1.如何理解时间分辨率和频率分辨率?

In this section we will take a closer look at the resolution properties of the wavelet transform. Remember that the resolution problem was the main reason why we switched from STFT to WT.
The illustration in following Figure is commonly used to explain how time and frequency resolutions should be interpreted. Every box in following Figure corresponds to a value of the wavelet transform in the time-frequency plane. Note that boxes have a certain non-zero area, which implies that the value of a particular point in the time-frequency plane cannot be known. All the points in the time-frequency plane that falls into a box is represented by one value of the WT.
Let's take a closer look at last Figure: First thing to notice is that although the widths and heights of the boxes change, the area is constant(时间间隔在变,频率范围在变,但是时间-频率的乘积不会变). That is each box represents an equal portion of the time-frequency plane, but giving different proportions to time and frequency. Note that at low frequencies, the height of the boxes are shorter (which corresponds to better frequency resolutions, since there is less ambiguity(模棱两可的) regarding the value of the exact frequency), but their widths are longer (which correspond to poor time resolution, since there is more ambiguity regarding the value of the exact time). At higher frequencies the width of the boxes decreases, i.e., the time resolution gets better, and the heights of the boxes increase, i.e., the frequency resolution gets poorer.
Before concluding this section, it is worthwhile to mention how the partition (时间-频率 分区)looks like in the case of STFT. Recall that in STFT the time and frequency resolutions are determined by the width of the analysis window, which is selected once for the entire analysis, i.e., both time and frequency resolutions are constant. Therefore the time-frequency plane consists of squares in the STFT case.
Regardless of the dimensions of the boxes, the areas of all boxes, both in STFT and WT, are the same and determined by Heisenberg's inequality (作者采用了海森伯格的不确定理论进行解释). As a summary, the area of a box is fixed for each window function (STFT) or mother wavelet (CWT), whereas different windows or mother wavelets can result in different areas. However, all areas are lower bounded by 1/4 \pi . That is, we cannot reduce the areas of the boxes as much as we want due to the Heisenberg's uncertainty principle. On the other hand, for a given mother wavelet the dimensions of the boxes can be changed, while keeping the area the same. This is exactly what wavelet transform does.

2.几个连续小波变换的实例

All of the examples that are given below correspond to real-life non-stationary signals(来源于真实世界的非平稳信号). These signals are drawn from a database signals that includes event related potentials of normal people, and patients with Alzheimer's disease(阿尔茨海默氏患者信号). Since these are not test signals like simple sinusoids, it is not as easy to interpret them. They are shown here only to give an idea of how real-life CWTs look like.

2.1 The following signal shown belongs to a normal person(正常人的生理信号).

and the following is its CWT(正常人生理信号的连续小波变换). The numbers on the axes are of no importance to us. those numbers simply show that the CWT was computed at 350 translation and 60 scale locations on the translation-scale plane. The important point to note here is the fact that the computation is not a true continuous WT, as it is apparent from the computation at finite number of locations. This is only a discretized version of the CWT, which is explained later on this page. Note, however, that this is NOT discrete wavelet transform (DWT) which is the topic of Next Part of this tutorial.
       

2.2  a patient diagnosed with Alzheimer's disease(阿莫茨海莫氏患者生理信号)

该信号的连续小波变换:
     

小波的秘密5_多分辨率分析和连续小波变换2相关推荐

  1. matlab 小波变换_matlab小波工具箱实例(二):时频分析和连续小波变换

    本文讲解matlab小波工具箱实例(二):时频分析和连续小波变换.目录如下: 链接:https://www.mathworks.com/help/wavelet/ug/time-frequency-a ...

  2. 小波的秘密10_小波包的数学支撑

    1.前言: 小波多分辨率分析可以对信号进行有效的时频分解,但由于其尺度函数是按照二进制变化的,所以在高频段其频率分辨率较差.只能对信号的频段进行指数等间隔划分.小波包分析还能够为信号提供一种更精细的分 ...

