决策树是一个树结构(可以是二叉树或非二叉树),其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个输出类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树学习通常包含这几个方面:特征选择、决策树生成、决策树剪枝、缺失值/异常值处理、决策树集成学习。

决策树-特征属性选择划分

决策树-缺失值和连续值处理及属性划分

决策树-不同的决策树模型对比

决策树-避免过拟合预剪枝和后剪枝对比区别

决策树-算法小结及常见问题


本节目录

ID3算法

C4.5算法的改进

CART分类树算法


ID3算法

ID3算法就是用信息增益大小来判断当前节点应该用什么特征来构建决策树,用计算出的信息增益最大的特征来建立决策树的当前节点。

决策树ID3算法的不足

ID3算法虽然提出了新思路,但是还是有很多值得改进的地方。  

  1. ID3没有考虑连续特征(只能处理离散值),比如长度,密度都是连续值,无法在ID3运用。这大大限制了ID3的用途;
  2. ID3采用信息增益大的特征优先建立决策树的节点。很快就被人发现,在相同条件下,取值比较多的特征比取值少的特征信息增益大。比如一个变量有2个值,各为1/2,另一个变量为3个值,各为1/3,其实他们都是完全不确定的变量,但是取3个值的比取2个值的信息增益大。如果校正这个问题呢?
  3. ID3算法对于缺失值的情况没有做考虑;
  4. 没有考虑过拟合的问题;

ID3 算法的作者昆兰基于上述不足,对ID3算法做了改进,这就是C4.5算法,也许你会问,为什么不叫ID4,ID5之类的名字呢?那是因为决策树太火爆,他的ID3一出来,别人二次创新,很快就占了ID4, ID5,所以他另辟蹊径,取名C4.0算法,后来的进化版为C4.5算法。

C4.5算法的改进

ID3算法有四个主要的不足,

(1)不能处理连续特征;

(2)使用信息增益作为标准容易偏向于取值较多的特征;

(3)缺失值处理问题;

(4)过拟合问题;

昆兰在C4.5算法中改进了上述4个问题。

(1)对于第一个问题,不能处理连续特征 C4.5的思路是将连续的特征离散化。

比如m个样本的连续特征A有m个,从小到大排列为a1,a2,...,am个,则C4.5取相邻两样本值的中位数,一共取得m-1个划分点,其中第i个划分点Ti表示Ti表示为(ai+ai+1)/ 2 。

对于这m-1个点,分别计算以该点作为二元分类点时的信息增益。选择信息增益最大的点作为该连续特征的二元离散分类点。

比如取到的增益最大的点为at,则小于at的值为类别1,大于at的值为类别2,这样我们就做到了连续特征的离散化。要注意的是,与离散属性不同的是,如果当前节点为连续属性,则该属性后面还可以参与子节点的产生选择过程。

(2)对于第二个问题,信息增益作为标准容易偏向于取值较多的特征的问题

我们引入一个信息增益比的变量IR(X,Y),它是信息增益和特征熵的比值。表达式如下:

其中D为样本特征输出的集合,A为样本特征,对于特征熵HA(D), 表达式如下:

其中n为特征A的类别数, Di为特征A的第i个取值对应的样本个数。D为样本个数。特征数越多的特征对应的特征熵越大,它作为分母,可以校正信息增益容易偏向于取值较多的特征的问题。

(3)对于第三个缺失值处理的问题

主要需要解决的是两个问题,一是在样本某些特征缺失的情况下选择划分的属性,二是选定了划分属性,对于在该属性上缺失特征的样本的处理。

对于第一个子问题,对于某一个有缺失特征值的特征A。C4.5的思路是将数据分成两部分,对每个样本设置一个权重(初始可以都为1),然后划分数据,一部分是有特征值A的数据D1,另一部分是没有特征A的数据D2. 然后对于没有缺失特征A的数据集D1来和对应的A特征的各个特征值一起计算加权重后的信息增益比,最后乘上一个系数,这个系数是无特征A缺失的样本加权后所占加权总样本的比例。

