min_25 筛

一个亚线性筛,复杂度大概是O(n34log⁡n)O(\frac{n ^{\frac{3}{4}}}{ \log n})O(lognn43​​)。

使用min_25min\_25min_25求前缀和,有两个基本特征:① 积性函数,② 满足质数点为多项式。

算法思路

给定n≤1011n \leq 10 ^ {11}n≤1011,设f(n)f(n)f(n)为一个积性函数,质数点为多项式,求∑i=1nf(i)\sum\limits_{i = 1} ^{n} f(i)i=1∑n​f(i)。

  • 先求出n\sqrt nn​内的所有质数,以及f(i)f(i)f(i)。

  • 求出∑i=1n[i∈prime]f(i)\sum\limits_{i = 1} ^{n} [i \in prime]f(i)i=1∑n​[i∈prime]f(i),pip_ipi​为第iii个质因子。

    我们设g(n,j)=∑i=1n[i∈primeormin_prime_of_i>pj]f(i)g(n, j) = \sum\limits_{i = 1} ^{n}[i \in prime\ or\ min\_prime\_of\_i > p_j]f(i)g(n,j)=i=1∑n​[i∈prime or min_prime_of_i>pj​]f(i),质数或者最小质因子大于pjp_jpj​的fff值之和。

    考虑从g(n,i−1)g(n, i - 1)g(n,i−1)推到g(n,i)g(n, i)g(n,i),我们也就是要减去最小质因子等于pip_ipi​的贡献,
    g(n,i)={g(n,i−1)pi×pi>ng(n,i−1)−f(pi)×(g(npi,i−1)−∑j=1i−1f(pj))pi×pi≤ng(n, i) = \left\{\begin{matrix}\\ g(n, i - 1)& p_i \times p_i > n\\ g(n, i - 1) - f(p_i) \times \left(g(\frac{n}{p_i}, i - 1) - \sum\limits_{j = 1} ^{i - 1}f(p_j) \right) & p_i \times p_i \leq n\\ \end{matrix}\right. g(n,i)=⎩⎪⎨⎪⎧​g(n,i−1)g(n,i−1)−f(pi​)×(g(pi​n​,i−1)−j=1∑i−1​f(pj​))​pi​×pi​>npi​×pi​≤n​

  • 考虑如何递归计算积性函数前缀和∑i=1nf(i)\sum\limits_{i = 1} ^{n} f(i)i=1∑n​f(i)。

    设S(n,j)=∑i=1n[min_prime_of_i≥pj]f(i)S(n, j) = \sum\limits_{i = 1} ^{n} [min\_prime\_of\_i \geq p_j] f(i)S(n,j)=i=1∑n​[min_prime_of_i≥pj​]f(i),最小质因子大于等于pjp_jpj​的fff值之和,所以这个积性函数的前缀和即为S(n,1)+f(1)S(n, 1) + f(1)S(n,1)+f(1)。

    对于S(n,j)S(n, j)S(n,j),中质数的贡献我们是已知的S(n,j)=∑i=1n[i∈prime]f(i)−∑i=1j−1f(pi)S(n, j) = \sum\limits_{i = 1} ^{n}[i \in prime]f(i) - \sum\limits_{i = 1} ^{j - 1} f(p_i)S(n,j)=i=1∑n​[i∈prime]f(i)−i=1∑j−1​f(pi​),接下来考虑计算合数对答案的贡献。

