}

public void turnRound() {

invalidateOutline();

}

即可根据设置的圆角值更新控件显示的圆角大小。当控件为正方形,且圆角值为边长的一半,显示的就是圆形。

二、实现正方形预览

1. 设备支持1:1预览尺寸

首先介绍一种简单但是局限性较大的实现方式:将相机预览尺寸和预览控件的大小都调整为1:1

一般Android设备都支持多种预览尺寸,以Samsung Tab S3为例

  • 在使用Camera API时,其支持的预览尺寸如下:

2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1920x1080

2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1280x720

2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1440x1080

2019-08-02 13:16:08.669 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1088x1088

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 1056x864

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 960x720

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 720x480

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 640x480

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 352x288

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 320x240

2019-08-02 13:16:08.670 16407-16407/com.wsy.glcamerademo I/CameraHelper: supportedPreviewSize: 176x144

其中1:1的预览尺寸为:1088x1088。

  • 在使用Camera2 API时,其支持的预览尺寸(其实也包含了PictureSize)如下:

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 4128x3096

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 4128x2322

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 3264x2448

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 3264x1836

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 3024x3024

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2976x2976

2019-08-02 13:19:24.980 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2880x2160

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2592x1944

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2560x1920

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2560x1440

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2560x1080

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2160x2160

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2048x1536

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 2048x1152

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1936x1936

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1920x1080

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1440x1080

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1280x960

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 1280x720

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 960x720

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 720x480

2019-08-02 13:19:24.981 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 640x480

2019-08-02 13:19:24.982 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupport
edSize: 320x240

2019-08-02 13:19:24.982 16768-16768/com.wsy.glcamerademo I/Camera2Helper: getBestSupportedSize: 176x144

其中1:1的预览尺寸为:3024x3024、2976x2976、2160x2160、1936x1936。

只要我们选择1:1的预览尺寸,再将预览控件设置为正方形,即可实现正方形预览

再通过设置预览控件的圆角为边长的一半,即可实现圆形预览

2. 设备不支持1:1预览尺寸的情况

  • 选择1:1预览尺寸的缺陷分析

  • 分辨率局限性

上述说到,我们可以选择1:1的预览尺寸进行预览,但是局限性较高

可选择范围都很小。如果相机不支持1:1的预览尺寸,这个方案就不可行了。

  • 资源消耗

以Samsung tab S3为例,该设备使用Camera2 API时,支持的正方形预览尺寸都很大,在进行图像处理等操作时将占用较多系统资源。

  • 处理不支持1:1预览尺寸的情况

  • 添加一个1:1尺寸的ViewGroup

  • 将TextureView放入ViewGroup

  • 设置TextureView的margin值以达到显示中心正方形区域的效果

示例代码

//将预览控件和预览尺寸比例保持一致,避免拉伸

{

FrameLayout.LayoutParams textureViewLayoutParams = (FrameLayout.LayoutParams) textureView.getLayoutParams();

int newHeight = 0;

int newWidth = textureViewLayoutParams.width;

//横屏

if (displayOrientation % 180 == 0) {

newHeight = textureViewLayoutParams.width * previewSize.height / previewSize.width;

}

//竖屏

else {

newHeight = textureViewLayoutParams.width * previewSize.width / previewSize.height;

}

当不是正方形预览的情况下,添加一层ViewGroup限制View的显示区域

if (newHeight != textureViewLayoutParams.height) {

insertFrameLayout = new RoundFrameLayout(CoverByParentCameraActivity.this);

int sideLength = Math.min(newWidth, newHeight);

FrameLayout.LayoutParams layoutParams = new FrameLayout.LayoutParams(sideLength, sideLength);

insertFrameLayout.setLayoutParams(layoutParams);

FrameLayout parentView = (FrameLayout) textureView.getParent();

parentView.removeView(textureView);

parentView.addView(insertFrameLayout);

insertFrameLayout.addView(textureView);

FrameLayout.LayoutParams newTextureViewLayoutParams = new FrameLayout.LayoutParams(newWidth, newHeight);

//横屏

if (displayOrientation % 180 == 0) {

newTextureViewLayoutParams.leftMargin = ((newHeight - newWidth) / 2);

}

//竖屏

else {

newTextureViewLayoutParams.topMargin = -(newHeight - newWidth) / 2;

}

textureView.setLayoutParams(newTextureViewLayoutParams);

}

}

三、使用GLSurfaceView进行自定义程度更高的预览

使用上面的方法操作已经可完成正方形和圆形预览,但是仅适用于原生相机,当我们的数据源并非是原生相机的情况时如何进行圆形预览?接下来介绍使用GLSurfaceView显示NV21的方案,完全是自己实现预览数据的绘制

1. GLSurfaceView使用流程

其中的重点是渲染器(Renderer)的编写,Renderer的介绍如下:

/**

  • A generic renderer interface.

