这里写目录标题

  • 试求电压源电压Vs的时域波形表达式vs(t)
  • 关于传输线的计算问题★
  • 端接负载的无耗传输线
    • 电压反射系数
    • 传播常数和相速
    • 驻波
    • 电压传播的一般形式
    • 开路线、短路线、四分之一波长传输线
      • 终端短路传输线
      • 终端开路的传输线
      • 1/4波长传输线
      • 1/2波长的端接传输线
  • 传输线常用公式和近似值★★★
  • 作业

设无限长均匀传输线为无穷多个无限小线元级联而成。

其中: z为线长度坐标

物理量★ 符号 单位
线元长度 ∆z m
单位长度上的电阻 R Ω/m\Omega/mΩ/m
单位长度上的电导 G S/mS/mS/m
单位长度上的电感 L H/mH/mH/m
单位长度上的电容 C F/mF/mF/m

电压、电流时域方程
v(z,t)=RΔzi(z,t)+LΔz∂i(z,t)∂t+v(z+Δz,t)v(z,t) = R\Delta zi(z,t) + L\Delta z\frac{{\partial i(z,t)}}{{\partial t}} + v(z + \Delta z,t)v(z,t)=RΔzi(z,t)+LΔz∂t∂i(z,t)​+v(z+Δz,t)
i(z,t)=GΔzv(z+Δz,t)+CΔz∂v(z+Δz,t)∂t+i(z+Δz,t)i(z,t) = G\Delta zv(z + \Delta z,t) + C\Delta z\frac{{\partial v(z + \Delta z,t)}}{{\partial t}} + i(z + \Delta z,t)i(z,t)=GΔzv(z+Δz,t)+CΔz∂t∂v(z+Δz,t)​+i(z+Δz,t)

v(z+Δz,t)−v(z,t)Δz+Ri(z,t)+L∂i(z,t)∂t=0\frac{{v(z + \Delta z,t) - v(z,t)}}{{\Delta z}} + Ri(z,t) + L\frac{{\partial i(z,t)}}{{\partial t}} = 0Δzv(z+Δz,t)−v(z,t)​+Ri(z,t)+L∂t∂i(z,t)​=0
i(z+Δz,t)−i(z,t)Δz+Gv(z+Δz,t)+C∂v(z+Δz,t)∂t=0\frac{{i(z + \Delta z,t) - i(z,t)}}{{\Delta z}} + Gv(z + \Delta z,t) + C\frac{{\partial v(z + \Delta z,t)}}{{\partial t}} = 0Δzi(z+Δz,t)−i(z,t)​+Gv(z+Δz,t)+C∂t∂v(z+Δz,t)​=0

Δz→0\Delta z \to 0Δz→0
∂v(z,t)∂z+Ri(z,t)+L∂i(z,t)∂t=0\frac{{\partial v(z,t)}}{{\partial z}} + Ri(z,t) + L\frac{{\partial i(z,t)}}{{\partial t}} = 0∂z∂v(z,t)​+Ri(z,t)+L∂t∂i(z,t)​=0
∂i(z,t)∂z+Gv(z,t)+C∂v(z,t)∂t=0\frac{{\partial i(z,t)}}{{\partial z}} + Gv(z,t) + C\frac{{\partial v(z,t)}}{{\partial t}} = 0∂z∂i(z,t)​+Gv(z,t)+C∂t∂v(z,t)​=0

复数法(相量法)表示单频正弦信号
V(z)=RΔzI(z)+jωLΔzI(z)+V(z+Δz)V(z) = R\Delta zI(z) + j\omega L\Delta zI(z) + V(z + \Delta z)V(z)=RΔzI(z)+jωLΔzI(z)+V(z+Δz)
I(z)=GΔzV(z+Δz)+jωCΔzV(z+Δz)+I(z+Δz)I(z) = G\Delta zV(z + \Delta z) + j\omega C\Delta zV(z + \Delta z) + I(z + \Delta z)I(z)=GΔzV(z+Δz)+jωCΔzV(z+Δz)+I(z+Δz)

V(z+Δz)−V(z)Δz+[R+jωL]I(z)=0\frac{{V(z + \Delta z) - V(z)}}{{\Delta z}} + \left[ {R + j\omega L} \right]I(z) = 0ΔzV(z+Δz)−V(z)​+[R+jωL]I(z)=0
I(z+Δz)−I(z)Δz+[G+jωC]V(z+Δz)=0\frac{{I(z + \Delta z) - I(z)}}{{\Delta z}} + \left[ {G + j\omega C} \right]V(z + \Delta z) = 0ΔzI(z+Δz)−I(z)​+[G+jωC]V(z+Δz)=0

Δz→0\Delta z \to 0Δz→0
dV(z)dz+[R+jωL]I(z)=0\frac{{dV(z)}}{{dz}} + \left[ {R + j\omega L} \right]I(z) = 0dzdV(z)​+[R+jωL]I(z)=0
dI(z)dz+[G+jωC]V(z)=0\frac{{dI(z)}}{{dz}} + \left[ {G + j\omega C} \right]V(z) = 0dzdI(z)​+[G+jωC]V(z)=0

dV(z)dz+[R+jωL]I(z)=0(1)\frac{{dV(z)}}{{dz}} + \left[ {R + j\omega L} \right]I(z) = 0(1)dzdV(z)​+[R+jωL]I(z)=0(1)
dI(z)dz+[G+jωC]V(z)=0(2)\frac{{dI(z)}}{{dz}} + \left[ {G + j\omega C} \right]V(z) = 0(2)dzdI(z)​+[G+jωC]V(z)=0(2)
(1)式对z求导再将(2)代入得(3),同理可得(4)
d2V(z)dz2−[R+jωL][G+jωC]V(z)=0(3)\frac{{{d^2}V(z)}}{{d{z^2}}} - \left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]V(z) = 0(3)dz2d2V(z)​−[R+jωL][G+jωC]V(z)=0(3)
d2I(z)dz2−[R+jωL][G+jωC]I(z)=0(4)\frac{{{d^2}I(z)}}{{d{z^2}}} - \left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]I(z) = 0(4)dz2d2I(z)​−[R+jωL][G+jωC]I(z)=0(4)
γ=[R+jωL][G+jωC]=α+jβ,α≥0,β∈R\gamma {\rm{ = }}\sqrt {\left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]} {\rm{ = }}\alpha {\rm{ + }}j\beta,\alpha \ge 0,\beta∈Rγ=[R+jωL][G+jωC]​=α+jβ,α≥0,β∈R★

