前期做了个neat(遗传拓扑神经网络)算法进化出异或实验(xor)的网络和权重,那个非线性的都能训练出来,这个线性的应该没问题吧,所以试试。

conda软件版本:

python = 3.7.7
pandas = 1.0.3
neat-python = 0.92
numpy = 1.17.0
matplotlib = 3.1.1
(conda install)graphviz = 2.38.0
(pip install)graphviz = 0.13.2

数据,保存为:data.csv

首先,因为是线性规划,所以我们改下激活函数,改为relu,配置文件保存为:config-feedforward

#--- parameters for the xianxing experiment ---#[NEAT]
fitness_criterion     = max
fitness_threshold     = 99
pop_size              = 300
reset_on_extinction   = True[DefaultGenome]
# node activation options
activation_default      = random
activation_mutate_rate  = 0.1
activation_options      = relu# node aggregation options
aggregation_default     = sum
aggregation_mutate_rate = 0.1
aggregation_options     = sum# node bias options
bias_init_mean          = 0.0
bias_init_stdev         = 1.0
bias_max_value          = 30.0
bias_min_value          = -30.0
bias_mutate_power       = 0.5
bias_mutate_rate        = 0.7
bias_replace_rate       = 0.1# genome compatibility options
compatibility_disjoint_coefficient = 1.0
compatibility_weight_coefficient   = 0.5# connection add/remove rates
conn_add_prob           = 0.5
conn_delete_prob        = 0.5# connection enable options
enabled_default         = True
enabled_mutate_rate     = 0.1feed_forward            = True
initial_connection      = full# node add/remove rates
node_add_prob           = 0.2
node_delete_prob        = 0.2# network parameters
num_hidden              = 0
num_inputs              = 1
num_outputs             = 1# node response options
response_init_mean      = 1.0
response_init_stdev     = 0.0
response_max_value      = 30.0
response_min_value      = -30.0
response_mutate_power   = 0.0
response_mutate_rate    = 0.0
response_replace_rate   = 0.0# connection weight options
weight_init_mean        = 0.0
weight_init_stdev       = 1.0
weight_max_value        = 30
weight_min_value        = -30
weight_mutate_power     = 0.5
weight_mutate_rate      = 0.8
weight_replace_rate     = 0.1[DefaultSpeciesSet]
compatibility_threshold = 3.0[DefaultStagnation]
species_fitness_func = max
max_stagnation       = 20
species_elitism      = 3[DefaultReproduction]
elitism            = 3
survival_threshold = 0.3

其次是主函数文件了,保存为:neat线性回归.py

import os
import neat
import visualize
import pandas as pddata = pd.read_csv('data.csv')
x_input = data.x
y_output = data.ydef inputshuju():x = []for i in range(len(x_input)):x1 = x_input[i]x.append([x1])return xdef outputshuju():y = []for i in range(len(y_output)):y1 = y_output[i]y.append([y1])return y# 1个输入,1个输出
xor_inputs = inputshuju()
xor_outputs = outputshuju()def eval_genomes(genomes, config):# 评估函数for genome_id, genome in genomes:  # 每一个个体genome.fitness = 100.0  # 适应度为100.0的评估net = neat.nn.FeedForwardNetwork.create(genome, config)  # 生成一个前向传导网络for xi, xo in zip(xor_inputs, xor_outputs):  # zip打包成元祖的列表,https://www.runoob.com/python3/python3-func-zip.htmloutput = net.activate(xi)genome.fitness -= (output[0] - xo[0]) ** 2  # 训练完后得到一个fitnessdef run(config_file):# 读取配置文件config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,neat.DefaultSpeciesSet, neat.DefaultStagnation,config_file)# 创建种群p = neat.Population(config)# 打印训练过程p.add_reporter(neat.StdOutReporter(True))stats = neat.StatisticsReporter()p.add_reporter(stats)p.add_reporter(neat.Checkpointer())# 迭代1000次winner = p.run(eval_genomes, 1000)# 显示最佳网络print('\nBest genome:\n{!s}'.format(winner))print('\nOutput:')winner_net = neat.nn.FeedForwardNetwork.create(winner, config)for xi, xo in zip(xor_inputs, xor_outputs):output = winner_net.activate(xi)print("input {!r}, expected output {!r}, got {!r}".format(xi, xo, output))# 打印网络结构node_names = {-1: 'x', 0: 'y'}visualize.draw_net(config, winner, True, node_names=node_names)visualize.plot_stats(stats, ylog=False, view=True)visualize.plot_species(stats, view=True)# p = neat.Checkpointer.restore_checkpoint('neat-checkpoint-49')# p.run(eval_genomes, 10)if __name__ == '__main__':local_dir = os.path.dirname(__file__)config_path = os.path.join(local_dir, 'config-feedforward')run(config_path)

