简介

​ 内存是计算机中最重要的资源之一,通常情况下,物理内存无法容纳下所有的进程。虽然物理内存的增长现在达到了N个GB,但比物理内存增长还快的是程序,所以无论物理内存如何增长,都赶不上程序增长的速度,所以操作系统如何有效的管理内存便显得尤为重要。本文讲述操作系统对于内存的管理的过去和现在,以及一些页替换的算法的介绍。

对于进程的简单介绍

​ 在开始之前,首先从操作系统的角度简单介绍一下进程。进程是占有资源的最小单位,这个资源当然包括内存。在现代操作系统中,每个进程所能访问的内存是互相独立的(一些交换区除外)。而进程中的线程所以共享进程所分配的内存空间。

​ 在操作系统的角度来看,进程=程序+数据+PCB(进程控制块)。这个概念略微有点抽象,我通过一个类比来说吧:比如,你正在厨房做饭,你一边看着菜谱一边按照菜谱将原料做成菜,就在这时,你儿子进来告诉你他擦破了腿,此时你停下手中的工作,将菜谱反扣过来,然后找来急救书按照书中的内容给你儿子贴上创口贴,贴完后你继续回去打开菜谱,然后继续做饭。在这个过程中,你就好比CPU,菜谱就好比程序,而做菜的原料就好比数据。你按照程序指令加工数据,而急救工作好比一个更高优先级的进程,中断了你当前做饭的工作,然后你将菜谱反扣过来(保护现场),转而去处理高优先级的进程,处理完毕后你继续从刚才的页读菜谱(恢复现场),然后继续执行做菜这个进程。

​ 在简单介绍完进程的概念后,我们来转入内存。

没有内存抽象的年代

​ 在早些的操作系统中,并没有引入内存抽象的概念。程序直接访问和操作的都是物理内存。比如当执行如下指令时:

mov reg1,1000

​ 这条指令会毫无想象力的将物理地址1000中的内容赋值给寄存器。不难想象,这种内存操作方式使得操作系统中存在多进程变得完全不可能,比如MS-DOS,你必须执行完一条指令后才能接着执行下一条。如果是多进程的话,由于直接操作物理内存地址,当一个进程给内存地址1000赋值后,另一个进程也同样给内存地址赋值,那么第二个进程对内存的赋值会覆盖第一个进程所赋的值,这回造成两条进程同时崩溃。

​ 没有内存抽象对于内存的管理通常非常简单,除去操作系统所用的内存之外,全部给用户程序使用。或是在内存中多留一片区域给驱动程序使用,如图1所示。

​ 图1.没有内存抽象时,对内存的使用

​ 第一种情况操作系统存于RAM中,放在内存的低地址,第二种情况操作系统存在于ROM中,存在内存的高地址,一般老式的手机操作系统是这么设计的。

​ 如果这种情况下,想要操作系统可以执行多进程的话,唯一的解决方案就是和硬盘搞交换,当一个进程执行到一定程度时,整个存入硬盘,转而执行其它进程,到需要执行这个进程时,再从硬盘中取回内存,只要同一时间内存中只有一个进程就行,这也就是所谓的交换(Swapping)技术。但这种技术由于还是直接操作物理内存,依然有可能引起进程的崩溃。

​ 所以,通常来说,这种内存操作往往只存在于一些洗衣机,微波炉的芯片中,因为不可能有第二个进程去征用内存。

内存抽象

​ 在现代的操作系统中,同一时间运行多个进程是再正常不过的了。为了解决直接操作内存带来的各种问题,引入的地址空间(Address Space),这允许每个进程拥有自己的地址。这还需要硬件上存在两个寄存器,基址寄存器(base register)和界址寄存器(limit register),第一个寄存器保存进程的开始地址,第二个寄存器保存上界,防止内存溢出。在内存抽象的情况下,当执行

mov reg1,20

​ 这时,实际操作的物理地址并不是20,而是根据基址和偏移量算出实际的物理地址进程操作,此时操作的实际地址可能是:

mov reg1,16245

​ 在这种情况下,任何操作虚拟地址的操作都会被转换为操作物理地址。而每一个进程所拥有的内存地址是完全不同的,因此也使得多进程成为可能。

​ 但此时还有一个问题,通常来说,内存大小不可能容纳下所有并发执行的进程。因此,交换(Swapping)技术应运而生。这个交换和前面所讲的交换大同小异,只是现在讲的交换在多进程条件下。交换的基本思想是,将闲置的进程交换出内存,暂存在硬盘中,待执行时再交换回内存,比如下面一个例子,当程序一开始时,只有进程A,逐渐有了进程B和C,此时来了进程D,但内存中没有足够的空间给进程D,因此将进程B交换出内存,分给进程D。如图2所示。