    我们枚举合数的最小质因子以及最小质因子的次幂,考虑从S(n,j+1)S(n, j + 1)S(n,j+1)推到S(n,j)S(n, j)S(n,j),也就是在原来的基础上加上,
    ∑i=jprimei×primei≤n∑k=1primeik+1≤n(S(nprimeik,j+1)f(primeik)+f(primeik+1))\sum_{i = j} ^{prime_i \times prime_i \leq n} \sum_{k = 1} ^{prime_i ^ {k + 1} \leq n} \left(S(\frac{n}{prime_i ^ k}, j + 1)f(prime_i ^ k) + f(prime_i ^ {k + 1})\right)\\ i=j∑primei​×primei​≤n​k=1∑primeik+1​≤n​(S(primeik​n​,j+1)f(primeik​)+f(primeik+1​))
    所以有
    S(n,j)=g(n)−∑i=1j−1f(pi)+∑i=jprimei×primei≤n∑k=1primeik+1≤n(S(nprimeik,j+1)f(primeik)+f(primeik+1))S(n, j) = g(n) - \sum_{i = 1} ^{j - 1} f(p_i) +\sum_{i = j} ^{prime_i \times prime_i \leq n} \sum_{k = 1} ^{prime_i ^ {k + 1} \leq n} \left(S(\frac{n}{prime_i ^ k}, j + 1)f(prime_i ^ k) + f(prime_i ^ {k + 1})\right)\\ S(n,j)=g(n)−i=1∑j−1​f(pi​)+i=j∑primei​×primei​≤n​k=1∑primeik+1​≤n​(S(primeik​n​,j+1)f(primeik​)+f(primeik+1​))
    这里的g(n)g(n)g(n)是最后筛得的,也就是里面存的是质数fff的前缀和。

    这里解释一下那后面一长串的东西,为什么要加上f(primeik+1)f(prime_i ^{k + 1})f(primeik+1​),而且上界为primeik+1≤nprime_i ^{k + 1} \leq nprimeik+1​≤n,

    由于我们枚举的是最小质因子及幂次,那么一定有n>primeikn > prime_i ^ kn>primeik​,所以有上界为primeik+1≤nprime_i ^{k + 1} \leq nprimeik+1​≤n,

    至于为什么要加上f(primeik+1)f(prime_i ^ {k + 1})f(primeik+1​),由于我们定义的函数中f(1)f(1)f(1)在执行min_25min\_25min_25的过程中始终为000,

    当我们枚举的幂次为k+1k + 1k+1时,我们会漏了f(primeik+1)f(prime_i ^{k + 1})f(primeik+1​)这一项,所以得在前一步给他加上去。

  • 优化一点点?如何递推计算积性函数前缀和∑i=1nf(i)\sum\limits_{i = 1} ^{n} f(i)i=1∑n​f(i)。

    不就是把上面的S(n,j)S(n, j)S(n,j),从S(n,j+1)S(n, j + 1)S(n,j+1)一步一步往下推吗?

    对于nprimejk≥primej,nprimejk<primej+12\frac{n}{prime_j ^ k} \geq prime_j, \frac{n}{prime_j ^ k} < prime_{j + 1} ^ 2primejk​n​≥primej​,primejk​n​<primej+12​,这一步,中我们递归会返回的是g(n)−∑i=1jf(pi)g(n) - \sum\limits_{i = 1} ^{j}f(p_i)g(n)−i=1∑j​f(pi​),

    也就是大于primejprime_jprimej​的质数的部分,按照S(n,j)S(n, j)S(n,j)的定义,我们在递推的时候,得到的却是000。

    所以我们修改一下递推时候的S(n,j)S(n, j)S(n,j)的定义:设S(n,j)=∑i=1n[i∈primeormin_prime_of_i≥pj]f(i)S(n, j) = \sum\limits_{i = 1} ^{n}[i \in prime\ or\ min\_prime\_of\_i \geq p_j]f(i)S(n,j)=i=1∑n​[i∈prime or min_prime_of_i≥pj​]f(i),