画图的文件,保存为:visualize.py

from __future__ import print_functionimport copy
import warningsimport graphviz
import matplotlib.pyplot as plt
import numpy as npdef plot_stats(statistics, ylog=False, view=False, filename='avg_fitness.svg'):""" Plots the population's average and best fitness. """if plt is None:warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")returngeneration = range(len(statistics.most_fit_genomes))best_fitness = [c.fitness for c in statistics.most_fit_genomes]avg_fitness = np.array(statistics.get_fitness_mean())stdev_fitness = np.array(statistics.get_fitness_stdev())plt.plot(generation, avg_fitness, 'b-', label="average")plt.plot(generation, avg_fitness - stdev_fitness, 'g-.', label="-1 sd")plt.plot(generation, avg_fitness + stdev_fitness, 'g-.', label="+1 sd")plt.plot(generation, best_fitness, 'r-', label="best")plt.title("Population's average and best fitness")plt.xlabel("Generations")plt.ylabel("Fitness")plt.grid()plt.legend(loc="best")if ylog:plt.gca().set_yscale('symlog')plt.savefig(filename)if view:plt.show()plt.close()def plot_spikes(spikes, view=False, filename=None, title=None):""" Plots the trains for a single spiking neuron. """t_values = [t for t, I, v, u, f in spikes]v_values = [v for t, I, v, u, f in spikes]u_values = [u for t, I, v, u, f in spikes]I_values = [I for t, I, v, u, f in spikes]f_values = [f for t, I, v, u, f in spikes]fig = plt.figure()plt.subplot(4, 1, 1)plt.ylabel("Potential (mv)")plt.xlabel("Time (in ms)")plt.grid()plt.plot(t_values, v_values, "g-")if title is None:plt.title("Izhikevich's spiking neuron model")else:plt.title("Izhikevich's spiking neuron model ({0!s})".format(title))plt.subplot(4, 1, 2)plt.ylabel("Fired")plt.xlabel("Time (in ms)")plt.grid()plt.plot(t_values, f_values, "r-")plt.subplot(4, 1, 3)plt.ylabel("Recovery (u)")plt.xlabel("Time (in ms)")plt.grid()plt.plot(t_values, u_values, "r-")plt.subplot(4, 1, 4)plt.ylabel("Current (I)")plt.xlabel("Time (in ms)")plt.grid()plt.plot(t_values, I_values, "r-o")if filename is not None:plt.savefig(filename)if view:plt.show()plt.close()fig = Nonereturn figdef plot_species(statistics, view=False, filename='speciation.svg'):""" Visualizes speciation throughout evolution. """if plt is None:warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")returnspecies_sizes = statistics.get_species_sizes()num_generations = len(species_sizes)curves = np.array(species_sizes).Tfig, ax = plt.subplots()ax.stackplot(range(num_generations), *curves)plt.title("Speciation")plt.ylabel("Size per Species")plt.xlabel("Generations")plt.savefig(filename)if view:plt.show()plt.close()def draw_net(config, genome, view=False, filename=None, node_names=None, show_disabled=True, prune_unused=False,node_colors=None, fmt='svg'):""" Receives a genome and draws a neural network with arbitrary topology. """# Attributes for network nodes.if graphviz is None:warnings.warn("This display is not available due to a missing optional dependency (graphviz)")returnif node_names is None:node_names = {}assert type(node_names) is dictif node_colors is None:node_colors = {}assert type(node_colors) is dictnode_attrs = {'shape': 'circle','fontsize': '9','height': '0.2','width': '0.2'}dot = graphviz.Digraph(format=fmt, node_attr=node_attrs)inputs = set()for k in config.genome_config.input_keys:inputs.add(k)name = node_names.get(k, str(k))input_attrs = {'style': 'filled','shape': 'box'}input_attrs['fillcolor'] = node_colors.get(k, 'lightgray')dot.node(name, _attributes=input_attrs)outputs = set()for k in config.genome_config.output_keys:outputs.add(k)name = node_names.get(k, str(k))node_attrs = {'style': 'filled'}node_attrs['fillcolor'] = node_colors.get(k, 'lightblue')dot.node(name, _attributes=node_attrs)if prune_unused:connections = set()for cg in genome.connections.values():if cg.enabled or show_disabled:connections.add((cg.in_node_id, cg.out_node_id))used_nodes = copy.copy(outputs)pending = copy.copy(outputs)while pending:new_pending = set()for a, b in connections:if b in pending and a not in used_nodes:new_pending.add(a)used_nodes.add(a)pending = new_pendingelse:used_nodes = set(genome.nodes.keys())for n in used_nodes:if n in inputs or n in outputs:continueattrs = {'style': 'filled','fillcolor': node_colors.get(n, 'white')}dot.node(str(n), _attributes=attrs)for cg in genome.connections.values():if cg.enabled or show_disabled:#if cg.input not in used_nodes or cg.output not in used_nodes:#    continueinput, output = cg.keya = node_names.get(input, str(input))b = node_names.get(output, str(output))style = 'solid' if cg.enabled else 'dotted'color = 'green' if cg.weight > 0 else 'red'width = str(0.1 + abs(cg.weight / 5.0))dot.edge(a, b, _attributes={'style': style, 'color': color, 'penwidth': width})dot.render(filename, view=view)return dot