​ 图2.交换技术

​ 通过图2,我们还发现一个问题,进程D和C之间的空间由于太小无法另任何进程使用,这也就是所谓的外部碎片。一种方法是通过紧凑技术(Memory Compaction)解决,通过移动进程在内存中的地址,使得这些外部碎片空间被填满。还有一些讨巧的方法,比如内存整理软件,原理是申请一块超大的内存,将所有进程置换出内存,然后再释放这块内存,从而使得从新加载进程,使得外部碎片被消除。这也是为什么运行完内存整理会狂读硬盘的原因。另外,使用紧凑技术会非常消耗CPU资源,一个2G的CPU没10ns可以处理4byte,因此多一个2G的内存进行一次紧凑可能需要好几秒的CPU时间。

​ 上面的理论都是基于进程所占的内存空间是固定的这个假设,但实际情况下,进程往往会动态增长,因此创建进程时分配的内存就是个问题了,如果分配多了,会产生内部碎片,浪费了内存,而分配少了会造成内存溢出。一个解决方法是在进程创建的时候,比进程实际需要的多分配一点内存空间用于进程的增长。一种是直接多分配一点内存空间用于进程在内存中的增长,另一种是将增长区分为数据段和栈(用于存放返回地址和局部变量),如图3所示。

​ 图3.创建进程时预留空间用于增长

​ 当预留的空间不够满足增长时,操作系统首先会看相邻的内存是否空闲,如果空闲则自动分配,如果不空闲,就将整个进程移到足够容纳增长的空间内存中,如果不存在这样的内存空间,则会将闲置的进程置换出去。

​ 当允许进程动态增长时,操作系统必须对内存进行更有效的管理,操作系统使用如下两种方法之一来得知内存的使用情况,分别为1)位图(bitmap) 2)链表

​ 使用位图,将内存划为多个大小相等的块,比如一个32K的内存1K一块可以划为32块,则需要32位(4字节)来表示其使用情况,使用位图将已经使用的块标为1,位使用的标为0.而使用链表,则将内存按使用或未使用分为多个段进行链接,这个概念如图4所示。

​ 图4.位图和链表表示内存的使用情况

​ 使用链表中的P表示进程,从0-2是进程,H表示空闲,从3-4表示是空闲。

​ 使用位图表示内存简单明了,但一个问题是当分配内存时必须在内存中搜索大量的连续0的空间,这是十分消耗资源的操作。相比之下,使用链表进行此操作将会更胜一筹。还有一些操作系统会使用双向链表,因为当进程销毁时,邻接的往往是空内存或是另外的进程。使用双向链表使得链表之间的融合变得更加容易。

​ 还有,当利用链表管理内存的情况下,创建进程时分配什么样的空闲空间也是个问题。通常情况下有如下几种算法来对进程创建时的空间进行分配。

  • ​ 临近适应算法(Next fit)—从当前位置开始,搜索第一个能满足进程要求的内存空间
  • ​ 最佳适应算法(Best fit)—搜索整个链表,找到能满足进程要求最小内存的内存空间
  • ​ 最大适应算法(Wrost fit)—找到当前内存中最大的空闲空间
  • ​ 首次适应算法(First fit) —从链表的第一个开始,找到第一个能满足进程要求的内存空间

虚拟内存(Virtual Memory)

​ 虚拟内存是现代操作系统普遍使用的一种技术。前面所讲的抽象满足了多进程的要求,但很多情况下,现有内存无法满足仅仅一个大进程的内存要求(比如很多游戏,都是10G+的级别)。在早期的操作系统曾使用覆盖(overlays)来解决这个问题,将一个程序分为多个块,基本思想是先将块0加入内存,块0执行完后,将块1加入内存。依次往复,这个解决方案最大的问题是需要程序员去程序进行分块,这是一个费时费力让人痛苦不堪的过程。后来这个解决方案的修正版就是虚拟内存。

​ 虚拟内存的基本思想是,每个进程有用独立的逻辑地址空间,内存被分为大小相等的多个块,称为页(Page).每个页都是一段连续的地址。对于进程来看,逻辑上貌似有很多内存空间,其中一部分对应物理内存上的一块(称为页框,通常页和页框大小相等),还有一些没加载在内存中的对应在硬盘上,如图5所示。

​ 图5.虚拟内存和物理内存以及磁盘的映射关系

​ 由图5可以看出,虚拟内存实际上可以比物理内存大。当访问虚拟内存时,会访问MMU(内存管理单元)去匹配对应的物理地址(比如图5的0,1,2),而如果虚拟内存的页并不存在于物理内存中(如图5的3,4),会产生缺页中断,从磁盘中取得缺的页放入内存,如果内存已满,还会根据某种算法将磁盘中的页换出。