对于第二个子问题,可以将缺失特征的样本同时划分入所有的子节点,不过将该样本的权重按各个子节点样本的数量比例来分配。比如缺失特征A的样本a之前权重为1,特征A有3个特征值A1,A2,A3。 3个特征值对应的无缺失A特征的样本个数为2,3,4.则a同时划分入A1,A2,A3。对应权重调节为2/9,3/9, 4/9。

(4)对于第4个问题,C4.5引入了正则化系数进行初步的剪枝。具体方法这里不讨论。下篇讲CART的时候会详细讨论剪枝的思路。

除了上面的4点,C4.5和ID3的思路区别不大。

决策树C4.5算法的不足与思考

  1. C4.5虽然改进或者改善了ID3算法的几个主要的问题,仍然有优化的空间。
  2. 由于决策树算法非常容易过拟合,因此对于生成的决策树必须要进行剪枝。剪枝的算法有非常多,C4.5的剪枝方法有优化的空间。思路主要是两种,一种是预剪枝,即在生成决策树的时候就决定是否剪枝。另一个是后剪枝,即先生成决策树,再通过交叉验证来剪枝。后面在下篇讲CART树的时候我们会专门讲决策树的减枝思路,主要采用的是后剪枝加上交叉验证选择最合适的决策树。
  3. C4.5生成的是多叉树,即一个父节点可以有多个节点。很多时候,在计算机中二叉树模型会比多叉树运算效率高。如果采用二叉树,可以提高效率。
  4. C4.5只能用于分类,如果能将决策树用于回归的话可以扩大它的使用范围。
  5. C4.5由于使用了熵模型,里面有大量的耗时的对数运算,如果是连续值还有大量的排序运算。如果能够加以模型简化可以减少运算强度但又不牺牲太多准确性的话,那就更好了。

这4个问题在CART树里面部分加以了改进。所以目前如果不考虑集成学习话,在普通的决策树算法里,CART算法算是比较优的算法了,scikit-learn的决策树使用的也是CART算法。

我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。

CART算法也就是我们下面的重点了。由于CART算法可以做回归,也可以做分类,我们分别加以介绍,先从CART分类树算法开始,重点比较和C4.5算法的不同点。接着介绍CART回归树算法,重点介绍和CART分类树的不同点。然后我们讨论CART树的建树算法和剪枝算法,最后总结决策树算法的优缺点。

CART分类树算法

我们知道,在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。

但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。(多叉树问题,在CART中只构建二叉树)能不能简化模型同时也不至于完全丢失熵模型的优点呢?有!CART分类树算法使用基尼系数来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好。这和信息增益(比)是相反的。

具体的,在分类问题中,假设有K个类别,第k个类别的概率为pk, 则基尼系数的表达式为:

如果是二类分类问题,计算就更加简单了,如果属于第一个样本输出的概率是p,则基尼系数的表达式为:

对于个给定的样本D,假设有K个类别, 第k个类别的数量为Ck,则样本D的基尼系数表达式为:

特别的,对于样本D,如果根据特征A的某个值a,把D分成D1和D2两部分,则在特征A的条件下,D的基尼系数表达式为:

大家可以比较下基尼系数表达式和熵模型的表达式,二次运算是不是比对数简单很多?尤其是二类分类的计算,更加简单。但是简单归简单,和熵模型的度量方式比,基尼系数对应的误差有多大呢?对于二类分类,基尼系数和熵之半的曲线如下:

从上图可以看出,基尼系数和熵之半的曲线非常接近,仅仅在45度角附近误差稍大。因此,基尼系数可以做为熵模型的一个近似替代。而CART分类树算法就是使用的基尼系数来选择决策树的特征。

同时,为了进一步简化,CART分类树算法每次仅仅对某个特征的值进行二分,而不是多分,这样CART分类树算法建立起来的是二叉树,而不是多叉树。这样一可以进一步简化基尼系数的计算,二可以建立一个更加优雅的二叉树模型。

CART分类树算法对于连续特征和离散特征处理的改进

对于CART分类树连续值的处理问题,其思想和C4.5是相同的,都是将连续的特征离散化。唯一的区别在于在选择划分点时的度量方式不同,C4.5使用的是信息增益,则CART分类树使用的是基尼系数。