原理:

原理很简单,先用panda读取数据,然后用neat算法(遗传拓扑神经网络)迭代进化出我们需要的拓扑和权重,初始设定的fitness_threshold = 99,迭代次数为1000次,当fitness > 99,或者迭代了1000次,代码运行结束,最后可以看下实验最后部分结果。

 ****** Running generation 1 ****** Population's average fitness: -44417.02749 stdev: 40257.92716
Best fitness: 89.04762 - size: (1, 1) - species 1 - id 544
Average adjusted fitness: 0.902
Mean genetic distance 1.631, standard deviation 0.836
Population of 300 members in 2 species:ID   age  size  fitness  adj fit  stag====  ===  ====  =======  =======  ====1    1   281     89.0    0.902     02    0    19       --       --     0
Total extinctions: 0
Generation time: 0.034 sec (0.034 average)****** Running generation 999 ****** Population's average fitness: -66597.44638 stdev: 271056.35588
Best fitness: 92.77414 - size: (1, 1) - species 64 - id 275343
Average adjusted fitness: 0.980
Mean genetic distance 2.519, standard deviation 0.711
Population of 301 members in 5 species:ID   age  size  fitness  adj fit  stag====  ===  ====  =======  =======  ====21  756    56     92.8    0.989   41762  182    51     92.2    0.955   14864  154   101     92.8    0.981   10172   80    52     91.7    0.990     473   68    41     92.0    0.987     4
Total extinctions: 0
Generation time: 0.066 sec (0.069 average)
Saving checkpoint to neat-checkpoint-999Best genome:
Key: 254624
Fitness: 92.77413717482956
Nodes:0 DefaultNodeGene(key=0, bias=-2.67537926563292, response=1.0, activation=relu, aggregation=sum)3113 DefaultNodeGene(key=3113, bias=-2.00329012513426, response=1.0, activation=relu, aggregation=sum)
Connections:DefaultConnectionGene(key=(-1, 0), weight=0.48258719499769087, enabled=True)DefaultConnectionGene(key=(-1, 3113), weight=-1.74060320260046, enabled=True)Output:
input [100], expected output [45], got [45.583340234136166]
input [110], expected output [51], got [50.40921218411307]
input [120], expected output [54], got [55.23508413408999]
input [130], expected output [61], got [60.060956084066895]
input [140], expected output [66], got [64.8868280340438]
input [150], expected output [70], got [69.7126999840207]
input [160], expected output [74], got [74.53857193399762]
input [170], expected output [78], got [79.36444388397452]
input [180], expected output [85], got [84.19031583395143]
input [190], expected output [89], got [89.01618778392834]

