介绍

相信SSD的横空出世委实给了Yolo许多压力。在目标检测准确性上Yolo本来就弱于Faster-RCNN,它的提出之初就主打其能保持一定检测准确性的同时实现更快乃至实时的速度。可同一年SSD的出现表明端到端的单阶段目标检测模型如果善加调理(更激进的data augmentation, multi scales feature maps,更多的default boxes数目,直接使用conv filter来从feature maps中得到位置、类别等信息)在拥有较快速度的同时,一样可以达到与像Faster-RCNN等双阶段目标检测模型类似的准确度。

经过一年的蛰伏之后,Yolo卷土重来,于2016年推出了改进后的Yolo v2。它有效地借鉴了Faster-RCNN/SSD中使用的思想,成功地使Yolo v2模型成为了新的state-of-art端到端目标检测网络。

Yolo_v2

Yolo v2

不多废话,直接说下Yolo v2相对于之前的Yolo v1所多的改进吧。

BN(batch normalization)的引入

BN自提出以来已经在多个视觉领域得到了较好的证明。Yolo v2通过在之前Yolo中用到的所有conv层加入bn,整个模型的检测mAP有效提升了近2%。此外BN的引入也让作者放弃了在新的模型中使用之前用于防止模型过拟合的dropout层。

finetune时高精度分类器的使用

当初Yolo模型在训练时先使用224x224的图片输入来预训练自己的特征提取网络;然后再将输入的图片尺度增大到448x448,进面继续使用检测数据集对其进行finetune。这意味着上述finetune中网络需要重新学习识别大尺度(448)的图片以及学习进行其上的目标检测工作。

在Yolo v2中,在拿到224x224的分类数据集train过的模型后先使用448x448的分类数据集finetune上10个epochs,然后再使用448x448的目标检测数据集进行接下来的目标检测工作的finetune。。

实现表明finetune时高精度分类器的预先finetune操作可带来最终目标检测模型近4%的map提升。

使用卷积操作的Anchor boxes

Yolo v1模型当初直接在特征提取主干网络最后端生成的feature maps上后接FC,然后生成得到预测的目标框的类别、位置等信息。

而在Yolo v2中,像Faster-RCNN的RPN网络或者SSD等一样,开始直接使用conv filters来提取生成prior boxes(又叫Anchor boxes)的位置偏移及类别等信息。与其它网络略不同的是Yolo v2特意选了416x416的image size作为输入,这样经过前端的数个特征提取卷积层与pool层后(stride为32),最终的feature map大小为13x13,恰是个奇数。这样它就可以有效地预测最中心grid位置的目标(这一trick来自于一个数据集常识即一般我们training用的数据集上,目标往往是在图片的中央区域)。

相对于Yolo v1中直接使用FC来预测目标框的类别与位置,使用卷积生成anchor boxes位置与类别的方法会带来mAP约0.3的下降,但会导致较大的召回率(Recall ratio)提升,约7%。这使得这一模型可进一步改良、提升的空间加大。

使用K-means cluster来选取anchor boxes

作者直接在目标检测训练数据集上对所有的目标框进行k-means聚类最终得到了Avg IOU与模型复杂度均不错的anchor boxes组合。如下为所使用的k-means中的距离衡量公式:

d(box; centroid) = 1 − IOU(box; centroid)

如下是它在VOC与COCO数据集上的聚类结果。最终在模型训练时选取了k = 5个anchor box。

Box_k-means聚类方法在VOC与COCO数据集上的结果

直接目标框位置检测

Yolo v2同RPN等网络一样使用了卷积来生成anchor boxes的位置信息。但它在使用像Faster-RCNN或SSD中那样来进行位置偏离计算的方法来预测predicted box的位置时发现训练时非常容易出现震荡。如下为RPN网络所用的位置计算公式:

x = (tx ∗ wa) − xa

y = (ty ∗ ha) − ya

为了消除此一问题,作者使用如下公式直接对目标框位置进行预测。其中tx, ty, tw, th, 和to为网络预测得到的值,而cx与cy表示anchor box对图片的相对位置,pw与ph是anchor box的长与宽。

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwet~w~

bh = phet~h~

Pr(object) ∗ IOU(b; object) = σ(to)