具体的思路如下,比如m个样本的连续特征A有m个,从小到大排列为a1,a2,...,am,则CART算法取相邻两样本值的中位数,一共取得m-1个划分点,其中第i个划分点Ti表示Ti表示为:( ai+ai+1 ) / 2

对于这m-1个点,分别计算以该点作为二元分类点时的基尼系数。选择基尼系数最小的点作为该连续特征的二元离散分类点。比如取到的基尼系数最小的点为at,则小于at的值为类别1,大于at的值为类别2,这样我们就做到了连续特征的离散化。要注意的是,与离散属性不同的是,如果当前节点为连续属性,则该属性后面还可以参与子节点的产生选择过程。

对于CART分类树离散值的处理问题,采用的思路是不停的二分离散特征。

回忆下ID3或者C4.5,如果某个特征A被选取建立决策树节点,如果它有A1,A2,A3三种类别,我们会在决策树上一下建立一个三叉的节点。这样导致决策树是多叉树。但是CART分类树使用的方法不同,他采用的是不停的二分,还是这个例子,CART分类树会考虑把A分成{A1}和{A2,A3},{A2}和{A1,A3} ,{A3}和{A1,A2}三种情况,找到基尼系数最小的组合,比如{A2}和{A1,A3},然后建立二叉树节点,一个节点是A2对应的样本,另一个节点是{A1,A3}对应的节点。从描述可以看出,如果离散特征A有n个取值,则可能的组合有n(n-1)/2种。同时,由于这次没有把特征A的取值完全分开,后面我们还有机会在子节点继续选择到特征A来划分A1和A3。这和ID3或者C4.5不同,在ID3或者C4.5的一棵子树中,离散特征只会参与一次节点的建立。

CART分类树建立算法的具体流程

上面介绍了CART算法的一些和C4.5不同之处,下面我们看看CART分类树建立算法的具体流程,之所以加上了建立,是因为CART树算法还有独立的剪枝算法这一块,算法输入是训练集D,基尼系数的阈值,样本个数阈值,输出是决策树T。

我们的算法从根节点开始,用训练集递归的建立CART树。

1) 对于当前节点的数据集为D,如果样本个数小于阈值或者没有特征,则返回决策子树,当前节点停止递归。

2) 计算样本集D的基尼系数,如果基尼系数小于阈值,则返回决策树子树,当前节点停止递归。

3) 计算当前节点现有的各个特征的各个特征值对数据集D的基尼系数,缺失值的处理方法和上篇的C4.5算法里描述的相同。

4) 在计算出来的各个特征的各个特征值对数据集D的基尼系数中,选择基尼系数最小的特征A和对应的特征值a。根据这个最优特征和最优特征值,把数据集划分成两部分D1和D2,同时建立当前节点的左右节点,做节点的数据集D为D1,右节点的数据集D为D2.

5) 对左右的子节点递归的调用1-4步,生成决策树。

对于生成的决策树做预测的时候,假如测试集里的样本A落到了某个叶子节点,而节点里有多个训练样本。则对于A的类别预测采用的是这个叶子节点里概率最大的类别。

CART回归树建立算法的具体流程

CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方。

首先,我们要明白,什么是回归树,什么是分类树。两者的区别在于样本输出,如果样本输出是离散值,那么这是一颗分类树。如果果样本输出是连续值,那么这是一颗回归树。

除了概念的不同,CART回归树和CART分类树的建立和预测的区别主要有下面两点:

1)连续值的处理方法不同

2)决策树建立后做预测的方式不同。

对于连续值的处理,我们知道CART分类树采用的是用基尼系数的大小来度量特征的各个划分点的优劣情况。这比较适合分类模型,但是对于回归模型,我们使用了常见的均方差的度量方式,CART回归树的度量目标是,对于任意划分特征A,对应的任意划分点s两边划分成的数据集D1和D2,求出使D1和D2各自集合的均方差最小,同时D1和D2的均方差之和最小所对应的特征和特征值划分点。