    我们还是同样的枚举最小质因子,及其次幂,考虑从S(n,j+1)S(n, j + 1)S(n,j+1)推到S(n,j)S(n, j)S(n,j),也就是要加上
    ∑i=jprimei×primei≤n∑k=1primeik+1≤n((S(nprimeik,j+1)−∑k=1jf(pi))f(primeik)+f(primeik+1))\sum_{i = j} ^{prime_i \times prime_i \leq n} \sum_{k = 1} ^{prime_i ^{k + 1} \leq n} \left(\left(S(\frac{n}{prime_i ^ k}, j + 1) - \sum_{k = 1} ^{j} f(p_i) \right)f(prime_i ^ k) + f(prime_i ^{k + 1})\right)\\ i=j∑primei​×primei​≤n​k=1∑primeik+1​≤n​((S(primeik​n​,j+1)−k=1∑j​f(pi​))f(primeik​)+f(primeik+1​))

P5325 【模板】Min_25筛

有积性函数f(x)f(x)f(x),且f(pk)=pk(pk−1),p∈primesf(p ^ k) = p ^ k(p ^ k - 1), p \in primesf(pk)=pk(pk−1),p∈primes,求∑i=1nf(i)\sum\limits_{i = 1} ^{n} f(i)i=1∑n​f(i)。

#include <bits/stdc++.h>using namespace std;namespace min_25 {const int N = 1e6 + 10, mod = 1e9 + 7, inv2 = 500000004, inv6 = 166666668;int prime[N], id1[N], id2[N], m, T, cnt;long long a[N], sum1[N], g1[N], sum2[N], g2[N], s[N], n;bool st[N];inline int ID(long long x) {return x <= T ? id1[x] : id2[n / x];}inline long long f(long long x) {x %= mod;return x * (x - 1) % mod;}inline long long calc1(long long x) {x %= mod;return (x * (x + 1) % mod * (2 * x + 1) % mod * inv6 % mod - 1 + mod) % mod;}inline long long calc2(long long x) {x %= mod;return (x * (x + 1) % mod * inv2 % mod - 1 + mod) % mod;}void init() {T = sqrt(n + 0.5);for(int i = 2; i <= T; i++) {if(!st[i]) {prime[++cnt] = i;sum1[cnt] = (sum1[cnt - 1] + 1ll * i * i) % mod;sum2[cnt] = (sum2[cnt - 1] + i) % mod;}for(int j = 1; j <= cnt && 1ll * i * prime[j] <= T; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {break;}}}for (long long l = 1, r; l <= n; l = r + 1) {r = n / (n / l);a[++m] = n / l;a[m] <= T ? id1[a[m]] = m : id2[n / a[m]] = m;g1[m] = calc1(a[m]);g2[m] = calc2(a[m]);}for (int j = 1; j <= cnt && 1ll * prime[j] * prime[j] <= n; j++) {for (int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {g1[i] = ((g1[i] - 1ll * prime[j] * prime[j] % mod * (g1[ID(a[i] / prime[j])] - sum1[j - 1]) % mod) % mod + mod) % mod;g2[i] = ((g2[i] - 1ll * prime[j] * (g2[ID(a[i] / prime[j])] - sum2[j - 1]) % mod) % mod + mod) % mod;}}for (int i = 1; i <= m; i++) {s[i] = (g1[i] - g2[i] + mod) % mod;}for (int j = cnt; j >= 1; j--) {for (int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {for (long long cur = prime[j]; cur * prime[j] <= a[i]; cur *= prime[j]) {s[i] = (s[i] + f(cur % mod) * (s[ID(a[i] / cur)] - sum1[j] + sum2[j]) % mod + f(cur * prime[j])) % mod;s[i] = (s[i] + mod) % mod;}}}printf("%lld\n", s[ID(n)] + 1);}}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);scanf("%lld", &min_25::n);min_25::init();return 0;
}