下图中可看到更详细的解释。

Bounding_box位置的预测

细粒度特征的使用

SSD在目标检测时通过使用多尺度的feature maps特征,最终能够cover尺度广泛的目标,从而获得了较高的检测mAP。Yolo v2也吸取了此一优点。但它并不像SSD那样分别在不同的feature maps之上对不同尺度大小的anchor box进行预测,而是将拥有较细粒度特征的层变形后(使得与后面粗粒度的特征层有着一样的size,有些类似于用于super resolution的subpixel层;比如若其细粒度特征层为26x26x512,而最后一层粗粒度特征层的size则为13x13,于是这里会将它变形为13x13x1024从而与最后一个特征层有着一样的size,进行能在channel level上进行合并)与后面粗粒度的特征层结合在一起用于后续的anchor box预测。

多尺度训练

之前Yolo v1的固定图片输入大小为448x448,而Yolo v2因为Anchor box的引入从而将输入变为了416x416。进一步为了使得模型能够对各种尺度的图片进行有效检测,作者在训练Yolo v2时不再固定image size,而是每训练10个epochs随机地从一个组合{320; 352; :::; 608}中选取(注意它们都是32的倍数,因为darknet网络的步长为32)一个数作为输入的image size。此种训练方法被证明可有效地使得网络学会去自动识别各种尺度大小的图片。

Darknet-19

Yolo v2还采用了有着19个Conv 层与5个maxpooling层的darknet-19作为模型的特征提取前端网络。在此网络中引入了BN用于稳定训练,加快收敛,同时防止模型过拟合。

下图为darknet-19网络的组成。

Darknet-19网络

总结

自下表中我们可以清楚看到Yolo v2相对于Yolo v1共作出了哪些改变以及这些改变分别对模型性能提升所发挥的作用。

自Yolo至Yolo_v2所发生的变化及带来的提升

实验结果

下表为Yolo v2与其它目标检测网络在VOC2007上的结果比较。有些小置疑,不明白为何Yolo v2甚至能够胜得了Faster-RCNN。笔者曾使用一个16 nodes的普通机群训练过SSD,可以在VOC07+12数据集上得到78.2%的test mAP精度。。所以作者的结果值得怀疑啊,呵呵。。

Yolo与其它目标检测模型在VOC2007上的结果比较

代码分析

以下为它的输入及训练时的超参配置。

[net]

# Testing

batch=1

subdivisions=1

# Training

# batch=64

# subdivisions=8

width=416

height=416

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.001

burn_in=1000

max_batches = 500200

policy=steps

steps=400000,450000

scales=.1,.1

以下为Anchor层的选择及设置参数。当然还有最终的模型loss计算及设置。

[region]

anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828

bias_match=1

classes=80

coords=4

num=5

softmax=1

jitter=.3

rescore=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

absolute=1

thresh = .6

random=1

参考文献

yolo系列外文翻译_Yolo系列其二:Yolo_v2相关推荐

  1. yolo系列外文翻译_Yolo系列其三:Yolo_v3

    介绍 如果你已读过之前Yolo v1与Yolo v2系列的文章,另外对FPN/RetinaNet等模型也有所了解,那么等你看Yolo v3时就会发现它真的没有啥新货. 简单说Yolo v3是在之前Yo ...

  2. matlab仿真的英文文献,matlab 外文翻译 外文文献 英文文献 MATALAB 混合仿真平台控制算法的概述...

    matlab 外文翻译 外文文献 英文文献 MATALAB 混合仿真平台控制算法的概述 MATALAB 混合仿真平台控制算法的概述 MATALB 混合仿真平台,即为将硬件引入到仿真回路里的半实物仿真系 ...

  3. 【外文翻译】图像中的傅里叶变换

    转载自:[外文翻译]图像中的傅里叶变换 写在前面:这是我在外网看到的一篇较为易懂.详细的介绍了图像中的傅里叶变换的一篇文章,翻译过来给大家分享一下.适读人群为对机器视觉感兴趣的初学者.为了可读性,没有 ...

  4. 开题报告、文献综述、外文翻译、论文反抄袭软件、论文目录,就差论文正文了,其他都全了!!

