组件/部件。

实现

Python修饰器通用并且非常强大。你可以在Python官网python.org的修饰器代码库页面(请参考网页[t.cn/zRHPIq4])中找到许多修饰器的使用样例。本节中,我们将学习如何实现一个memoization修饰器(请参考网页[t.cn/zQi9AET])。所有递归函数都能因memoization而提速,那么来试试常用的斐波那契数列例子。使用递归算法实现斐波那契数列,直接了当,但性能问题较大,即使对于很小的数值也是如此。首先来看看朴素的实现方法(文件fibonacci_naive.py)。

def fibonacci(n):

assert(n >= 0), 'n must be >= 0'

return n if n in (0, 1) else fibonacci(n-1) + fibonacci(n-2)

if __name__ == '__main__':

from timeit import Timer

t = Timer('fibonacci(8)', 'from __main__ import fibonacci')

print(t.timeit())

15.40320448600687

执行一下这个例子就知道这种实现的速度有多慢了。计算第8个斐波那契数要花费运行的样例输出如上所示。

使用memoization方法看看能否改善。在下面的代码中,我们使用一个dict来缓存斐波那契 数列中已经计算好的数值,同时也修改传给fabonacci()函数的参数,计算第100个斐波那契数, 而不是第8个。

known = {0:0, 1:1}

def fibonacci(n):

assert(n >= 0), 'n must be >= 0'

if n in known:

return known[n]

res = fibonacci(n-1) + fibonacci(n-2)

known[n] = res

return res

if __name__ == '__main__':

from timeit import Timer

t = Timer('fibonacci(100)', 'from __main__ import fibonacci')

print(t.timeit())

0.30129148002015427

执行基于memoization的代码实现,可以看到性能得到了极大的提升,甚至对于计算大的数 值性能也是可接受的。运行的样例输出如上所示。

但这种方法有一些问题。虽然性能不再是一个问题,但代码也没有不使用memoization时那 样简洁。如果我们决定扩展代码,加入更多的数学函数,并将其转变成一个模块,那又会是什么 样的呢?假设决定加入的下一个函数是nsum(),该函数返回前n个数字的和。注意这个函数已存 在于math模块中,名为fsum(),但我们也能很容易就能想到标准库中还没有、但是对我们模块 有用的其他函数(例如,帕斯卡三角形、埃拉托斯特尼筛法等)。所以暂且不必在意示例函数是 否已存在。使用memoization实现nsum()函数的代码如下所示。

known_sum = {0:0}

def nsum(n):

assert(n >= 0), 'n must be >= 0'

if n in known_sum:

return known_sum[n]

res = n + nsum(n-1)

known_sum[n] = res

return res

你有没有注意到其中的问题?多了一个名为known_sum的新字典,为nsum提供缓存作用, 并且函数本身也比不使用memoization时的更复杂。这个模块逐步变得不必要地复杂。保持递归 函数与朴素版本的一样简单,但在性能上又能与使用memoization的函数相近,这可能吗?幸运 的是,确实可能,解决方案就是使用修饰器模式。

首先创建一个如下面的例子所示的memoize()函数。这个修饰器接受一个需要使用 memoization的函数fn作为输入,使用一个名为known的dict作为缓存。函数functools.wraps() 是一个为创建修饰器提供便利的函数;虽不强制,但推荐使用,因为它能保留被修饰函数的文档字符串和签名(请参考网页[t.cn/Rqrl0K5])。这种情况要求参数列表args,因为被修饰的函数可能有输入参数。如果fibonacci()和nsum()不需要任何参数,那么使用args确实是多余的,但它 们是需要参数n的。

from functools import wraps

def memoize(fn):

known = dict()

@wraps(fn)

def memoizer(*args):

if args not in known:

known[args] = fn(*args)

return known[args]

return memoizer

现在,对朴素版本的函数应用memoize()修饰器。这样既能保持代码的可读性又不影响性能。 我们通过修饰(或修饰行)来应用一个修饰器。修饰使用@name语法,其中name是指我们想要使 用的修饰器的名称。这其实只不过是一个简化修饰器使用的语法糖。我们甚至可以绕过这个语法 手动执行修饰器,留给你作为练习吧。来看看下面的例子中如何对我们的递归函数使用memoize() 修饰器。

@memoize

def nsum(n):

'''返回前n个数字的和'''

assert(n >= 0), 'n must be <= 0'

return 0 if n == 0 else n + nsum(n-1)

@memoize

def fibonacci(n):

'''返回斐波那契数列的第n个数'''

assert(n >= 0), 'n must be >= 0'

return n if n in (0, 1) else fibonacci(n-1) + fibonacci(n-2)