#6235. 区间素数个数

直接是min_25min\_25min_25的ggg函数求解。

#include <bits/stdc++.h>using namespace std;typedef long long ll;const int N = 1e6 + 10;int prime[N], id1[N], id2[N], m, cnt, T;bool st[N];ll a[N], sum[N], g[N], n;inline int ID(ll x) {return x <= T ? id1[x] : id2[n / x];
}void init() {T = sqrt(n + 0.5);for (int i = 2; i <= T; i++) {if (!st[i]) {prime[++cnt] = i;sum[cnt] = sum[cnt - 1] + 1;}for (int j = 1; j <= cnt && 1ll * i * prime[j] <= T; j++) {st[i * prime[j]] = 1;if (i % prime[j] == 0) {break;}}}for (ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);a[++m] = n / l;if (a[m] <= T) {id1[a[m]] = m;}else {id2[n / a[m]] = m;}g[m] = a[m] - 1;}for (int j = 1; j <= cnt && 1ll * prime[j] * prime[j] <= n; j++) {for (int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {g[i] -= g[ID(a[i] / prime[j])] - sum[j - 1];}}
}ll solve(ll n) {return g[ID(n)];
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);scanf("%lld", &n);init();printf("%lld\n", solve(n));return 0;
}

#572. 「LibreOJ Round #11」Misaka Network 与求和

f(n)f(n)f(n)为次大质因子,f(6)=3,f(4)=2,f(1)=0,f(p)=1f(6) = 3, f(4) = 2, f(1) = 0, f(p) = 1f(6)=3,f(4)=2,f(1)=0,f(p)=1。
∑i=1n∑j=1nf(gcd⁡(i,j))k∑d=1nf(d)k∑i=1n∑j=1n[gcd(i,j)=d]∑d=1nf(d)k∑i=1nd∑j=1nd[gcd(i,j)=1]∑d=1nf(d)k(2×∑i=1nd∑j=1i[gcd(i,j)=1]−1)∑d=1nf(d)k(2∑i=1ndϕ(i)−1)\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} f(\gcd(i, j)) ^ k\\ \sum_{d = 1} ^{n} f(d) ^ k \sum_{i = 1} ^{n} \sum_{j = 1} ^{n}[gcd(i, j) = d]\\ \sum_{d = 1} ^{n} f(d) ^ k \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}[gcd(i, j) = 1]\\ \sum_{d = 1} ^{n} f(d) ^ k \left( 2 \times\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{i}[gcd(i, j) = 1] - 1 \right)\\ \sum_{d = 1} ^{n} f(d) ^ k \left(2 \sum_{i = 1} ^{\frac{n}{d}}\phi(i) - 1\right)\\ i=1∑n​j=1∑n​f(gcd(i,j))kd=1∑n​f(d)ki=1∑n​j=1∑n​[gcd(i,j)=d]d=1∑n​f(d)ki=1∑dn​​j=1∑dn​​[gcd(i,j)=1]d=1∑n​f(d)k⎝⎛​2×i=1∑dn​​j=1∑i​[gcd(i,j)=1]−1⎠⎞​d=1∑n​f(d)k⎝⎛​2i=1∑dn​​ϕ(i)−1⎠⎞​
设S(n)=∑i=1nϕ(i),F(n)=f(n)kS(n) = \sum\limits_{i = 1} ^{n} \phi(i), F(n) = f(n) ^ kS(n)=i=1∑n​ϕ(i),F(n)=f(n)k,而有:
∑d=1nF(d)(2×S(nd)−1)\sum_{d = 1} ^{n} F(d) \left(2 \times S(\frac{n}{d}) - 1 \right)\\ d=1∑n​F(d)(2×S(dn​)−1)
对于2×S(nd)−12 \times S(\frac{n}{d}) - 12×S(dn​)−1,可以通过杜教筛求得,考虑如何求前面的∑i=1nF(i)\sum\limits_{i = 1} ^{n} F(i)i=1∑n​F(i),对前项考虑min_25min\_25min_25求解。