  • The renderer is responsible for making OpenGL calls to render a frame.

  • GLSurfaceView clients typically create their own classes that implement

  • this interface, and then call {@link GLSurfaceView#setRenderer} to

  • register the renderer with the GLSurfaceView.

  • Developer Guides

  • For more information about how to use OpenGL, read the

  • OpenGL developer guide.

  • Threading

  • The renderer will be called on a separate thread, so that rendering

  • performance is decoupled from the UI thread. Clients typically need to

  • communicate with the renderer from the UI thread, because that’s where

  • input events are received. Clients can communicate using any of the

  • standard Java techniques for cross-thread communication, or they can

  • use the {@link GLSurfaceView#queueEvent(Runnable)} convenience method.

  • EGL Context Lost

  • There are situations where the EGL rendering context will be lost. This

  • typically happens when device wakes up after going to sleep. When

  • the EGL context is lost, all OpenGL resources (such as textures) that are

  • associated with that context will be automatically deleted. In order to

  • keep rendering correctly, a renderer must recreate any lost resources

  • that it still needs. The {@link #onSurfaceCreated(GL10, EGLConfig)} method

  • is a convenient place to do this.

  • @see #setRenderer(Renderer)

*/

public interface Renderer {

/**

  • Called when the surface is created or recreated.

  • Called when the rendering thread

  • starts and whenever the EGL context is lost. The EGL context will typically

  • be lost when the Android device awakes after going to sleep.

  • Since this method is called at the beginning of rendering, as well as

  • every time the EGL context is lost, this method is a convenient place to put

  • code to create resources that need to be created when the rendering

  • starts, and that need to be recreated when the EGL context is lost.

  • Textures are an example of a resource that you might want to create

  • here.

  • Note that when the EGL context is lost, all OpenGL resources associated

  • with that context will be automatically deleted. You do not need to call

  • the corresponding “glDelete” methods such as glDeleteTextures to

  • manually delete these lost resources.

  • @param gl the GL interface. Use instanceof to

  • test if the interface supports GL11 or higher interfaces.

  • @param config the EGLConfig of the created surface. Can be used

  • to create matching pbuffers.

*/

void onSurfaceCreated(GL10 gl, EGLConfig config);

/**

  • Called when the surface changed size.

  • Called after the surface is created and whenever

  • the OpenGL ES surface size changes.

  • Typically you will set your viewport here. If your camera

  • is fixed then you could also set your projection matrix here:

  • void onSurfaceChanged(GL10 gl, int width, int height) {

  • gl.glViewport(0, 0, width, height);
    
  • // for a fixed camera, set the projection too
    
  • float ratio = (float) width / height;
    
  • gl.glMatrixMode(GL10.GL_PROJECTION);
    
  • gl.glLoadIdentity();
    
  • gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10);
    
  • }

  • @param gl the GL interface. Use instanceof to

  • test if the interface supports GL11 or higher interfaces.

  • @param width

  • @param height

*/

void onSurfaceChanged(GL10 gl, int width, int height);

/**

  • Called to draw the current frame.

  • This method is responsible for drawing the current frame.

  • The implementation of this method typically looks like this:

  • void onDrawFrame(GL10 gl) {

  • gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
    
  • //... other gl calls to render the scene ...
    
  • }

  • @param gl the GL interface. Use instanceof to

  • test if the interface supports GL11 or higher interfaces.