传输方程
d2V(z)d2z−γ2V(z)=0\frac{{{d^2}V(z)}}{{{d^2}z}} - {\gamma ^2}V(z) = 0d2zd2V(z)​−γ2V(z)=0★
d2I(z)d2z−γ2I(z)=0\frac{{{d^2}I(z)}}{{{d^2}z}} - {\gamma ^2}I(z) = 0d2zd2I(z)​−γ2I(z)=0★

传输方程的解
V(z)=V0+e−γz+V0−eγzV(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}}V(z)=V0​+e−γz+V0​−eγz★
I(z)=I0+e−γz+I0−eγzI(z) = {I_0}^ + {e^{ - \gamma z}} + {I_0}^ - {e^{\gamma z}}I(z)=I0​+e−γz+I0​−eγz★
其中V0+{V_0}^ +V0​+V0−{V_0}^ -V0​−I0+{I_0}^ +I0​+I0−{I_0}^ -I0​−为复常数,与传输距离z无关
由传输线边界条件确定
四个参数中只有两个是独立的
方程中只有z是实数,其他均为复数

根据前面的方程(1)得
dV(z)dz+[R+jωL]I(z)=0\frac{{dV(z)}}{{dz}} + \left[ {R + j\omega L} \right]I(z) = 0dzdV(z)​+[R+jωL]I(z)=0
I(z)=−1R+jωLdV(z)dzI(z){\rm{ = }}\frac{{ - 1}}{{R + j\omega L}}\frac{{dV(z)}}{{dz}}I(z)=R+jωL−1​dzdV(z)​
I(z)=γR+jωL(V0+e−γz−V0−eγz)I(z) = \frac{\gamma }{{R + j\omega L}}\left( {{V_0}^ + {e^{ - \gamma z}} - {V_0}^ - {e^{\gamma z}}} \right)I(z)=R+jωLγ​(V0​+e−γz−V0​−eγz)

特征阻抗
= 入射波电压 / 入射波电流 = - 反射波电压 / 反射波电流 ★
仅由自身分布参数决定
与信号源和负载无关
一般为复数,与频率有关
Z0=R+jωLG+jωC=r+jx=V0+I0+=−V0−I0−,r≥0,x∈R{Z_0}{\rm{ = }}\sqrt {\frac{{R + j\omega L}}{{G + j\omega C}}} = r + jx = \frac{{V_0^ + }}{{I_0^ + }} = \frac{{ - V_0^ - }}{{I_0^ - }},r\ge 0,x∈RZ0​=G+jωCR+jωL​​=r+jx=I0+​V0+​​=I0−​−V0−​​,r≥0,x∈R★

I(z)=V0+Z0e−γz−V0−Z0eγzI(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}}I(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz
传输方程的解为
V(z)=V0+e−γz+V0−eγzV(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}}V(z)=V0​+e−γz+V0​−eγz★
I(z)=V0+Z0e−γz−V0−Z0eγzI(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}}I(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz★
注意:复数开方有两个值,根据其物理意义,取值要求α≥0,r≥0,β,x\alpha \ge 0,r \ge 0,\beta,xα≥0,r≥0,β,x为任意实数(z的方向从源到负载)

复函数表达式中解出对应的时域函数
v(z,t)=Re{ejωtV(z)}=ejωtV(z)+e−jωtV∗(z)2v(z,t) = {\mathop{\rm Re}\nolimits} \left\{ {{e^{j\omega t}}V(z)} \right\} = \frac{{{e^{j\omega t}}V(z) + {e^{ - j\omega t}}{V^ * }(z)}}{2}v(z,t)=Re{ejωtV(z)}=2ejωtV(z)+e−jωtV∗(z)​
假设V0+=∣V0+∣ejφ+=∣V0+∣(cos⁡φ++jsin⁡φ+){V_0}^ + {\rm{ = }}\left| {{V_0}^ + } \right|{e^{j{\varphi ^ + }}}{\rm{ = }}\left| {{V_0}^ + } \right|\left( {\cos {\varphi ^ + } + j\sin {\varphi ^ + }} \right)V0​+=∣∣​V0​+∣∣​ejφ+=∣∣​V0​+∣∣​(cosφ++jsinφ+)
V0−=∣V0−∣ejφ−{V_0}^ - {\rm{ = }}\left| {{V_0}^ - } \right|{e^{j{\varphi ^ - }}}V0​−=∣∣​V0​−∣∣​ejφ−
V(z)=V0+e−γz+V0−eγz=∣V0+∣ejφ+e−αz−jβz+∣V0−∣ejφ−eαz+jβzV(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = \left| {{V_0}^ + } \right|{e^{j{\varphi ^ + }}}{e^{ - \alpha z - j\beta z}} + \left| {{V_0}^ - } \right|{e^{j{\varphi ^ - }}}{e^{\alpha z + j\beta z}}V(z)=V0​+e−γz+V0​−eγz=∣∣​V0​+∣∣​ejφ+e−αz−jβz+∣∣​V0​−∣∣​ejφ−eαz+jβz
v(z,t)=Re{ejωtV(z)}=∣V0+∣e−αzej(ωt−βz+φ+)+∣V0−∣eαzej(ωt+βz+φ−)=∣V0+∣e−αzcos⁡(ωt−βz+ϕ+)+∣V0−∣eαzcos⁡(ωt+βz+ϕ−)v(z,t) = {\mathop{\rm Re}\nolimits} \left\{ {{e^{j\omega t}}V(z)} \right\} = \left| {{V_0}^ + } \right|{e^{ - \alpha z}}{e^{j\left( {\omega t - \beta z + {\varphi ^ + }} \right)}} + \left| {{V_0}^ - } \right|{e^{\alpha z}}{e^{j\left( {\omega t + \beta z + {\varphi ^ - }} \right)}} = \left| {V_0^ + } \right|{e^{ - \alpha z}}\cos (\omega t - \beta z + {\phi ^ + }) + \left| {V_0^ - } \right|{e^{\alpha z}}\cos (\omega t + \beta z + {\phi ^ - })v(z,t)=Re{ejωtV(z)}=∣∣​V0​+∣∣​e−αzej(ωt−βz+φ+)+∣∣​V0​−∣∣​eαzej(ωt+βz+φ−)=∣∣​V0+​∣∣​e−αzcos(ωt−βz+ϕ+)+∣∣​V0−​∣∣​eαzcos(ωt+βz+ϕ−)
同理可得电流波形的表达式