    开题报告.文献综述.外文翻译.论文反抄袭软件.论文目录,就差论文正文了,其他都全了!! 开题报告主要包括以下几个方面: (一)论文名称 论文名称就是课题的名字 第一,名称要准确.规范.准确就是论文的名 ...

  5. 开题报告、文献检索账号、文献综述、外文翻译、抄袭检测软件、论文目录,都在这了都在这了,有备无患,拿去吧!

    开题报告.文献综述.外文翻译.论文反抄袭软件.论文目录,就差论文正文了,其他都全了!! 开题报告主要包括以下几个方面: (一)论文名称 论文名称就是课题的名字 第一,名称要准确.规范.准确就是论文的名 ...

  6. 开题报告、文献检索账号、文献综述、外文翻译、抄袭检测软件、论文目录,免费分享,都在这了

    开题报告.文献综述.外文翻译.论文反抄袭软件.论文目录,就差论文正文了,其他都全了!! 反论文抄袭检查,吼吼,终于找到了 来源:http://likelibrary.blog.163.com/blog ...

  7. matlab中的routte,matlab外文翻译外文文献英文文献MATALAB混合仿真平台控制算法的概述...

    <matlab外文翻译外文文献英文文献MATALAB混合仿真平台控制算法的概述>由会员分享,可在线阅读,更多相关<matlab外文翻译外文文献英文文献MATALAB混合仿真平台控制算 ...

  8. 大学计算机专业全英文论文,5计算机专业 外文文献 英文文献 外文翻译 jsp应用框架 中英对照 大学学位论文.doc...

    5计算机专业 外文文献 英文文献 外文翻译 jsp应用框架 中英对照 大学学位论文 外文JSP application frameworks brian wright.michael freedman ...

  9. 微型计算机系统外文,微型计算机控系统(单片机控制系统) 毕业论文外文翻译.doc...

    微型计算机控系统(单片机控制系统) 毕业论文外文翻译 英语翻译 Microcontroller reset is to make the CPU and other system features a ...

最新文章

  1. 2012-09-10 23:30 如何解决HtmlAgilityPack得到的InnerText中有残留的script、样式的问题...
  2. Python基础-re模块
  3. 实例:加载图片并添加文本水印
  4. 分布式服务框架dubbo原理解析 转
  5. Linux常用命令(八)LVM逻辑卷管理
  6. python4发布_Python 3.4.1 发布
  7. jQuery DOM/属性/CSS操作
  8. 中fifo算法_java线程池,工作窃取算法
  9. springwebflux 页面_Spring Security: Webflux 默认配置
  10. Codeforces Round #309 (Div. 1) A(组合数学)
  11. pythonfilelist_Python 列表list使用介绍
  12. 《黑客与画家》 读书笔记
  13. 侯捷 - C++ Startup 揭密:C++ 程序的生前和死后 (二)
  14. java调用chrome内核_selenium中如何测试360等基于chrome内核的浏览器
  15. 冀教版三年级计算机教学计划,冀教版数学小学三年级上册教学计划
  16. 程序员都知道的二维码扫码登录的底层原理
  17. 哪款 Linux 才是更好的 CentOS 替代品?
  18. Unity技术手册-编辑器基础入门万字大总结
  19. 英语在线教育机构争战AI风口,为何雷声大雨点小?
  20. easyUI非常迷惑性的bug:分页插件点击下一页和尾页后,发送两次请求,第二次请求回跳转到第一页

热门文章

  1. 数字图像处理作业——直方图均衡处理
  2. 网络分层(OSI七层模型、TCP/IC四层/五层模型)
  3. 顺应时代需求 浪潮云海OS升级R版本借势上位
  4. AS3.0的类型转换
  5. 先知云PHP授权中心系统源码
  6. 【长文慎入】百度阿里网易大疆等大小厂前端校招面筋
  7. 自动识别移动端电脑端的asp支付宝接口代码带ACCESS数据库版 2018版最新
  8. db2 日期英式写法_英语日期的六种写法和四种读法
  9. ECSHOP和SHOPEX快递单号查询国际EMS插件V8.6专版
  10. 印制电路板常规检测技术