其中,c1为D1数据集的样本输出均值,c2为D2数据集的样本输出均值。

对于决策树建立后做预测的方式,上面讲到了CART分类树采用叶子节点里概率最大的类别作为当前节点的预测类别。而回归树输出不是类别,它采用的是用最终叶子的均值或者中位数来预测输出结果。

除了上面提到了以外,CART回归树和CART分类树的建立算法和预测没有什么区别。

CART树算法的剪枝

CART回归树和CART分类树的剪枝策略除了在度量损失的时候一个使用均方差,一个使用基尼系数,算法基本完全一样,这里我们一起来讲。

由于决策时算法很容易对训练集过拟合,而导致泛化能力差,为了解决这个问题,我们需要对CART树进行剪枝,即类似于线性回归的正则化,来增加决策树的返回能力。但是,有很多的剪枝方法,我们应该这么选择呢?CART采用的办法是后剪枝法,即先生成决策树,然后产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,选择泛化能力最好的剪枝策略。

也就是说,CART树的剪枝算法可以概括为两步,第一步是从原始决策树生成各种剪枝效果的决策树,第二部是用交叉验证来检验剪枝后的预测能力,选择泛化预测能力最好的剪枝后的数作为最终的CART树。

首先我们看看剪枝的损失函数度量,在剪枝的过程中,对于任意的一刻子树T,其损失函数为:

其中,α为正则化参数,这和线性回归的正则化一样。C(Tt)为训练数据的预测误差,分类树是用基尼系数度量,回归树是均方差度量。|Tt|是子树T的叶子节点的数量。

当α=0时,即没有正则化,原始的生成的CART树即为最优子树。当α=∞时,即正则化强度达到最大,此时由原始的生成的CART树的根节点组成的单节点树为最优子树。当然,这是两种极端情况。一般来说,α越大,则剪枝剪的越厉害,生成的最优子树相比原生决策树就越偏小。对于固定的α,一定存在使损失函数Cα(T)最小的唯一子树。

上面我们对CART算法做了一个详细的介绍,CART算法相比C4.5算法的分类方法,采用了简化的二叉树模型,同时特征选择采用了近似的基尼系数来简化计算。当然CART树最大的好处是还可以做回归模型,这个C4.5没有。下表给出了ID3,C4.5和CART的一个比较总结。希望可以帮助大家理解。

看起来CART算法高大上,那么CART算法还有没有什么缺点呢?有!主要的缺点我认为如下:

1)应该大家有注意到,无论是ID3, C4.5还是CART,在做特征选择的时候都是选择最优的一个特征来做分类决策,但是大多数,分类决策不应该是由某一个特征决定的,而是应该由一组特征决定的。这样绝息到的决策树更加准确。

这个决策树叫做多变量决策树(multi-variate decision tree)。在选择最优特征的时候,多变量决策树不是选择某一个最优特征,而是选择最优的一个特征线性组合来做决策。这个算法的代表是OC1,这里不多介绍。

2)如果样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习里面的随机森林之类的方法解决。

决策树-基于不同算法的决策树模型对比相关推荐

  1. 决策树之ID3算法以及决策树挑西瓜代码实现

    决策树之ID3算法以及决策树挑西瓜代码实现 一.决策树 1. 决策树的基本认识 2. 决策树的构造过程 (1)特征选择 (2)决策树的生成 (3)决策树的裁剪 决策树的优缺点 二.决策树之ID3算法 ...

  2. 12_信息熵,信息熵公式,信息增益,决策树、常见决策树使用的算法、决策树的流程、决策树API、决策树案例、随机森林、随机森林的构建过程、随机森林API、随机森林的优缺点、随机森林案例

    1 信息熵 以下来自:https://www.zhihu.com/question/22178202/answer/161732605 1.2 信息熵的公式 先抛出信息熵公式如下: 1.2 信息熵 信 ...

  3. 决策树的原理及构建(基于ID3算法)

    决策树原理 决策树(Decision Tree)是根据一系列规则对数据进行分类的过程.实际上决策树的生成过程就是使用满足划分准则的特征不断的将数据集划分为纯度更高,不确定性更小的子集的过程.对于当前数 ...