方程的物理意义

  1. 方程以复数形式描述了在单频正弦波激励下传输线各点上的电压和电流的幅度和相位
  2. 方程中z为实数。z的方向及电压电流的方向见参考图,从源向终端负载
  3. 传输线上任意点的电压表达式
    v(z,t)=∣V0+∣e−αzcos⁡(ωt−βz+ϕ+)+∣V0−∣eαzcos⁡(ωt+βz+ϕ−)v(z,t) = \left| {V_0^ + } \right|{e^{ - \alpha z}}\cos (\omega t - \beta z + {\phi ^ + }) + \left| {V_0^ - } \right|{e^{\alpha z}}\cos (\omega t + \beta z + {\phi ^ - })v(z,t)=∣∣​V0+​∣∣​e−αzcos(ωt−βz+ϕ+)+∣∣​V0−​∣∣​eαzcos(ωt+βz+ϕ−)★
    称方程中第一项为电压入射波,传播方向与z相同
    称方程中第二项为电压反射波,传播方向与z相反
    各点均由入射波与反射波叠加而成。

试求电压源电压Vs的时域波形表达式vs(t)

例:设有限长传输线的源端接理想电压源VsV_sVs​,终端接负载ZL=Z0=50ΩZ_L=Z0=50ΩZL​=Z0=50Ω
若传输线的长度为l=10ml=10ml=10m,γ=0.1+jπ/20(1/m)γ=0.1+jπ/20(1/m)γ=0.1+jπ/20(1/m)
测得负载电压VLV_LVL​的波形为vL(t)=cosωtv_L(t)=cosωtvL​(t)=cosωt
试求电压源电压VsV_sVs​的时域波形表达式vs(t)v_s(t)vs​(t)
首先定义z的坐标

定义余弦函数为相位参考,峰值为幅度参考,则VL=1V_L=1VL​=1
{V(z)=V0+e−γz+V0−eγzI(z)=V0+Z0e−γz−V0−Z0eγz⇒{V(0)=VL=V0++V0−I(0)=VLZL=V0+Z0−V0−Z0\{ \begin{array}{l} V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}}\\ I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} \end{array} \Rightarrow \{ \begin{array}{l} V(0) = {V_L} = {V_0}^ + + {V_0}^ - \\ I(0) = \frac{{{V_L}}}{{{Z_L}}} = \frac{{{V_0}^ + }}{{{Z_0}}} - \frac{{{V_0}^ - }}{{{Z_0}}} \end{array}{V(z)=V0​+e−γz+V0​−eγzI(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz​⇒{V(0)=VL​=V0​++V0​−I(0)=ZL​VL​​=Z0​V0​+​−Z0​V0​−​​★
V0+=VL2(1+Z0ZL){V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right)V0​+=2VL​​(1+ZL​Z0​​)★
V0−=VL2(1−Z0ZL){V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right)V0​−=2VL​​(1−ZL​Z0​​)★
代入VL=1,Z0=ZL=50{V_L} = 1,{Z_0}{\rm{ = }}{Z_L}{\rm{ = }}50VL​=1,Z0​=ZL​=50得V0+=1,V0−=0V_0^ + = 1,V_0^ - = 0V0+​=1,V0−​=0

V(z)=e−γz⇒VS=V(−l)=eγl=e1+jπ/2=jeV(z) = {e^{ - \gamma z}} \Rightarrow {V_S} = V( - l) = {e^{\gamma l}} = {e^{1 + j\pi /2}} = jeV(z)=e−γz⇒VS​=V(−l)=eγl=e1+jπ/2=je
vs(t)=Re{V(z)ejωt}=Re{je(cos⁡ωt+jsin⁡ωt)}≈−2.7sin⁡ωt(V){v_s}(t) ={\mathop{\rm Re}\nolimits} \left\{ {V(z)e^{j \omega t}} \right\}= {\mathop{\rm Re}\nolimits} \left\{ {je\left( {\cos \omega t + j\sin \omega t} \right)} \right\} \approx - 2.7\sin \omega t{\rm{ }}(V)vs​(t)=Re{V(z)ejωt}=Re{je(cosωt+jsinωt)}≈−2.7sinωt(V)★

如果ZL=100ΩZ_L=100ΩZL​=100Ω,传输线参数不变,则
V0+=VL2(1+Z0ZL)=12(1+50100)=34{V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right){\rm{ = }}\frac{1}{2}\left( {1 + \frac{{50}}{{100}}} \right) = \frac{3}{4}V0​+=2VL​​(1+ZL​Z0​​)=21​(1+10050​)=43​
V0−=VL2(1−Z0ZL)=14{V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right) = \frac{1}{4}V0​−=2VL​​(1−ZL​Z0​​)=41​
VS=34e1+jπ/2+14e−1−jπ/2=j4(3e−e−1){V_S} = \frac{3}{4}{e^{1 + j\pi /2}} + \frac{1}{4}{e^{ - 1 - j\pi /2}} = \frac{j}{4}\left( {3e - {e^{ - 1}}} \right)VS​=43​e1+jπ/2+41​e−1−jπ/2=4j​(3e−e−1)
vs(t)=14(e−1−3e)sin⁡ωt(V){v_s}(t) = \frac{1}{4}\left( {{e^{ - 1}} - 3e} \right)\sin \omega t{\rm{ }}(V)vs​(t)=41​(e−1−3e)sinωt(V)

关于传输线的计算问题★

一般说来在传输系数,特征阻抗Z0{Z_0}Z0​已知的条件下,传输线的计算问题主要是根据边界条件(z=0,z=l等)求出V0−{V_0}^ -V0​−,V0+{V_0}^ +V0​+,从而完善电压电流方程
解题时注意z坐标的建立,原点终点的坐标值的确定
尽管方程描述的是分布参数模型
V(z)=V0+e−γz+V0−eγzV(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}}V(z)=V0​+e−γz+V0​−eγz★
I(z)=V0+Z0e−γz−V0−Z0eγzI(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}}I(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz★
但任何一个z固定的点都可等效为集总参数模型

假设所有参数的单位为标准单位,已知传输线参数
Z0=50,γ=0.01+j0.2π{Z_0}{\rm{ = 50 }},\gamma = 0.01 + j0.2\piZ0​=50,γ=0.01+j0.2π

1、若信号源电压幅度V(0)=10,输出电流 I(0)=0.2,传输线长度l=3l=3l=3
求终端负载电阻ZL{Z_L}ZL​
建立z坐标
电源点z=0
终端点z=l=3z=l=3z=l=3
边界条件V(0)=10,I(0)=0.2
解出V0−{V_0}^ -V0​−,V0+{V_0}^ +V0​+
求出V(3),I(3)
ZL=V(3)/I(3){Z_L} = V(3)/I(3)ZL​=V(3)/I(3)