​ 而虚拟内存和物理内存的匹配是通过页表实现,页表存在MMU中,页表中每个项通常为32位,既4byte,除了存储虚拟地址和页框地址之外,还会存储一些标志位,比如是否缺页,是否修改过,写保护等。可以把MMU想象成一个接收虚拟地址项返回物理地址的方法。

​ 因为页表中每个条目是4字节,现在的32位操作系统虚拟地址空间会是2的32次方,即使每页分为4K,也需要2的20次方*4字节=4M的空间,为每个进程建立一个4M的页表并不明智。因此在页表的概念上进行推广,产生二级页表,二级页表每个对应4M的虚拟地址,而一级页表去索引这些二级页表,因此32位的系统需要1024个二级页表,虽然页表条目没有减少,但内存中可以仅仅存放需要使用的二级页表和一级页表,大大减少了内存的使用。

页面替换算法

* *因为在计算机系统中,读取少量数据硬盘通常需要几毫秒,而内存中仅仅需要几纳秒。一条CPU指令也通常是几纳秒,如果在执行CPU指令时,产生几次缺页中断,那性能可想而知,因此尽量减少从硬盘的读取无疑是大大的提升了性能。而前面知道,物理内存是极其有限的,当虚拟内存所求的页不在物理内存中时,将需要将物理内存中的页替换出去,选择哪些页替换出去就显得尤为重要,如果算法不好将未来需要使用的页替换出去,则以后使用时还需要替换进来,这无疑是降低效率的,让我们来看几种页面替换算法。

最佳置换算法(Optimal Page Replacement Algorithm)

​ 最佳置换算法是将未来最久不使用的页替换出去,这听起来很简单,但是无法实现。但是这种算法可以作为衡量其它算法的基准。

最近不常使用算法(Not Recently Used Replacement Algorithm)

​ 这种算法给每个页一个标志位,R表示最近被访问过,M表示被修改过。定期对R进行清零。这个算法的思路是首先淘汰那些未被访问过R=0的页,其次是被访问过R=1,未被修改过M=0的页,最后是R=1,M=1的页。

先进先出页面置换算法(First-In,First-Out Page Replacement Algorithm)

​ 这种算法的思想是淘汰在内存中最久的页,这种算法的性能接近于随机淘汰。并不好。

改进型FIFO算法(Second Chance Page Replacement Algorithm)

* *这种算法是在FIFO的基础上,为了避免置换出经常使用的页,增加一个标志位R,如果最近使用过将R置1,当页将会淘汰时,如果R为1,则不淘汰页,将R置0.而那些R=0的页将被淘汰时,直接淘汰。这种算法避免了经常被使用的页被淘汰。

时钟替换算法(Clock Page Replacement Algorithm)

​ 虽然改进型FIFO算法避免置换出常用的页,但由于需要经常移动页,效率并不高。因此在改进型FIFO算法的基础上,将队列首位相连形成一个环路,当缺页中断产生时,从当前位置开始找R=0的页,而所经过的R=1的页被置0,并不需要移动页。如图6所示。

​ 图6.时钟置换算法

最久未使用算法(LRU Page Replacement Algorithm)

​ LRU算法的思路是淘汰最近最长未使用的页。这种算法性能比较好,但实现起来比较困难。

下面表是上面几种算法的简单比较:

算法 描述
最佳置换算法 无法实现,最为测试基准使用
最近不常使用算法 和LRU性能差不多
先进先出算法 有可能会置换出经常使用的页
改进型先进先出算法 和先进先出相比有很大提升
最久未使用算法 性能非常好,但实现起来比较困难
时钟置换算法 非常实用的算法

​ 上面几种算法或多或少有一些局部性原理的思想。局部性原理分为时间和空间上的局部性

​ 1.时间上,最近被访问的页在不久的将来还会被访问。

​ 2.空间上,内存中被访问的页周围的页也很可能被访问。

总结

​ 本文简单介绍了操作系统对内存的管理。这些基础概念对于很多开发人员是很有帮助的。内存管理中还有一种分段式管理,也就是一个进程可以拥有多个独立的逻辑地址,以后有时间了再补上一篇。

原文链接:https://www.cnblogs.com/CareySon/archive/2012/04/25/2470063.html

【操作系统】内存管理相关推荐

  1. 操作系统内存管理-Linux版

    引言 操作系统内存管理:总的来说,操作系统内存管理包括物理内存管理和虚拟内存管理. 物理内存管理: 包括程序装入等概念.交换技术.连续分配管理方式和非连续分配管理方式(分页.分段.段页式). 虚拟内存 ...