代码的最后一部分展示如何使用被修饰的函数,并测量其性能。measure是一个字典列表,用于避免代码重复。注意name和doc分别是如何展示正确的函数名称和文档字符串值的。尝试从memoize()中删除@functools.wraps(fn)修饰,看看是否仍旧如此。

if __name__ == '__main__':

from timeit import Timer

measure = [ {'exec':'fibonacci(100)', 'import':'fibonacci', 'func':fibonacci},{'exec':'nsum(200)', 'import':'nsum', 'func':nsum} ]

for m in measure:

t = Timer('{}'.format(m['exec']), 'from __main__ import {}'.format(m['import']))

print('name: {}, doc: {}, executing: {}, time: {}'.format(m['func'].__name__, m['func'].__doc__, m['exec'], t.timeit()))

name: fibonacci, doc: 返回斐波那契数列的第n个数, executing: fibonacci(100), time: 0.29140055197058246

name: nsum, doc: 返回前n个数字的和, executing: nsum(200), time: 0.3004333569551818

看看我们数学模块的完整代码(文件mymath.py)和执行时的样例输出。

from functools import wraps

def memoize(fn):

known = dict()

@wraps(fn)

def memoizer(*args):

if args not in known:

known[args] = fn(*args)

return known[args]

return memoizer

@memoize

def nsum(n):

'''返回前n个数字的和'''

assert(n >= 0), 'n must be <= 0'

return 0 if n == 0 else n + nsum(n-1)

@memoize

def fibonacci(n):

'''返回斐波那契数列的第n个数'''

assert(n >= 0), 'n must be >= 0'

return n if n in (0, 1) else fibonacci(n-1) + fibonacci(n-2)

if __name__ == '__main__':

from timeit import Timer

measure = [ {'exec':'fibonacci(100)', 'import':'fibonacci', 'func':fibonacci},{'exec':'nsum(200)', 'import':'nsum', 'func':nsum} ]

for m in measure:

t = Timer('{}'.format(m['exec']), 'from __main__ import {}'.format(m['import']))

print('name: {}, doc: {}, executing: {}, time: {}'.format(m['func'].__name__, m['func'].__doc__, m['exec'], t.timeit()))

name: fibonacci, doc: 返回斐波那契数列的第n个数, executing: fibonacci(100), time: 0.272907609003596

name: nsum, doc: 返回前n个数字的和, executing: nsum(200), time: 0.2719842789811082

不错!这一方案同时具备可读的代码和可接受的性能。此时,你可能想争论说这不是修饰器 模式,因为我们并不是在运行时应用它。被修饰的函数确实无法取消修饰,但仍然可以在运行时 决定是否执行修饰器。这个有趣的练习就留给你来完成吧。

使用修饰器进行一层额外的封装,基于某个条件来决定是否执行真正的修 饰器。

修饰器的另一个有趣的特性是可以使用多个修饰器来修饰一个函数。本章没有涉及这一特 性,因此这是另一个练习,创建一个修饰器来帮助你调试递归函数,并将其应用于nsum()和 fibonacci()。多个修饰器会以什么次序执行?

如果你仍未充分理解修饰器,那么我有最后一个练习留给你。修饰器memoize()无法修饰接 受多个参数的函数。我们如何可以验证这一点?验证之后,尝试找到一种方法解决这个问题: 经测试,memoize()对多参函数仍然有效。(此处可能有误)

小结

本章介绍了修饰器模式及其与Python编程语言的关联。我们使用修饰器模式来扩展一个对象的行为,无需使用继承,非常方便。Python进一步扩展了修饰器的概念,允许我们无需使用继承或组 合就能扩展任意可调用对象(函数、方法或类)的行为。我们可以使用Python内置的修饰器特性。

我们看了现实中一些被修饰对象的例子,比如枪和照相机。从软件的视角来看,Django和Grok都使用了修饰器来达到不同的目标,比如控制HTTP压缩和缓存。

修饰器模式是实现横切关注点的绝佳方案,因为横切关注点通用但不太适合使用面向对象编 程范式来实现。在5.3节中我们提到很多种横切关注点。事实上,5.4节演示了一个横切关注点, memoization。我们看到修饰器如何可以帮助我们保持函数简洁,同时不牺牲性能。

本章中推荐的练习可以帮助你更好地理解修饰器,这样你就能将这一强大工具用于解决许多 常见的(或许不太常见的)编程问题。第6章将介绍外观模式,一种简化复杂系统访问的方式。

个人读后感,好烂的一章,完全就是凑字数,还不如干脆挑明了直接解释传统意义上的装饰器模式和python的装饰器之间的差别,还有自己造了一个轮子:memorize,其实我们完全可以使用现有的轮子: from functools import lru_cache,还是别自己造轮子了。。

我后续会补充完整这方面的内容。

python 装饰器 继承_Python设计模式之装饰器模式相关推荐

  1. python中的装饰器、装饰器模式_python 设计模式之装饰器模式 Decorator Pattern

    #写在前面 已经有一个礼拜多没写博客了,因为沉醉在了<妙味>这部小说里,里面讲的是一个厨师苏秒的故事.现实中大部分人不会有她的天分.我喜欢她的性格:总是想着去解决问题,好像从来没有怨天尤人 ...