2、已知信号源电压幅度V(-4)=10,传输线长度l=4l=4l=4,终端端接电阻ZL=60{Z_L}=60ZL​=60
电源输出电流
电源点为z=−l=−4z=-l=-4z=−l=−4
终端点为z=0
边界条件ZL=V(0)/I(0)=60{Z_L} = V(0)/I(0)=60ZL​=V(0)/I(0)=60建立V0−{V_0}^ -V0​−,V0+{V_0}^ +V0​+的关系
再利用边界条件V(-4)=10,求出V0−{V_0}^ -V0​−,V0+{V_0}^ +V0​+
最后代入电流方程求出I(-4)

端接负载的无耗传输线

仅由储能器件(C,L)而无耗能器件(R,G)构成的传输线叫做无耗传输线,传输参数中R=G=0
γ=(R+jωL)(G+jωC)=jωLC=jβ\gamma = \sqrt {\left( {R + j\omega L} \right)\left( {G + j\omega C} \right)} = j\omega \sqrt {LC} = j\betaγ=(R+jωL)(G+jωC)​=jωLC​=jβ虚数★
特征阻抗
Z0=(R+jωL)(G+jωC)=LC{Z_0} = \sqrt {\frac{{\left( {R + j\omega L} \right)}}{{\left( {G + j\omega C} \right)}}} = \sqrt {\frac{L}{C}}Z0​=(G+jωC)(R+jωL)​​=CL​​实数★

V(z)=V0+e−γz+V0−eγzV(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}}V(z)=V0​+e−γz+V0​−eγz★
I(z)=V0+Z0e−γz−V0−Z0eγzI(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}}I(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz★

V0+=VL2(1+Z0ZL){V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right)V0​+=2VL​​(1+ZL​Z0​​)★
V0−=VL2(1−Z0ZL){V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right)V0​−=2VL​​(1−ZL​Z0​​)★

电压反射系数

Γ(z)=反射电压波入射电压波=V−eγzV+e−γz=V−V+e2γz\Gamma (z) = \frac{{反射电压波}}{{入射电压波}}{\rm{ = }}\frac{{{V^ - }{e^{\gamma z}}}}{{{V^ + }{e^{ - \gamma z}}}} = \frac{{{V^ - }}}{{{V^ + }}}{e^{2\gamma z}}Γ(z)=入射电压波反射电压波​=V+e−γzV−eγz​=V+V−​e2γz★
无耗传输线的电压反射系数
Γ(z)=Γ0ej2βz\Gamma \left( z \right) = {\Gamma _0}{e^{j2\beta z}}Γ(z)=Γ0​ej2βz★
Γ0=Γ(0)=V−V+{\Gamma _0} = \Gamma (0) = \frac{{{V^ - }}}{{{V^ + }}}Γ0​=Γ(0)=V+V−​★
令d=−zd=-zd=−z,沿反射波传播方向定义的电压反射系数
Γ(d)=Γ0e−j2βd\Gamma \left( d \right) = {\Gamma _0}{e^{ - j2\beta d}}Γ(d)=Γ0​e−j2βd★
在端接点上
{V0+=VL2(1+Z0ZL)V0−=VL2(1−Z0ZL)\left\{ \begin{array}{l} {V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right)\\ {V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right) \end{array} \right.⎩⎨⎧​V0​+=2VL​​(1+ZL​Z0​​)V0​−=2VL​​(1−ZL​Z0​​)​
Γ0=V0−V0+=ZL−Z0ZL+Z0{\Gamma _0} = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}Γ0​=V0​+V0​−​=ZL​+Z0​ZL​−Z0​​★(2.48)(2.52)
Z(0)=ZL=Z01+Γ01−Γ0Z(0)={Z_L} = {Z_0}\frac{{1 + {\Gamma _0}}}{{1 - {\Gamma _0}}}Z(0)=ZL​=Z0​1−Γ0​1+Γ0​​★(2.51)
推广到传输线的任意点上Γ(z)=Z(z)−Z0Z(z)+Z0{\rm{ }}\Gamma (z) = \frac{{Z(z) - {Z_0}}}{{Z(z) + {Z_0}}}Γ(z)=Z(z)+Z0​Z(z)−Z0​​★
Z(z)Z(z)Z(z)为传输线z点向负载端看的等效阻抗

无耗传输线上电压或电流波可用反射系数表示为
V(z)=V0+e−γz+V0−eγz=V0+(e−jβz+Γ0ejβz)=V0+e−jβz[1+Γ(z)]V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = {V_0}^ + \left( {{e^{ - j\beta z}} + {\Gamma _0}^{}{e^{j\beta z}}} \right) = {V_0}^ + {e^{ - j\beta z}}\left[ {1 + \Gamma (z)} \right]V(z)=V0​+e−γz+V0​−eγz=V0​+(e−jβz+Γ0​ejβz)=V0​+e−jβz[1+Γ(z)]★
I(z)=V0+Z0e−γz−V0−Z0eγz=V0+Z0(e−jβz−Γ0ejβz)=V0+Z0e−jβz[1−Γ(z)]I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} = \frac{{{V_0}^ + }}{{{Z_0}}}\left( {{e^{ - j\beta z}} - {\Gamma _0}^{}{e^{j\beta z}}} \right) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - j\beta z}}\left[ {1 - \Gamma (z)} \right]I(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz=Z0​V0​+​(e−jβz−Γ0​ejβz)=Z0​V0​+​e−jβz[1−Γ(z)]★

Γ0=V0−V0+=ZL−Z0ZL+Z0{\Gamma _0} = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}Γ0​=V0​+V0​−​=ZL​+Z0​ZL​−Z0​​
反射系数的几个常用值★ [-1,1]
终端匹配ZL=Z0⇒Γ0=0{Z_L} = {Z_0} \Rightarrow {\Gamma _0} = 0ZL​=Z0​⇒Γ0​=0
终端短路ZL=0⇒Γ0=−1{Z_L} = 0 \Rightarrow {\Gamma _0} = - 1ZL​=0⇒Γ0​=−1
终端开路ZL=∞⇒Γ0=1{Z_L} = \infty \Rightarrow {\Gamma _0} = 1ZL​=∞⇒Γ0​=1