  3. 小波的秘密10_图像处理应用:图像增强

    1.前言: 图像融合是信息融合的一个重要分支,广泛地用于目标识别.机器视觉.智能系统.医学图像处理等领域.传统图像融合方法方法主要是在时间域通过算术运算实现融合,具有算法简单直观,适合实时处理等优点, ...

  4. 小波的秘密8_图像处理应用:图像降噪

    1.前言: 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性法法进行,最常用到的就是维纳滤波,但是他的降噪效果并不是很明显.小波分析法开辟了非线性降噪的先河,小波能够降噪得益于小波变换 ...

  5. 小波的秘密6_小波包的理解

    1.各种变换的适合处理对象 小波变换 加窗Fourier变换   Fourier变换 突变信号或奇异性函数 自适应信号处理 处理渐变信号 实时信号处理 稳定和渐变信号 实时信号处理 2.小波包分解概述 ...

  6. 小波的秘密2_MATLAB图像多尺度分析

    1.MATLAB程序编写步骤 1.把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C.系数C表示该部分函数与小波的相似程度. 2.把小波向右移k单位,得到小波w(t-k),重复1.重复该部知 ...

  7. 小波的秘密1_小波变换概况与综述

    1.有了Fourier,为什么还需要Wavelet? 先来揭揭短: (1)Fourier分析不能刻画时间域上信号的局部特性. (2)Fourier分析对突变和非平稳信号的效果不好,没有时频分析. 傅立 ...

  8. 小波分析——4.使用小波对信号成分进行分析

    文章目录 首先创建一个包含多频率成分的信号 然后我们用数学实现一个墨西哥草帽小波 然后我们开始对原始信号进行处理吧 接下来可以把信号成分进行绘制 在前面的章节里已经介绍过小波的理论.公式等知识点,现在 ...

  9. 小波的秘密9_图像处理应用:图像增强

    1.前言: 图像增强问题的基本目标是对图像进行一定的处理,使其结果比原图更适合用于特定的应用领域. 在图像增强领域,图像增强问题主要通过时域和频域两种方法进行处理.时域方法通过直接在图像上作用算子来解 ...

最新文章

  1. javascript 本地对象和内置对象_JavaScript 的面向对象
  2. 【专场福利Part2】从多维度出发 保障提升实时音视频质量
  3. SQL语句之Insert
  4. 【论文阅读】Learning Traffic as Images: A Deep Convolutional ... [将交通作为图像学习: 用于大规模交通网络速度预测的深度卷积神经网络](1)
  5. C++真的能够王者归来吗?
  6. 【剑指offer】面试题15:二进制中1的个数(Java)
  7. [转]Python yield 使用浅析
  8. 全排列递归实现(二)
  9. mysql 5.6.21 安装_mysql5.6.21安装(通用二进制)
  10. JavaScript操作select下拉菜单全集合
  11. eclipse错误及解决方法
  12. 高通平台音频调试常见问题点归纳
  13. 一篇关于用户需求,己方产品(服务)与竞争对手的小清单
  14. 熊猫烧香病毒作者再被捕 开网络赌场敛财
  15. FreeSwitch基础知识
  16. css中border属性设置
  17. 使用Navicat导入“中国5级行政区域mysql库”
  18. 【web-攻击验证机制】(3.2.3)验证机制设计缺陷:“记住密码” 功能、用户伪装功能、证书确认不完善
  19. 干货 | Elasticsearch Nested 数组大小求解,一网打尽!
  20. Kong(三)Konga UI安装和使用

热门文章

  1. vs2013 编译 notepad++ 源代码 2014-7-23
  2. 使用Spring简化JavaMail
  3. 专题之六:ckk拉链厂信息化实施记
  4. poj 1324(BFS+状态压缩)
  5. BNUOJ 34978 汉诺塔
  6. spingmvc的一些简单理解和记录
  7. VS Supercharger插件的破解
  8. 微信小程序支付最容易犯的坑notify_url(支付回调)
  9. 44)PHP,多个数据库查询(我没试)
  10. 深度解析PHP数组函数array_chunk