  4. 随机森林实例:利用基于CART算法的随机森林(Random Forest)树分类方法对于红酒质量进行预测

    随机森林实例:利用基于CART算法的随机森林(Random Forest)树分类方法对于红酒质量进行预测 1.引言 2.理论基础 2.1 什么是决策树 2.2 特征选择的算法 2.2.1 ID3:基于 ...

  5. fama matlab源码_基于优化算法改造的Fama-French三因子模型

    基于光大证券金融工程研报<站在巨人的肩膀上,从牛基组合到牛股发现 --FOF 专题研究系列之十六 >中提及的Carhart四因子Alpha优化模型,本文在Fama-French三因子模型上 ...

  6. 基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码

    基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码 文章目录 基于蝙蝠算法优化BP神经网络的数据分类算法及其MATLAB实现-附代码 1 蝙蝠算法与BP神经网络分类模型 1.1 蝙 ...

  7. R语言基于Bagging算法(融合多个决策树)构建集成学习Bagging分类模型、并评估模型在测试集和训练集上的分类效果(accuray、F1、偏差Deviance):Bagging算法与随机森林对比

    R语言基于Bagging算法(融合多个决策树)构建集成学习Bagging分类模型.并评估模型在测试集和训练集上的分类效果(accuray.F1.偏差Deviance):Bagging算法与随机森林对比 ...

  8. [Python从零到壹] 十四.机器学习之分类算法五万字总结全网首发(决策树、KNN、SVM、分类对比实验)

    欢迎大家来到"Python从零到壹",在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界.所有文章都将结合案例.代码和作者的经验讲 ...

  9. 基于单层决策树的adaBoost算法思想分析和源代码解析

    基于单层决策树的AdaBoost算法思想分析和源代码解析 前言: 上一篇SVM可是废了我好鼻子劲,这一篇咱们来点愉快的东西.我们一定听说过这句俗语:"三个臭皮匠,顶个诸葛亮!" 大 ...

最新文章

  1. SCVMM2012 SP1 之虚拟机模板的创建
  2. oracle 工单查so,查询工单列表
  3. html鼠标点击切换图片,js鼠标点击图片切换效果代码分享
  4. 机械秒表的使用方法_瓦楞纸箱防水性能检测方法
  5. ob服务器维修视频,教你如何使用OB系统 还在看转播?你OUT了!
  6. linux 块编辑,vim中的可视块编辑
  7. Vue项目 开启gzip
  8. android 7.1 apk的systemuid [2]
  9. 王道 —— 进程同步、进程互斥
  10. spring断言使用
  11. JS日期比较大小 给定时间和持续时间计算最终时间
  12. 音视频技术(25)---MPEG-2、MPEG-4、H.264 与视频带宽
  13. z变换解差分方程例题_中级数学4 - 多元线性方程
  14. 机器学习 K-Nearst-Neighbors算法
  15. 如何获取维普免费账号--应对大家工作后在校外下载维普万方等全文
  16. (d2l-ai/d2l-zh)《动手学深度学习》pytorch 笔记(4)线性神经网络(暂停)
  17. 用网络摄像头做延时摄影(WPF+Emgu.CV)
  18. 【调剂】郑州大学河南先进技术研究院2022年硕士研究生招生拟调剂信息公告
  19. 2023 年破解 PDF 密码的 5 种最佳方法
  20. header()实现PHP最简单的导出excel,不需要引入操作excel类库

热门文章

  1. spring boot: Bean的初始化和销毁 (一般注入说明(三) AnnotationConfigApplicationContext容器 JSR250注解)...
  2. dede 会员中心编辑添加和修改图集的时候自定义的字段模型显示不出来的问题...
  3. Spring Boot 配置文件 yml与properties
  4. 专业解决 MySQL 查询速度慢与性能差!
  5. 面试题:SSH 和 SSM 两个框架的浅显的区别?
  6. 一分钟开启Tomcat https支持
  7. NIO:channel、buffer、状态变量、socket、charset
  8. 多线程:一些好的编程建议
  9. Java 中静态代码块 static的作用及用法
  10. mysql压力测试并优化_MySQL压力测试索引优化效果演示全过程