我们定义S(n,j)=∑i=1n[i∈primeormin_primeofi≥primej]f(i)S(n, j) = \sum\limits_{i = 1} ^{n} [i \in prime\ or\ min\_prime\ of\ i \geq prime_j] f(i)S(n,j)=i=1∑n​[i∈prime or min_prime of i≥primej​]f(i),也就是质数或者,最小质因子大于等于primejprime_jprimej​的答案。

每一轮我们枚举最小质因子及其幂次,考虑这一部分合数的贡献,分两种:

#include <bits/stdc++.h>using namespace std;typedef unsigned int uint;uint quick_pow(uint a, int n) {uint ans = 1;while (n) {if (n & 1) {ans *= a;}a *= a;n >>= 1;}return ans;
}int n, k;namespace min_25 {const int N = 1e6 + 10;int prime[N], a[N], id1[N], id2[N], m, cnt, T;uint g[N], sum[N], s[N], f[N];bool st[N];inline int ID(int x) {return x <= T ? id1[x] : id2[n / x];}void init() {T = sqrt(n + 0.5);for(int i = 2; i <= T; i++) {if(!st[i]) {prime[++cnt] = i;f[cnt] = quick_pow(i, k);sum[cnt] = sum[cnt - 1] + 1;}for(int j = 1; j <= cnt && 1ll * i * prime[j] <= T; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {break;}}}for(int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);a[++m] = n / l;a[m] <= T ? id1[a[m]] = m : id2[n / a[m]] = m;g[m] = a[m] - 1;}for(int j = 1; j <= cnt; j++) {for(int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {g[i] -= g[ID(a[i] / prime[j])] - sum[j - 1];}}for (int i = 1; i <= m; i++) {s[i] = g[i];}for (int j = cnt; j >= 1; j--) {for (int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {for (int cur = prime[j]; 1ll * cur * prime[j] <= a[i]; cur *= prime[j]) {s[i] += (s[ID(a[i] / cur)] - g[ID(a[i] / cur)]) + (g[ID(a[i] / cur)] - sum[j - 1]) * f[j];/*合数答案贡献分为两类:一、当前枚举的质数不是次小的,二、当前枚举的质数是次小的,也就是形如prime[j] ^ k * b, b是一个质数且这个质数大于 prime[j], 最后再加上 f(prime[j] ^ {k + 1})。*/}}}}uint solve(int x) {return x <= 1 ? 0 : s[ID(x)];}
}namespace Djs {const int N = 2e6 + 10;int prime[N], cnt;uint phi[N];bool st[N];void init() {phi[1] = 1;for (int i = 2; i < N; i++) {if (!st[i]) {prime[++cnt] = i;phi[i] = i - 1;}for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if (i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for (int i = 1; i < N; i++) {phi[i] += phi[i - 1];}}unordered_map<int, uint> mp;uint Djs_ans(int n) {if (n < N) {return phi[n];}if (mp.count(n)) {return mp[n];}uint ans = 1ll * n * (n + 1) / 2;for (uint l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans -= (r - l + 1) * Djs_ans(n / l);}return mp[n] = ans;}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);scanf("%d %d", &n, &k);min_25::init();Djs::init();uint ans = 0;for (uint l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans += (min_25::solve(r) - min_25::solve(l - 1)) * (2 * Djs::Djs_ans(n / l) - 1);}cout << ans << "\n";return 0;
}