*/

void onDrawFrame(GL10 gl);

}

  • void onSurfaceCreated(GL10 gl, EGLConfig config)

在Surface创建或重建的情况下回调

  • void onSurfaceChanged(GL10 gl, int width, int height)

在Surface的大小发生变化的情况下回调

  • void onDrawFrame(GL10 gl)

在这里实现绘制操作。当我们设置的renderModeRENDERMODE_CONTINUOUSLY时,该函数将不断地执行;

当我们设置的renderModeRENDERMODE_WHEN_DIRTY时,将只在创建完成和调用requestRender后才执行。一般我们选择RENDERMODE_WHEN_DIRTY渲染模式,避免过度绘制。

一般情况下,我们会自己实现一个Renderer,然后为GLSurfaceView设置Renderer,可以说,Renderer的编写是整个流程的核心步骤。以下是在void onSurfaceCreated(GL10 gl, EGLConfig config)进行的初始化操作和在void onDrawFrame(GL10 gl)进行的绘制操作的流程图:

2. 具体实现

  • 坐标系介绍

如图所示,和Android的View坐标系不同,OpenGL的坐标系是笛卡尔坐标系。

Android View的坐标系以左上角为原点,向右x递增,向下y递增

而OpenGL坐标系以中心为原点,向右x递增,向上y递增

  • 着色器编写

/**

  • 顶点着色器

*/

private static String VERTEX_SHADER =

" attribute vec4 attr_position;\n" +

" attribute vec2 attr_tc;\n" +

" varying vec2 tc;\n" +

" void main() {\n" +

" gl_Position = attr_position;\n" +

" tc = attr_tc;\n" +

" }";

/**

  • 片段着色器

*/

private static String FRAG_SHADER =

" varying vec2 tc;\n" +

" uniform sampler2D ySampler;\n" +

" uniform sampler2D uSampler;\n" +

" uniform sampler2D vSampler;\n" +

" const mat3 convertMat = mat3( 1.0, 1.0, 1.0, -0.001, -0.3441, 1.772, 1.402, -0.7141, -0.58060);\n" +

" void main()\n" +

" {\n" +

" vec3 yuv;\n" +

" yuv.x = texture2D(ySampler, tc).r;\n" +

" yuv.y = texture2D(uSampler, tc).r - 0.5;\n" +

" yuv.z = texture2D(vSampler, tc).r - 0.5;\n" +

" gl_FragColor = vec4(convertMat * yuv, 1.0);\n" +

" }";

  • 内建变量解释

  • gl_Position

VERTEX_SHADER代码里的gl_Position代表绘制的空间坐标。由于我们是二维绘制,所以直接传入OpenGL二维坐标系的左下(-1,-1)、右下(1,-1)、左上(-1,1)、右上(1,1),也就是{-1,-1,1,-1,-1,1,1,1}

  • gl_FragColor

FRAG_SHADER代码里的gl_FragColor代表单个片元的颜色

  • 其他变量解释

  • ySampleruSamplervSampler

分别代表Y、U、V纹理采样器

  • convertMat

根据以下公式:

R = Y + 1.402 (V - 128)

G = Y - 0.34414 (U - 128) - 0.71414 (V - 128)

B = Y + 1.772 (U - 128)

我们可得到一个YUV转RGB的矩阵

1.0, 1.0, 1.0,

0, -0.344, 1.77,

1.403, -0.714, 0

  • 部分类型、函数的解释

  • vec3、vec4

分别代表三维向量、四维向量。

  • vec4 texture2D(sampler2D sampler, vec2 coord)

以指定的矩阵将采样器的图像纹理转换为颜色值;如:

texture2D(ySampler, tc).r获取到的是Y数据,

texture2D(uSampler, tc).r获取到的是U数据,

texture2D(vSampler, tc).r获取到的是V数据。

  • 在Java代码中进行初始化

根据图像宽高创建Y、U、V对应的ByteBuffer纹理数据;

根据是否镜像显示、旋转角度选择对应的转换矩阵;

public void init(boolean isMirror, int rotateDegree, int frameWidth, int frameHeight) {

if (this.frameWidth == frameWidth

&& this.frameHeight == frameHeight

&& this.rotateDegree == rotateDegree

&& this.isMirror == isMirror) {

return;