  2. 操作系统内存管理——分区、页式、段式管理

    操作系统内存管理--分区.页式.段式管理 标签: 内存管理操作系统数据结构算法 2010-07-05 11:26 20805人阅读 评论(5) 收藏 举报 分类: 操作系统(4) 版权声明:本文为博主 ...

  3. 操作系统内存管理-原理

    任何新技术都是在一点一点的积累中成熟并呈现在世人的面前,就像猿人进程成人也不是一簇而就的,而是在漫长的岁月中一点一点的进化与完善.还比如现代的吸尘器,当前发明吸尘器的那个人只是用了一台风扇的电机和叶片 ...

  4. 计算机操作系统 - 内存管理

    计算机操作系统 - 内存管理 目录 计算机操作系统 - 内存管理 虚拟内存 分页系统地址映射 页面置换算法 1. 最佳 2. 最近最久未使用 3. 最近未使用 4. 先进先出 5. 第二次机会算法 6 ...

  5. 操作系统内存管理及虚拟内存技术

    一.内存管理 操作系统的内存管理主要负责内存的分配与回收(malloc 函数:申请内存,free 函数:释放内存),另外地址转换也就是将逻辑地址转换成相应的物理地址等功能也是操作系统内存管理做的事情. ...

  6. 4、操作系统内存管理——页面的换入换出

    注:参考哈工大李治军老师公开课. 对于用户而言,用户看到的是一个整体的内存入4G,而且用户可以随便访问4G内存空间的任意位置:但是对于真实的物理内存可能只有1G大小,当用户访问内存时,如果内存里面有需 ...

  7. 内存与操作系统内存管理

    内存与操作系统内存管理 文章目录 内存与操作系统内存管理 一.内存的基础知识 二.内存管理 2.1 内存空间扩充 2.2 内存空间的分配与回收** Java.大数据开发学习要点(持续更新中-) 一.内 ...

  8. 操作系统 内存管理单元MMU TLB

    前言 在了解操作系统 内存管理 分页/分段/段页式管理.操作系统 虚拟内存技术两篇文章后,接下来继续看看现代操作系统基本内存管理方式,本文详细介绍Linux操作系统下的内存管理单元MMU和TLB. d ...

  9. 操作系统 内存管理总结

    目录 内存管理介绍 什么是虚拟内存(Virtual Memory)? 逻辑(虚拟)地址和物理地址 CPU 寻址了解吗?为什么需要虚拟地址空间? 局部性原理 操作系统是如何管理虚拟地址与物理地址之间的关 ...

  10. 操作系统内存管理,你能回答这8个问题吗?

    # 干了这碗鸡汤 当我们是少数人时,我们要有勇气做自己:当我们是多数人时,我们要有胸襟容得下他人. -- 拉尔夫·W·索克曼 大家早上好,今天为大家总结整理了关于操作系统内存管理的知识点,更文不易,请 ...

最新文章

  1. linux网络编程-posix信号量与互斥锁(39)
  2. java传送字符到前端_javaWeb后台特殊字符怎样还原传给前端正确显示?
  3. (第五篇)Linux操作系统基本结构介绍
  4. python的主要版本_Python目前主要有( )两个主要版本。_学小易找答案
  5. 网络配置 rpm yum
  6. php 显示变量类型
  7. mongoose查找若存在,则什么都不做,若不存在,则插入
  8. UNIX(进程间通信):16深入理解Socket
  9. Struts2学习(四):Action执行的时候发生了什么
  10. Confluence 6 升级以后
  11. 2020 年 6 月编程语言排行榜,Rust 第一次进入榜单前 20。
  12. 转的一个itoa实现(效率很高,并且能够正确处理INT_MIN)
  13. 表单式工作流功能模块设计方案
  14. 使用Pytorch来拟合函数
  15. 微信小程序保存图片到手机相册(封装全局使用)
  16. 手动挡五个档位示意图_捷达档位示意图手动挡
  17. C++ 解析器--cint
  18. 轻型货车悬架系统的设计(设计说明书+CAD图纸+开题报告+任务书+答辩相关材料)
  19. super 和 this
  20. Vue实战教程:利用自定义实现鼠标拖动元素效果

热门文章

  1. python爬虫防屏蔽_python爬虫程序如何预防被限制
  2. beyond compare 4 license 过期解决办法
  3. Jquery做的网页版连连看(初稿)
  4. 高性能服务器设计[转自腾讯km,由qzhang同学翻译]
  5. 2020谷歌学术指标出炉,CVPR成AI学术会议总榜第一名
  6. Task运行过程分析1
  7. 无线华为能连苹果不能连接到服务器,华为手机连苹果Mac,连不上?手把手教你...
  8. 基于Cytoscape的GIANT增强包分析网络图的Z、P-score
  9. 人员招聘与培训实务【2】
  10. 1000多个谷歌广告应该排除的关键词:全面清单