1847 奇怪的数学题

给定n,kn, kn,k,要我们求∑i=1n∑j=1nsgcd(i,j)k\sum\limits_{i = 1} ^{n} \sum\limits_{j = 1} ^{n}sgcd(i, j) ^ ki=1∑n​j=1∑n​sgcd(i,j)k,sgcd(i,j)sgcd(i, j)sgcd(i,j)是gcd(i,j)gcd(i, j)gcd(i,j)的次大公约数,sgcd(i,j)=gcd⁡(i,j)min_primeofgcd⁡(i,j)sgcd(i, j) = \frac{\gcd(i, j)}{min\_prime\ of\ \gcd(i, j)}sgcd(i,j)=min_prime of gcd(i,j)gcd(i,j)​,另sgcd(i,j)=f(gcd(i,j))sgcd(i, j) = f(gcd(i, j))sgcd(i,j)=f(gcd(i,j))。
∑i=1n∑j=1nf(gcd(i,j))k∑d=1nf(d)k∑i=1n∑j=1n[gcd(i,j)=d]∑d=1nf(d)k∑i=1nd∑j=1nd[gcd(i,j)=1]∑d=1nf(d)k(2×∑i=1nd∑j=1i[gcd(i,j)=1]−1)∑d=1nf(d)k(2×∑i=1ndϕ(i)−1)\sum_{i = 1} ^{n} \sum_{j = 1} ^{n} f(gcd(i, j)) ^ k\\ \sum_{d = 1} ^{n} f(d) ^ k \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} [gcd(i, j) = d]\\ \sum_{d = 1} ^{n} f(d) ^ k \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}[gcd(i,j) = 1]\\ \sum_{d = 1} ^{n} f(d) ^ k \left(2 \times \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{i} [gcd(i, j) = 1] - 1\right)\\ \sum_{d = 1} ^{n} f(d) ^ k \left(2 \times \sum_{i = 1} ^{\frac{n}{d}} \phi(i) -1 \right)\\ i=1∑n​j=1∑n​f(gcd(i,j))kd=1∑n​f(d)ki=1∑n​j=1∑n​[gcd(i,j)=d]d=1∑n​f(d)ki=1∑dn​​j=1∑dn​​[gcd(i,j)=1]d=1∑n​f(d)k⎝⎛​2×i=1∑dn​​j=1∑i​[gcd(i,j)=1]−1⎠⎞​d=1∑n​f(d)k⎝⎛​2×i=1∑dn​​ϕ(i)−1⎠⎞​
后项可以用杜教筛求解,考虑前项的∑d=1nf(d)k\sum\limits_{d = 1} ^{n} f(d) ^ kd=1∑n​f(d)k,min_25min\_25min_25中有枚举最小质因子的一步,下面定义f(n)=nkf(n) = n ^ kf(n)=nk。

还记得g(n,j)=g(n,j−1)−f(pj)(g(npj)−∑i=1j−1pj)g(n, j) = g(n, j - 1) - f(p_j) \left(g(\frac{n}{p_j}) - \sum\limits_{i = 1} ^{j - 1} p_j \right)g(n,j)=g(n,j−1)−f(pj​)(g(pj​n​)−i=1∑j−1​pj​),的转移

后面减去的不就是最小质因子等于pjp_jpj​且为合数的函数值,那么g(npj−∑i=1j−1pj)g(\frac{n}{p_j} - \sum\limits_{i = 1} ^{j - 1}p_j)g(pj​n​−i=1∑j−1​pj​)就是除去f(pj)f(p_j)f(pj​)的,也就是我们需要的sgcdsgcdsgcd了。