传播常数和相速

考察入射波在无耗传输线上的传输(无反射)
v+(z,t)=∣V0+∣cos⁡(ωt−βz+ϕ+){v^ + }(z,t) = \left| {V_0^ + } \right|\cos (\omega t - \beta z + {\phi ^ + })v+(z,t)=∣∣​V0+​∣∣​cos(ωt−βz+ϕ+)
选两个同相位的点观察,假设ωt1−βz1+ψ1=0\omega {t_1} - \beta \,{z_1} + {\psi _1} = 0ωt1​−βz1​+ψ1​=0
当t=t1t = t_1t=t1​时,A点在z1z_1z1​处
ωt1−βz1+ψ1\omega {t_1} - \beta \,{z_1} + {\psi _1}ωt1​−βz1​+ψ1​
当t=t1+△tt = t_1+ △tt=t1​+△t时,A点在z=z1+△zz= z_1+△zz=z1​+△z处
ω(t1+Δt)−β(z1+Δz)+ψ1\omega ({t_1} + \Delta t) - \beta ({z_1} + \Delta z) + \psi {\,_1}ω(t1​+Δt)−β(z1​+Δz)+ψ1​

相同相位点
ωt1−βz1+ψ1=ω(t1+Δt)−β(z1+Δz)+ψ1\omega {t_1} - \beta \,{z_1} + {\psi _1} = \omega ({t_1} + \Delta t) - \beta ({z_1} + \Delta z) + {\psi _1}ωt1​−βz1​+ψ1​=ω(t1​+Δt)−β(z1​+Δz)+ψ1​
ωΔt=βΔz\omega \Delta t = \beta \Delta zωΔt=βΔz
相同相位点的移动速度为相位速度相速
vp=lim⁡Δt→0ΔzΔt=ωβ=1εμ=Cεrμr=λf=λω/2π=ω/k{v_p} = \mathop {\lim }\limits_{\Delta t \to 0} \frac{{\Delta z}}{{\Delta t}} = \frac{\omega }{\beta }= \frac{1}{{\sqrt {\varepsilon \mu } }} = \frac{C}{{\sqrt {{\varepsilon _r}{\mu _r}} }} = \lambda f = \lambda \omega /2\pi = \omega /kvp​=Δt→0lim​ΔtΔz​=βω​=εμ​1​=εr​μr​​C​=λf=λω/2π=ω/k★
群速度vg=dωdk{v_g} = \frac{{d\omega }}{{dk}}vg​=dkdω​★
这种向前传播的波称之为行波
幅度不变,相位随z变化
v+(z,t)=∣V0+∣cos⁡(ωt−βz+ϕ+){v^ + }(z,t) = \left| {V_0^ + } \right|\cos (\omega t - \beta z + {\phi ^ + })v+(z,t)=∣∣​V0+​∣∣​cos(ωt−βz+ϕ+)
λβ=2π=ωT\lambda \beta = 2\pi = \omega Tλβ=2π=ωT★
T=1/fT=1/fT=1/f★
λ=2πβ=ωβT=vT=vf\lambda = \frac{{2\pi }}{\beta } = \frac{\omega }{\beta }T = vT{\rm{ = }}\frac{v}{f}λ=β2π​=βω​T=vT=fv​★
任何一个时间t上,z轴上的电压分布为一个正弦函数,该函数一个周期的长度=波长=正弦波在一个周期时间上沿z轴的移动距离

驻波

Γ0=V0−V0+=ZL−Z0ZL+Z0{\Gamma _0} = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}Γ0​=V0​+V0​−​=ZL​+Z0​ZL​−Z0​​
反射系数的几个常用值
终端匹配ZL=Z0⇒Γ0=0⇒SWR=1+∣Γ0∣1−∣Γ0∣=1{Z_L} = {Z_0} \Rightarrow {\Gamma _0} = 0 \Rightarrow SWR = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}}=1ZL​=Z0​⇒Γ0​=0⇒SWR=1−∣Γ0​∣1+∣Γ0​∣​=1
终端短路ZL=0⇒Γ0=−1⇒SWR=1+∣Γ0∣1−∣Γ0∣=∞{Z_L} = 0 \Rightarrow {\Gamma _0} = - 1 \Rightarrow SWR = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}}=\inftyZL​=0⇒Γ0​=−1⇒SWR=1−∣Γ0​∣1+∣Γ0​∣​=∞全反射
终端开路ZL=∞⇒Γ0=1⇒SWR=1+∣Γ0∣1−∣Γ0∣=∞{Z_L} = \infty \Rightarrow {\Gamma _0} = 1 \Rightarrow SWR = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}}=\inftyZL​=∞⇒Γ0​=1⇒SWR=1−∣Γ0​∣1+∣Γ0​∣​=∞全反射

只在原地振荡,不向前传播
驻波是由入射波和反射波叠加形成的,考察终端开/短路有限长传输线Γ0=±1{\Gamma _0} = \pm 1Γ0​=±1,零点设在端接负载上
V(z)=V0+e−γz+V0−eγz=V0+(e−jβz+Γ0ejβz)=V0+e−jβz[1+Γ(z)]V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = {V_0}^ + \left( {{e^{ - j\beta z}} + {\Gamma _0}^{}{e^{j\beta z}}} \right) = {V_0}^ + {e^{ - j\beta z}}\left[ {1 + \Gamma (z)} \right]V(z)=V0​+e−γz+V0​−eγz=V0​+(e−jβz+Γ0​ejβz)=V0​+e−jβz[1+Γ(z)]★
V(d)=V0+(ejβd±e−jβd)={2V0+cos⁡βd开路j2V0+sin⁡βd短路V(d) = {V_0}^ + \left( {{e^{j\beta d}} \pm {e^{ - j\beta d}}} \right) = \left\{ \begin{array}{l} 2{V_0}^ + \cos \beta d开路\\ j2{V_0}^ + \sin \beta d短路 \end{array} \right.V(d)=V0​+(ejβd±e−jβd)={2V0​+cosβd开路j2V0​+sinβd短路​★

时域式
v(t,d)=Re{ejωtV(d)}={2∣V0+∣cos⁡βdcos⁡(ωt+φ+)−2∣V0+∣sin⁡βdsin⁡(ωt+φ+)v(t,d) = {\mathop{\rm Re}\nolimits} \left\{ {{e^{j\omega t}}V(d)} \right\} = \left\{ \begin{array}{l} 2\left| {{V_0}^ + } \right|\cos \beta d\cos \left( {\omega t + {\varphi ^ + }} \right)\\ -2\left| {{V_0}^ + } \right|\sin \beta d\sin \left( {\omega t + {\varphi ^ + }} \right) \end{array} \right.v(t,d)=Re{ejωtV(d)}={2∣∣​V0​+∣∣​cosβdcos(ωt+φ+)−2∣∣​V0​+∣∣​sinβdsin(ωt+φ+)​

v(t,d)=Acos⁡βdcos⁡(ωt+φ)=∣Acos⁡βd∣cos⁡(ωt+φ(z))v(t,d) = A\cos \beta d\cos \left( {\omega t + \varphi } \right){\rm{ = }}\left| {A\cos \beta d} \right|\cos \left( {\omega t + \varphi (z)} \right)v(t,d)=Acosβdcos(ωt+φ)=∣Acosβd∣cos(ωt+φ(z))
其幅度值在z轴上的分布如图所示:

在传输线的任意点上为幅度不同的正弦波
振幅最大处称为波腹max⁡∣Acos⁡βd∣=∣A∣\max \left| {A\cos \beta d} \right|{\rm{ = }}\left| {\rm{A}} \right|max∣Acosβd∣=∣A∣
振幅最小处称为波节min⁡∣Acos⁡βd∣=0\min \left| {A\cos \beta d} \right|{\rm{ = }}0min∣Acosβd∣=0
波节处没有正弦波的存在
这意味着波仅仅在原地振动,而不向前传播。

电压传播的一般形式

驻波比SWR∈[1,∞)SWR∈[1,∞)SWR∈[1,∞) ?
SWR=∣VMAX∣∣VMIN∣=1+∣Γ0∣1−∣Γ0∣⇒∣Γ0∣=SWR−1SWR+1SWR = \frac{{\left| {{V_{MAX}}} \right|}}{{\left| {{V_{MIN}}} \right|}} = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}} \Rightarrow \left| {{\Gamma _0}} \right| = \frac{{SWR - 1}}{{SWR + 1}}SWR=∣VMIN​∣∣VMAX​∣​=1−∣Γ0​∣1+∣Γ0​∣​⇒∣Γ0​∣=SWR+1SWR−1​★

开路线、短路线、四分之一波长传输线


V(z)=V0+e−γz+V0−eγz=V0+e−γz{1+Γ0e2γz}V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = {V_0}^ + {e^{ - \gamma z}}\left\{ {1 + {\Gamma _0}^{}{e^{2\gamma z}}} \right\}V(z)=V0​+e−γz+V0​−eγz=V0​+e−γz{1+Γ0​e2γz}★
I(z)=V0+Z0e−γz−V0−Z0eγz=V0+Z0e−γz{1−Γ0e2γz}I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}}\left\{ {1 - {\Gamma _0}^{}{e^{2\gamma z}}} \right\}I(z)=Z0​V0​+​e−γz−Z0​V0​−​eγz=Z0​V0​+​e−γz{1−Γ0​e2γz}★

Zd=V(−d)I(−d)=Z01+Γ0e−2γd1−Γ0e−2γd=Z01+Γ(−d)1−Γ(−d){Z_d} = \frac{{V( - d)}}{{I( - d)}} = {Z_0}\frac{{1 + {\Gamma _0}^{}{e^{ - 2\gamma d}}}}{{1 - {\Gamma _0}^{}{e^{ - 2\gamma d}}}} = {Z_0}\frac{{1 + \Gamma ( - d)}}{{1 - \Gamma ( - d)}}Zd​=I(−d)V(−d)​=Z0​1−Γ0​e−2γd1+Γ0​e−2γd​=Z0​1−Γ(−d)1+Γ(−d)​★

对于无耗传输线 注意公式中 d 的方向。
Zd=Z01+Γ0e−j2βd1−Γ0e−j2βd=Z01+ZL−Z0ZL+Z0e−j2βd1−ZL−Z0ZL+Z0e−j2βd=Z0(ZL+Z0)+(ZL−Z0)e−j2βd(ZL+Z0)−(ZL−Z0)e−j2βd=Z0ZLcos⁡βd+jZ0sin⁡βdZ0cos⁡βd+jZLsin⁡βd=Z0ZL+jZ0tgβdZ0+jZLtgβd{Z_d} = {Z_0}\frac{{1 + {\Gamma _0}^{}{e^{ - j2\beta d}}}}{{1 - {\Gamma _0}^{}{e^{ - j2\beta d}}}} = {Z_0}\frac{{1 + \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}{e^{ - j2\beta d}}}}{{1 - \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}{e^{ - j2\beta d}}}}\\ = {Z_0}\frac{{\left( {{Z_L} + {Z_0}} \right) + \left( {{Z_L} - {Z_0}} \right){e^{ - j2\beta d}}}}{{\left( {{Z_L} + {Z_0}} \right) - \left( {{Z_L} - {Z_0}} \right){e^{ - j2\beta d}}}} \\ = {Z_0}\frac{{{Z_L}\cos \beta d + j{Z_0}\sin \beta d}}{{{Z_0}\cos \beta d + j{Z_L}\sin \beta d}} \\ = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}}Zd​=Z0​1−Γ0​e−j2βd1+Γ0​e−j2βd​=Z0​1−ZL​+Z0​ZL​−Z0​​e−j2βd1+ZL​+Z0​ZL​−Z0​​e−j2βd​=Z0​(ZL​+Z0​)−(ZL​−Z0​)e−j2βd(ZL​+Z0​)+(ZL​−Z0​)e−j2βd​=Z0​Z0​cosβd+jZL​sinβdZL​cosβd+jZ0​sinβd​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​
Zin≡Zd=Z0ZL+jZ0tgβdZ0+jZLtgβd{Z_{in}} \equiv {Z_d} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}}Zin​≡Zd​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​★
阻抗匹配时Zin=Z0{Z_{in}} = {Z_0}Zin​=Z0​★
d=∣l∣{\rm{ }}d = \left| l \right|d=∣l∣
βd=2πλd\beta d = \frac{{2\pi }}{\lambda }dβd=λ2π​d

终端短路传输线

ZL=0{Z_L} = 0ZL​=0★
Zin0=jZ0tgβd{Z_{in0}} = j{Z_0}tg\beta dZin0​=jZ0​tgβd
d=λ4⇒βd=π2⇒Zin→∞d = \frac{\lambda }{4} \Rightarrow \beta d = \frac{\pi }{2} \Rightarrow {Z_{in}} \to \inftyd=4λ​⇒βd=2π​⇒Zin​→∞
d=λ2⇒βd=π⇒Zin=0d = \frac{\lambda }{2} \Rightarrow \beta d = \pi \Rightarrow {Z_{in}} = 0d=2λ​⇒βd=π⇒Zin​=0
Zin(d){Z_{in}}(d)Zin​(d)的周期=λ2\frac{\lambda }{2}2λ​

终端开路的传输线

ZL→∞{Z_L} \to \inftyZL​→∞★
Zin∞=Z0ZL+jZ0tgβdZ0+jZLtgβd=−jZ0ctgβd{Z_{in\infty}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = {\rm{ - }}j{Z_0}ctg\beta dZin∞​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​=−jZ0​ctgβd
1/j=−j1/j=-j1/j=−j