  2. python修饰器_python设计模式之修饰器模式

    python设计模式之修饰器模式 无论何时我们想对一个对象添加额外的功能,都有下面这些不同的可选方法. [ ] 如果合理,可以直接将功能添加到对象所属的类(例如,添加一个新的方法) [ ] 使用组合 ...

  3. python类是实例的工厂_Python设计模式之工厂方法模式实例详解

    本文实例讲述了Python设计模式之工厂方法模式.分享给大家供大家参考,具体如下: 工厂方法模式(Factory Method Pattern):定义一个用于创建对象的接口,让子类决定实例化哪一个类, ...

  4. python抽象工厂模式_Python设计模式之抽象工厂模式

    Python设计模式之抽象工厂模式 这篇文章主要为大家详细介绍了Python设计模式之抽象工厂模式,感兴趣的小伙伴们可以参考一下 python面向对象编程入门,我们需要不断学习进步 "&qu ...

  5. python import 类 继承_python学习之类的继承

    面向对象中一个重要的特性就是继承,继承的好处就是提高代码的重用率,减少不必要的代码.继承是父类与子类的关系,当子类继承了父类后,就具有了父类的所有变量和方法.在python中定义继承的语法是:clas ...

  6. python设计模式案例分析_Python设计模式之职责链模式原理与用法实例分析

    本文实例讲述了Python设计模式之职责链模式原理与用法.分享给大家供大家参考,具体如下: 职责链模式(Chain Of Responsibility):使多个对象都有机会处理请求,从而避免发送者和接 ...

  7. python装饰器编程_Python编程中装饰器的使用示例解析

    装饰函数和方法 我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差: # get square sum def square_sum(a, b): return a**2 + b** ...

  8. python 类装饰器和函数装饰器区别_python进阶之装饰器之4在类中定义装饰器,将装饰器定义为类,两者的区别与联系...

    # 把装饰器定义为类 # 定义中需要实现__call__(),__get__() 方法 import types from functools import wraps class Profiled: ...

  9. python函数的继承_Python 继承

    版权所有,未经许可,禁止转载 Python 继承 继承允许我们在定义一个类时,让该类继承另一个类的所有方法和属性. 父类是被继承的类,也称为基类. 子类是继承父类的类,也称为派生类. 创建父类 任何类 ...

最新文章

  1. 简单配置nginx反向代理,实现跨域请求
  2. android中仿qq最新版抽屉,Android实现3种侧滑效果(仿qq侧滑、抽屉侧滑、普通侧滑)...
  3. LeetCode 31. Next Permutation-- Python 解法--数学题--比当前数大的最小的数
  4. 动态规划:记忆化搜索
  5. 局域网内同时使用两台路由器的配置方法
  6. gitlab常规维护命令
  7. RegEnumValue枚举注册表值小记
  8. 《JavaScript面向对象精要》——1.9 总结
  9. WINCE中设置FTP用户密码
  10. linux就业技术指导,学linux前景怎么样
  11. jsp中String path = request.getContextPath()的作用
  12. 动态SQL和PL/SQL的EXECUTE选项分析
  13. 12产品经理要懂的-人性满足思维
  14. visual设计的界面发布到iis上显示不一样_享声 SOUNDAWARE 发布可“全民HIFI“的网播一体机 A1...
  15. element布局容器大小_Flutter完整开发实战详解(十六、详解自定义布局实战)
  16. 编程—休息片刻的好处
  17. 计算机网络————P2 标准化工作及相关组织
  18. SpringBoot 项目(若依脚手架)2
  19. SQL查询语句可以执行,但是提示对象名无效
  20. 利用halcon识别汽车检具孔面积和孔间距

热门文章

  1. mysql运维机制_《MySQL运维内参》节选 | InnoDB日志管理机制(一)
  2. java定义一个方法,向控制台输出一个整数的阶乘
  3. java自定义一个方法,用于返回两个整数的和
  4. Redis DeskTop Manager 使用教程
  5. SQLServer 条件查询语句大全
  6. HTML5学习笔记(二)
  7. 【OpenCV 例程200篇】55. 可分离卷积核
  8. 四川大学计算机学硕分数线,川大计算机考研分数线
  9. ccf 智能运维 裴丹_智能运维 聊一聊实时计算系统
  10. GOF设计模式之桥接模式