#include <bits/stdc++.h>using namespace std;typedef unsigned int uint;const int N = 1e6 + 10;uint quick_pow(uint a, int n) {uint ans = 1;while(n) {if(n & 1) ans = ans * a;a = a * a;n >>= 1;}return ans;
}namespace Sum {uint S[60][60], k;uint Sumk(int n) {uint ret = 0;for(int i = 1; i <= k; ++i) {uint s = 1;for(int j = 0; j <= i; ++j)if((n + 1 - j) % (i + 1)) s *= n + 1 - j;else s *= (n + 1 - j) / (i + 1);ret += S[k][i] *s;}return ret;}void init() {S[0][0] = 1;for(int i = 1; i <= k; i++)for(int j = 1; j <= i; j++)S[i][j] = S[i-1][j-1] + j * S[i-1][j];}
}namespace Min_25 {uint prime[N], id1[N], id2[N], m, cnt, k, T;uint a[N], g1[N], sum1[N], g2[N], sum2[N], f[N], ans[N], n;bool st[N];int ID(int x) {return x <= T ? id1[x] : id2[n / x];}void init() {T = sqrt(n + 0.5);for(int i = 2; i <= T; i++) {if(!st[i]) {prime[++cnt] = i;sum1[cnt] = sum1[cnt - 1] + 1;f[cnt] = quick_pow(i, k);sum2[cnt] = sum2[cnt - 1] + f[cnt];}for(int j = 1; j <= cnt && 1ll * i * prime[j] <= T; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {break;}}}for(int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);a[++m] = n / l;if(a[m] <= T) id1[a[m]] = m;else id2[n / a[m]] = m;g1[m] = a[m] - 1;g2[m] = Sum::Sumk(a[m]) - 1;}for(int j = 1; j <= cnt; j++) {for(int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {g1[i] -= (g1[ID(a[i] / prime[j])] - sum1[j - 1]);g2[i] -= f[j] * (g2[ID(a[i] / prime[j])] - sum2[j - 1]);ans[i] += g2[ID(a[i] / prime[j])] - sum2[j - 1];}}for(int i = 1; i <= m; i++) {ans[i] += g1[i];}}uint solve(int x) {if(x <= 1) return 0;return ans[ID(x)];}
}namespace Djs {uint prime[N], phi[N], cnt;bool st[N];void init() {phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[++cnt] = i;phi[i] = i - 1;}for(int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) {phi[i] += phi[i - 1];}}unordered_map<int, uint> ans_s;uint S(int n) {if(n < N) return phi[n];if(ans_s.count(n)) return ans_s[n];uint ans = 1ll * n * (n + 1) / 2;for(uint l = 2, r; l <= n; l = r + 1) {r = n / (n / l);ans -=(r - l + 1) * S(n / l);}return ans_s[n] = ans;}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);int n, k;cin >> n >> k;Sum::k = k;Sum::init();Djs::init();Min_25::n = n, Min_25::k = k;Min_25::init();uint ans = 0;for(uint l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans += (Min_25::solve(r) - Min_25::solve(l - 1)) * (2 * Djs::S(n / l) - 1);}cout << ans << "\n";return 0;
}

这是第二次学min_25了,第一次学的时候只会打打模板,理解的不是很深,希望这次我是真的理解了吧!!!

min_25 推导及例题总结相关推荐

  1. 【网格图软判决译码】基于比特级的MAP译码(Bitwise MAP Decoding)算法原理推导和例题详解(intrinsic和extrinsic值)

    Bitwise MAP Decoding算法详解 C C C表示一个(n,k)码,生成矩阵为 G G G,编码如下 Encoding u =

  2. 多项式的基础操作(逆元/除法/取模/对数ln/开根sqrt/指数exp/快速幂)带模板+luogu全套例题

    文章目录 多项式的逆元 理论推导 模板 例题:[luogu P4238][模板]多项式乘法逆 题目 code 多项式的除法/取模 理论推导 多项式牛顿迭代法 模板 例题:[luoguP4512][模板 ...

  3. 单代号网络图计算例题_常用连续随机变量的关系与密度函数的计算

    第一节整理了一下常用的连续随机变量的密度函数,并以一张图给出它们之间的关系.接下来回顾了计算密度函数的基本方法,最后以第一节中的 3 个密度函数的推导作为例题. 1.随机变量分布及特征 1.1 常用连 ...

  4. 用计算机计算电力系统故障,用计算机计算电力系统故障的方法.ppt

    用计算机计算电力系统故障的方法 第六章 用计算机计算电力系统故障的方法 6-1 概述 手算 → 计算台(直流,交流) → 计算机(模拟机,数字机) 6-1 概述(续) 二.主要过程 6-2 等值网络及 ...

  5. 我学习图像处理的小结

        前一段时间,我一直在制作OpenCV基础知识的课件(<学习OpenCV3.0初级实战视频课程> http://edu.51cto.com/course/10381.html,< ...