特征阻抗Z0=Zin0Zin∞{Z_0} = \sqrt {{Z_{in0}}{Z_{in\infty }}}Z0​=Zin0​Zin∞​​
无论对分布参数网络还是集总参数网络都可以这样定义
当终端匹配时,输入阻抗等于特征阻抗

1/4波长传输线

tgβd→∞tg\beta d \to \inftytgβd→∞★
Zin=Z0ZL+jZ0tgβdZ0+jZLtgβd=Z02ZL{Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = \frac{{Z_0^2}}{{{Z_L}}}Zin​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​=ZL​Z02​​★
一般说来Z0为纯电阻,实数
因此四分之一波长传输线可看成阻抗变换器,终端端接电容,输入端呈电感特性。一端开路,另一端短路。

★★★ 阻抗圆图 导纳圆图
圆心在上半平面1/x>0 电感性 电抗x>0 电纳b<0
圆心在下半平面1/x<0 电容性 电抗x<0 电纳b>0

1/2波长的端接传输线

tgβd=0tg\beta d = 0tgβd=0★
Zin=Z0ZL+jZ0tgβdZ0+jZLtgβd=ZL{Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = {Z_L}Zin​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​=ZL​

传输线常用公式和近似值★★★

传输线参数一般工程近似值(标称值):
γ=[R+jωL][G+jωC]=α+jβ,α≈0,β≈ωLC\gamma {\rm{ = }}\sqrt {\left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]} = \alpha + j\beta,\alpha \approx {\rm{0 }},\beta \approx \omega \sqrt {LC}γ=[R+jωL][G+jωC]​=α+jβ,α≈0,β≈ωLC​
Z0=[R+jωL][G+jωC]≈LC={50Ω75Ω{Z_0}{\rm{ = }}\sqrt {\frac{{\left[ {R + j\omega L} \right]}}{{\left[ {G + j\omega C} \right]}}} \approx \sqrt {\frac{L}{C}} = \left\{ \begin{array}{l} 50\Omega \\ 75\Omega \end{array} \right.Z0​=[G+jωC][R+jωL]​​≈CL​​={50Ω75Ω​
vp=ωβ≈1LC≥0.77vC{v_p}{\rm{ = }}\frac{\omega }{\beta } \approx \frac{1}{{\sqrt {LC} }} \ge 0.77{v_C}vp​=βω​≈LC​1​≥0.77vC​
λ=vpf=1fLC=2πββ=2πλ\lambda = \frac{{{v_p}}}{f} = \frac{1}{{f\sqrt {LC} }} = \frac{{2\pi }}{\beta }\beta = \frac{{2\pi }}{\lambda }λ=fvp​​=fLC​1​=β2π​β=λ2π​

无耗传输线传输线方程及参数关系
V(z)=V0+e−jβz+V0−ejβz=V+(z)+V−(z)V(z) = {V_0}^ + {e^{ - j\beta z}} + {V_0}^ - {e^{j\beta z}}= {V^ + }(z) + {V^ - }(z)V(z)=V0​+e−jβz+V0​−ejβz=V+(z)+V−(z)
V+(z)=V0+e−jβz{V^ + }(z) = {V_0}^ + {e^{ - j\beta z}}V+(z)=V0​+e−jβz
V−(z)=V0−ejβz{V^ - }(z) = {V_0}^ - {e^{j\beta z}}V−(z)=V0​−ejβz
I(z)=I0+e−jβz+I0−ejβz=V0+Z0e−jβz−V0−Z0ejβzI(z) = {I_0}^ + {e^{ - j\beta z}} + {I_0}^ - {e^{j\beta z}} = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - j\beta z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{j\beta z}}I(z)=I0​+e−jβz+I0​−ejβz=Z0​V0​+​e−jβz−Z0​V0​−​ejβz
I0+=V0+/V0+Z0Z0{I_0}^ + = {{{V_0}^ + } \mathord{\left/ {\vphantom {{{V_0}^ + } {{Z_0}}}} \right.} {{Z_0}}}I0​+=V0​+/V0​+Z0​Z0​
I0−=−V0−/V0−Z0Z0{I_0}^ - = - {{{V_0}^ - } \mathord{\left/ {\vphantom {{{V_0}^ - } {{Z_0}}}} \right.} {{Z_0}}}I0​−=−V0​−/V0​−Z0​Z0​

Γ0=Γ(0)=V0−V0+=ZL−Z0ZL+Z0{\Gamma _0} = \Gamma (0) = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}Γ0​=Γ(0)=V0​+V0​−​=ZL​+Z0​ZL​−Z0​​
ZL=Z01+Γ01−Γ0{Z_L} = {Z_0}\frac{{1 + {\Gamma _0}}}{{1 - {\Gamma _0}}}ZL​=Z0​1−Γ0​1+Γ0​​

Γ(z)=Γ0ej2βz=V−(z)V+(z)=Zin(z)−Z0Zin(z)+Z0\Gamma (z){\rm{ = }}{\Gamma _0}{e^{j2\beta z}} = \frac{{{V^ - }(z)}}{{{V^ + }(z)}} = \frac{{{Z_{in}}(z) - {Z_0}}}{{{Z_{in}}(z) + {Z_0}}}Γ(z)=Γ0​ej2βz=V+(z)V−(z)​=Zin​(z)+Z0​Zin​(z)−Z0​​
Zin(z)=Z01+Γ(z)1−Γ(z)=Z01+Γ0ej2βz1−Γ0ej2βz=Z0ZL−jZ0tgβzZ0−jZLtgβz=Z0ZL+jZ0tgβdZ0+jZLtgβd,d=−z{Z_{in}}(z) = {Z_0}\frac{{1 + \Gamma (z)}}{{1 - \Gamma (z)}} = {Z_0}\frac{{1 + {\Gamma _0}{e^{j2\beta z}}}}{{1 - {\Gamma _0}{e^{j2\beta z}}}} = {Z_0}\frac{{{Z_L} - j{Z_0}tg\beta z}}{{{Z_0} - j{Z_L}tg\beta z}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}},d = - zZin​(z)=Z0​1−Γ(z)1+Γ(z)​=Z0​1−Γ0​ej2βz1+Γ0​ej2βz​=Z0​Z0​−jZL​tgβzZL​−jZ0​tgβz​=Z0​Z0​+jZL​tgβdZL​+jZ0​tgβd​,d=−z