}

dataInput = false;

this.frameWidth = frameWidth;

this.frameHeight = frameHeight;

this.rotateDegree = rotateDegree;

this.isMirror = isMirror;

yArray = new byte[this.frameWidth * this.frameHeight];

uArray = new byte[this.frameWidth * this.frameHeight / 4];

vArray = new byte[this.frameWidth * this.frameHeight / 4];

int yFrameSize = this.frameHeight * this.frameWidth;

int uvFrameSize = yFrameSize >> 2;

yBuf = ByteBuffer.allocateDirect(yFrameSize);

yBuf.order(ByteOrder.nativeOrder()).position(0);

uBuf = ByteBuffer.allocateDirect(uvFrameSize);

uBuf.order(ByteOrder.nativeOrder()).position(0);

vBuf = ByteBuffer.allocateDirect(uvFrameSize);

vBuf.order(ByteOrder.nativeOrder()).position(0);

// 顶点坐标

squareVertices = ByteBuffer

.allocateDirect(GLUtil.SQUARE_VERTICES.length * FLOAT_SIZE_BYTES)

.order(ByteOrder.nativeOrder())

.asFloatBuffer();

squareVertices.put(GLUtil.SQUARE_VERTICES).position(0);

//纹理坐标

if (isMirror) {

switch (rotateDegree) {

case 0:

coordVertice = GLUtil.MIRROR_COORD_VERTICES;

break;

case 90:

coordVertice = GLUtil.ROTATE_90_MIRROR_COORD_VERTICES;

break;

case 180:

coordVertice = GLUtil.ROTATE_180_MIRROR_COORD_VERTICES;

break;

case 270:

coordVertice = GLUtil.ROTATE_270_MIRROR_COORD_VERTICES;

break;

default:

break;

}

} else {

switch (rotateDegree) {

case 0:

coordVertice = GLUtil.COORD_VERTICES;

break;

case 90:

coordVertice = GLUtil.ROTATE_90_COORD_VERTICES;

break;

case 180:

coordVertice = GLUtil.ROTATE_180_COORD_VERTICES;

break;

case 270:

coordVertice = GLUtil.ROTATE_270_COORD_VERTICES;

break;

default:

break;

}

}

coordVertices = ByteBuffer.allocateDirect(coordVertice.length * FLOAT_SIZE_BYTES).order(ByteOrder.nativeOrder()).asFloatBuffer();

coordVertices.put(coordVertice).position(0);

}

在Surface创建完成时进行Renderer初始化

private void initRenderer() {

rendererReady = false;

createGLProgram();

//启用纹理

GLES20.glEnable(GLES20.GL_TEXTURE_2D);

//创建纹理

createTexture(frameWidth, frameHeight, GLES20.GL_LUMINANCE, yTexture);

createTexture(frameWidth / 2, frameHeight / 2, GLES20.GL_LUMINANCE, uTexture);

createTexture(frameWidth / 2, frameHeight / 2, GLES20.GL_LUMINANCE, vTexture);

rendererReady = true;

}

其中createGLProgram用于创建OpenGL Program并关联着色器代码中的变量

private void createGLProgram() {

int programHandleMain = GLUtil.createShaderProgram();

if (programHandleMain != -1) {

// 使用着色器程序

GLES20.glUseProgram(programHandleMain);

// 获取顶点着色器变量

int glPosition = GLES20.glGetAttribLocation(programHandleMain, “attr_position”);

int textureCoord = GLES20.glGetAttribLocation(programHandleMain, “attr_tc”);

// 获取片段着色器变量

int ySampler = GLES20.glGetUniformLocation(programHandleMain, “ySampler”);

int uSampler = GLES20.glGetUniformLocation(programHandleMain, “uSampler”);

int vSampler = GLES20.glGetUniformLocation(programHandleMain, “vSampler”);

//给变量赋值

/**

  • GLES20.GL_TEXTURE0 和 ySampler 绑定

  • GLES20.GL_TEXTURE1 和 uSampler 绑定

  • GLES20.GL_TEXTURE2 和 vSampler 绑定

  • 也就是说 glUniform1i的第二个参数代表图层序号

*/

GLES20.glUniform1i(ySampler, 0);

GLES20.glUniform1i(uSampler, 1);

GLES20.glUniform1i(vSampler, 2);

GLES20.glEnableVertexAttribArray(glPosition);

GLES20.glEnableVertexAttribArray(textureCoord);
aderProgram();

if (programHandleMain != -1) {

// 使用着色器程序

GLES20.glUseProgram(programHandleMain);