看下连接图:

最后,代码迭代了1000次结束的不是fitness > 99结束的,可以看下最后的Best fitness = 92.77414,然后我们看下原来的输出和实际的输出相差多少。如下

Output:
input [100], expected output [45], got [45.583340234136166]
input [110], expected output [51], got [50.40921218411307]
input [120], expected output [54], got [55.23508413408999]
input [130], expected output [61], got [60.060956084066895]
input [140], expected output [66], got [64.8868280340438]
input [150], expected output [70], got [69.7126999840207]
input [160], expected output [74], got [74.53857193399762]
input [170], expected output [78], got [79.36444388397452]
input [180], expected output [85], got [84.19031583395143]
input [190], expected output [89], got [89.01618778392834]

可以看出,实际的输出和原来的输出相差不大,说明此时训练的网络可以很好的拟合此时的线性回归了。那怎么看得到的线性回归方程呢?

其实得出的结果已经给出了,如下:

Nodes:0 DefaultNodeGene(key=0, bias=-2.67537926563292, response=1.0, activation=relu, aggregation=sum)3113 DefaultNodeGene(key=3113, bias=-2.00329012513426, response=1.0, activation=relu, aggregation=sum)
Connections:DefaultConnectionGene(key=(-1, 0), weight=0.48258719499769087, enabled=True)DefaultConnectionGene(key=(-1, 3113), weight=-1.74060320260046, enabled=True)

-1代表x,0代表y,生成的3113只是进化的多余的节点,可以不用管,假设线性回归方程为y = kx + b

从下面的这行的输出可以得出k = weight = 0.48258719499769087

DefaultConnectionGene(key=(-1, 0), weight=0.48258719499769087, enabled=True)

同理,得出b = bias = -2.67537926563292

0 DefaultNodeGene(key=0, bias=-2.67537926563292, response=1.0, activation=relu, aggregation=sum)

所以线性回归方程为

y=0.48258719499769087x−2.67537926563292y=0.48258719499769087x-2.67537926563292y=0.48258719499769087x−2.67537926563292

我用TensorFlow2.0训练得出的线性回归方程为(连接为:https://blog.csdn.net/weixin_45092662/article/details/101688614)

y = 0.4737 x - 1.33

相比较,还是蛮接近的,为什么两方程不能一样?因为涉及到你怎么选择它的精度还有训练的loss的值,只要能拟合出它的线性,而且误差在我们的接受范围内,此项拟合就是成功的。所以此neat算法(遗传拓扑神经网络)能进化出线性和非线性的网络,还是蛮有用的,此后会进一步研究。

有用请点个赞!!
本站所有文章均为原创,欢迎转载,请注明文章出处:https://blog.csdn.net/weixin_45092662。百度和各类采集站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的博文进行修正和更新,因此请访问出处以查看本文的最新版本。

neat神经网络算法的线性回归拟合(Python)相关推荐

  1. MATLAB 中BP神经网络算法用于回归拟合的实现

    转载自:https://www.cnblogs.com/babyfei/p/7400072.html BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单 ...

  2. 树+神经网络算法强强联手(Python)

    作者 | 泳鱼 来源 | 算法进阶 结合论文<Revisiting Deep Learning Models for Tabular Data>的观点,集成树模型通常擅长于表格数据这种异构 ...