Zin(z)=jZ0tgβd={jZ0tg2πλd,ZL=0短路−jZ0ctg2πλd,ZL→∞开路Z02ZL,d=λ/4,tgβd→∞ZL,d=λ/2,tgβd=0{Z_{in}}(z) = j{Z_0}tg\beta d = \left\{ \begin{array}{l} j{Z_0}tg\frac{{2\pi }}{\lambda }d,{Z_L} = 0短路\\ -j{Z_0}ctg\frac{{2\pi }}{\lambda }d,{Z_L} \to \infty开路\\ \frac{{Z_0^2}}{{{Z_L}}},d = \lambda/{4},tg\beta d \to \infty\\ {Z_L},d =\lambda/{2},tg\beta d = 0 \end{array} \right.Zin​(z)=jZ0​tgβd=⎩⎪⎪⎨⎪⎪⎧​jZ0​tgλ2π​d,ZL​=0短路−jZ0​ctgλ2π​d,ZL​→∞开路ZL​Z02​​,d=λ/4,tgβd→∞ZL​,d=λ/2,tgβd=0​

SWR=1+∣Γ∣1−∣Γ∣⇒∣Γ∣=SWR−1SWR+1SWR = \frac{{1 + \left| \Gamma \right|}}{{1 - \left| \Gamma \right|}}{\rm{ }} \Rightarrow {\rm{ }}\left| \Gamma \right| = \frac{{SWR - 1}}{{SWR + 1}}SWR=1−∣Γ∣1+∣Γ∣​⇒∣Γ∣=SWR+1SWR−1​

作业

《射频电路设计——理论与应用》
第二章中习题2.16, 2.19,2.25,2.28 2.31,2.33

传输线模型(分布参数模型)相关推荐

  1. HyperLynx(四)差分传输线模型

    1.差分传输线 在高速电路 PCB 设计中,差分传输线是一类比较特殊和重要的传输线,差分传输线简称差分线.随着电路设计技术的提升,从最早期的伪差分信号设计,到现在的差分信号设计,差分信号越来越多地应用 ...

  2. 【UE4 C++】读取灰度图/RGB图中的像素值生成自定义形状的模型分布

    效果图 一.PS制作一张自定义形状的像素图 导出为PNG图片 二.UE4创建函数库读取图片像素颜色 1.新建C++类 2.头文件中添加函数 public:UFUNCTION(BlueprintCall ...

  3. 传输线 模型 B 和电阻

    阻感导容 猪肝刀刃 B=w*根号(L*C)     传输系数 波长=(2*pi)/B 电阻=Z0*jtanB*L

  4. 对传输线阻抗的一些认识

    对于许多硬件工程师,尤其是涉及到高频方面的设计时,阻抗匹配是绕不开的话题. 而我认为只有认认真真读懂<电路>教材中"均匀传输线"这一章的内容,才能清楚什么是传输线阻抗以 ...

  5. 传输线的物理基础(九):N 截面集总电路模型

    理想的传输线电路元件是一种分布式元件,可以非常准确地预测实际互连的测量性能.下图显示了 1 英寸长传输线在频域中的实测阻抗和仿真阻抗对比.我们看到甚至高达 5 GHz 的测量带宽也能达成出色的协议. ...

  6. 传输线设计的参量解析

    目录 序言 传输线分布参数模型 电感和电容的计算 高频损耗 导体直流电阻 导体交流电阻 介质损耗 分布电感.电容与介电常数的关系 参考文献 序言 讨论传输线效应,就必须转变传统的电路分析思维,在电路分 ...

  7. PGM学习之二 PGM模型的分类与简介

    废话:和上一次的文章确实隔了太久,希望趁暑期打酱油的时间,将之前学习的东西深入理解一下,同时尝试用Python写相关的机器学习代码. 一 PGM模型的分类 通过上一篇文章的介绍,相信大家对PGM的定义 ...

  8. 什么是带状线、微带线?参考平面与传输线那些事儿

    原文来自公众号:工程师看海 关注公众号有更多内容 一对导体就可以构成传输线,信号以电磁波的形式在这一对导体之间传播.这两个导体,一个被称为"信号路径",另一部被称为"参考 ...

  9. 机器学习中参数模型和非参数模型理解

    写在前面 非参数模型(non-parametric model)和参数模型(parametric model)作为数理统计学中的概念,现在也常用于机器学习领域中. 在统计学中,参数模型通常假设总体服从 ...

  10. 信号完整性分析3——阻抗和电气模型

    信号完整性分析3--阻抗和电气模型 常把信号称为变化的电压或变化的电流,在信号完整性总目录中总结出的所有效应都是由模拟信号(那些变化的电压和电流)与 互连线的电气特性之间的相互影响引起的,而与信号相互 ...

最新文章

  1. 数字图像处理——第五章 图像复原与重建
  2. 2012年度IT博客大赛50强报道:高俊峰
  3. “九韶杯”河科院程序设计协会第一届程序设计竞赛 【前六题解析】
  4. 拓扑排序 - 项目管理
  5. 【贪心】奶牛晒衣服(ybtoj 贪心-1-1)
  6. 黄子韬现身助力公益 百度推出听障儿童手语翻译小程序
  7. java引用类型有啥_Java引用类型原理深度剖析,看完文章,90%的人都收藏了
  8. php上传文件的目录,php文件上传及下载附带显示文件及目录功能
  9. 还在担心漏测吗?快来使用jacoco统计下代码覆盖率
  10. HDU2109 Fighting for HDU【排序】
  11. 分布式存储之Ceph软件安装及使用
  12. python数据科学手册pdf中文版百度云,Python数据科学手册 英文pdf源码
  13. 学计算机的装系统都不会,为什么刚买的新电脑,却不支持安装Win7系统,背后的真实原因...
  14. CentOS从零搭建SRS直播服务器
  15. “No Problem”没问题,不客气的其他英语表达方式
  16. Kubernetes运维之使用Prometheus全方位监控K8S
  17. 二十八条改善 ASP 性能和外观的技巧
  18. 外贸公司怎么做开发信,什么企业邮箱更适合发开发信呢?
  19. 数字化时代,基于令牌的身份验证是如何工作?
  20. 猎头职场:领导给的任务如何让自己被器重

热门文章

  1. linux内核源码目录结构
  2. DateUtils封装
  3. 【C语言】九九乘法口诀表
  4. UE4源码下载与配置sin文件
  5. 微信机器人控制linux,微信运维交互机器人的示例代码
  6. mysql-connector-java驱动包下载地址收藏 mysql驱动包下载地址
  7. linux从入门到精通 第2版 pdf
  8. 27_iOS干货19之网络4_在线http/https素材资源
  9. 全面接触PDF:最好用的PDF软件汇总
  10. 翻译任务中的BPE词表实践总结