  6. matlab 莫比乌斯带,教师数学论文,关于高等数学教学中运用多媒体手段相关参考文献资料-免费论文范文...

    导读:本论文可用于教师数学论文范文参考下载,教师数学相关论文写作参考研究. 尹而 高辉 万莹 (大连海洋大学,辽宁大连116023) 摘 要:本文结合作者在高等数学上的教学实践,指出了多媒体教学的优势 ...

  7. 高中数学培训数学从50-122分如何逆袭

    很多同学认为高三数学提高70分有没有可能,答案当时是可能!但是,这背后要付出的,是常人的5倍甚至是10倍的努力!这个是需要进行高中数学系统培训,选择自己合适的方法去学习高中数学,肖博分享高中数学逆袭者 ...

  8. 上职高数学不好可以学计算机吗,如何学好职高的数学

    如何学好职高的数学 下面是一位职高的学霸总结的提分方法,总结了他是如何从菜鸟变身学霸的详细过程.可以说具体到了每一步,并且是怎样一步步学好数学的.建议每位家长让孩子看一看,冲刺提分很实用!快快为他们收 ...

  9. 矩阵论(二)——Jordan标准形

    矩阵论(二)--Jordan标准形 1. 线性变换的对角矩阵表示 1.1 特征值与特征向量 1.2 特征子空间 概念 性质 例题 1.3 线性变换矩阵的对角化 概念 例题 2 Jordan矩阵介绍 2 ...

最新文章

  1. oracle监听器动态注册于静态注册的区别
  2. webpack vue app.js自动注入页面.为app.js增加随机参数
  3. 报错 ValueError: too many values to unpack (expected 2)
  4. 颜宁:批评一下当年的「颜宁同学」
  5. SAP License:物料账差异
  6. Pytorch基础(二) 初始自动微分
  7. 图神经网络概述(3):来自IEEE Fellow的GNN综述
  8. 技术晨读_20160217
  9. ojdbc14.jar 和mysql_Oracle数据库的驱动包ojdbc*.jar之间的差别
  10. python grasshopper_Grasshopper操作shp
  11. BMFont 制作字体时,无法导入图片
  12. linux桌面lxde 安装_Ubuntu怎么安装轻量级的LXDE桌面?
  13. 应届生 实习生 社招最常用招聘网站
  14. SQL Server 2005全文检索技术在网站上的应用实录
  15. EGPU use in NUC about ubuntu20.04.5
  16. 栈(Stack)和队列(Queue)区别
  17. 计算机凭据分配在哪里,电脑策略没有凭据分配怎么办
  18. Unpacking objects
  19. qt 飞扬青云_Qt编写安防视频监控系统(界面很漂亮)
  20. 2021高考语文作文成绩查询,2021高考语文作文已出炉,撒贝宁押题太准了,你有想写的冲动吗...

热门文章

  1. php表格怎么合并单元格格式化,table标签的结构与合并单元格的实现方法
  2. python3文件的编码类型是什么_Python3编码类型有哪些?怎么转换?
  3. 日本惊现神操作!偷偷研究飞刀方程致使厕所爆炸......
  4. 刷题≠学好数学,近百位名校名师告诉你,数学是怎么学好的?
  5. 其实你女朋友也不是很爱你...
  6. 大牛逝世 = 新人上位 = 科学进步?新研究表明确实如此
  7. java中可以用浮点作为循环变量吗_Java千问:Java循环语句的几个冷门知识点你都知道吗?...
  8. 苹果android 对比,苹果安卓旗舰差距有多少?看了这份对比,果粉傻眼了
  9. k8s滚动升级_k8s deployment 滚动更新
  10. Java如何控制用户输入的长度,用Java Applet 进行Web编程时,如何限制输入域中可输入字符的长度!解决后马上给分!!!...