  3. 4.2 神经网络算法代码实现

    参考前一篇文章"4.1 神经网络算法原理" , 用Python实现了一个版本,不过这个版本有一些坑,懒得去调了, 以后会出一个新的版本,这个版本就这样了吧 python代码 Ner ...

  4. neat算法做监督学习(Python)

    2020年6月15号,上次我们用neat算法做了线性回归还有非线性关系的拟合,效果还不错,这次,我想用这个算法做一下监督学习. 我使用的数据是光纤耦合数据,知道光纤输入的4个参数,最后的输出是耦合效率 ...

  5. loss下降auc下降_梯度下降算法 线性回归拟合(附Python/Matlab/Julia源代码)

    梯度下降 梯度下降法的原理 梯度下降法(gradient descent)是一种常用的一阶(first-order)优化方法,是求解无约束优化问题最简单.最经典的方法之一. 梯度下降最典型的例子就是从 ...

  6. GCN-图卷积神经网络算法简单实现(含python代码)

    本文是就实现GCN算法模型进行的代码介绍,上一篇文章是GCN算法的原理和模型介绍. 代码中用到的Cora数据集: 链接:https://pan.baidu.com/s/1SbqIOtysKqHKZ7C ...

  7. python机器学习手写算法系列——线性回归

    本系列另一篇文章<决策树> https://blog.csdn.net/juwikuang/article/details/89333344 本文源代码: https://github.c ...

  8. python深度神经网络算法_02.深度神经网络算法之Python基础与数据分析

    资源内容: 02.深度神经网络算法之Python基础与数据分析|____2016最新python基础篇视频教程22课|____Python学习手册(第4版).pdf|____Python程序入门与进阶 ...

  9. python神经网络实例_Python编程实现的简单神经网络算法示例

    本文实例讲述了Python编程实现的简单神经网络算法.分享给大家供大家参考,具体如下: python实现二层神经网络 包括输入层和输出层 # -*- coding:utf-8 -*- #! pytho ...

最新文章

  1. 【Xamarin 在Mac OS 上的部署安装环境】
  2. 百度面试 中缀表达式变成后缀表达式
  3. 关于Latex一个简单例子
  4. 实现JavaSrcipt页面的跳转
  5. 【Anaconda】conda :未找到命令
  6. uni-app——一种通过Nginx反向代理处理302重定向请求解决网络请求中无法获取Cookie的解决方案
  7. Elasticsearch的PHP的API使用(一)
  8. 安装MySQL Workbench 6.3.4 CE (winx64)出错KERNELBASE.dll的解决方案
  9. kubectl 创建pvc_k8s的持久化存储PVPVC
  10. Angular No provider for EffectsRootModule错误消息的出现原因和修复方式
  11. volley用法之 以post方式发送 json 参数
  12. idea安装Translation翻译插件
  13. Ionic4.x 中自定义公共模块
  14. IIS虚拟目录控制类
  15. plot sin 03-数据区域边界线的位置
  16. unity引用类型序列化_Unity 序列化 总结
  17. 玻色量子与Menlo Systems共同开展光量子计算研发
  18. 最好的免费在线UML图表工具
  19. 计算机考试报名填写完资料无法提交,护考报名入口已开通,常见问题看这里~...
  20. 数字图像处理 matlab图像的几何运算 实验三 旋转 缩放 裁剪 镜像变换 平移

热门文章

  1. 激人奋进的七个经典故事
  2. 最老程序员创业札记:全文检索、数据挖掘、推荐引擎应用44
  3. Google桌面搜索中文版印象(转)
  4. 智慧课堂师生通过什么互动
  5. sql server2000 安装时出现“另一个安装程序实例已在运行”的解决办法
  6. 【UI界面开发】基本组件概述
  7. 织梦CMS仿站概述:快速理清仿站思路
  8. 如何理解拜占庭将军问题
  9. 【笔记】曝光值EV曝光补偿曝光量
  10. 教育专家李彦良谈双减后的素质教育和智慧教育