// 获取顶点着色器变量

int glPosition = GLES20.glGetAttribLocation(programHandleMain, “attr_position”);

int textureCoord = GLES20.glGetAttribLocation(programHandleMain, “attr_tc”);

// 获取片段着色器变量

int ySampler = GLES20.glGetUniformLocation(programHandleMain, “ySampler”);

int uSampler = GLES20.glGetUniformLocation(programHandleMain, “uSampler”);

int vSampler = GLES20.glGetUniformLocation(programHandleMain, “vSampler”);

//给变量赋值

/**

  • GLES20.GL_TEXTURE0 和 ySampler 绑定

  • GLES20.GL_TEXTURE1 和 uSampler 绑定

  • GLES20.GL_TEXTURE2 和 vSampler 绑定

  • 也就是说 glUniform1i的第二个参数代表图层序号

*/

GLES20.glUniform1i(ySampler, 0);

GLES20.glUniform1i(uSampler, 1);

GLES20.glUniform1i(vSampler, 2);

GLES20.glEnableVertexAttribArray(glPosition);

GLES20.glEnableVertexAttribArray(textureCoord);

Android多种方式实现相机圆形预览 看这一篇就够了,Android开发面试书籍相关推荐

  1. android 圆形相机预览拍照_Android多种方式实现相机圆形预览

    最终效果图如下: 一.为预览控件设置圆角 public RoundTextureView(Context context, AttributeSet attrs) { super(context, a ...

  2. android 圆形相机预览拍照_Android多种方式实现相机圆形预览的示例代码

    效果图如下: 一.为预览控件设置圆角 public RoundTextureView(Context context, AttributeSet attrs) { super(context, att ...

  3. 设置webstorm实时预览看这一篇就够了,5分钟解决!!

    1.安装插件Live Edit 这里学到了一个名词,捆绑,意思就是有的编辑器默认自带的,无须另外下载我这里是2020.3.2是自带的,检查是不是自带的也很简单,按照下图去看看是不是有Live Edit ...

  4. js小学生图区_多种方式实现js图片预览

    js多种方式图片预览-持续更新 //设置自己的变量存储区 var Util = { file : $("#file"), image_show:$("#img_show& ...

  5. 双目、结构光、tof,三种深度相机的原理区别看这一篇就够了!

    编辑:OAK中国 首发:oakchina.cn 喜欢的话,请多多

  6. android平台下OpenGL ES 3.0使用GLSurfaceView对相机Camera预览实时处理

    OpenGL ES 3.0学习实践 android平台下OpenGL ES 3.0从零开始 android平台下OpenGL ES 3.0绘制纯色背景 android平台下OpenGL ES 3.0绘 ...

  7. Android Camera2 教程 · 第三章 · 预览

    Android Camera2 教程 · 第三章 · 预览 DarylGo关注 Android Camera 上一章<Camera2 开启相机>我们学习了如何开启和关闭相机,接下来我们来学 ...

  8. 谷歌发布 Android 8.1 首个开发者预览版,优化内存效率

    今晨,谷歌推出了 Android 8.1 首个开发者预览版,此次升级涵盖了针对多个功能的提升优化,其中包含对 Android Go (设备运行内存小于等于 1 GB)和加速设备上对机器学习的全新神经网 ...

  9. android p dp5,谷歌释出Android P第5个开发者预览版更新!

    原标题:谷歌释出Android P第5个开发者预览版更新! [PConline资讯]今天凌晨,谷歌正式推出了AndroidP的第五个开发者预览版(DP5),这标志着AndroidP终于准备好在2018 ...

最新文章

  1. jmeter 非gui 模式跑jmx
  2. 【转发】响应式Web设计?怎样进行?
  3. Eclipse3.2下JFace和SWT工程环境配置方法
  4. [leetcode]Longest Palindromic Substring
  5. 带你领略Object.assign()方法的风骚操作
  6. Atitit 文档资料处理重要类库与工具 跨语言api和第三方api跨语言 类库工具 大概功能 功能 Curl httpclient 文件上传下载 数据传输rest doctotext.exe
  7. 浅谈iOS开发中的锁
  8. 指针c语言有什么作用,c语言中指针有什么用?
  9. verbose=False(TensorFlow)
  10. Loadbalancer
  11. 暴露自己IP地址有危险吗?
  12. [CSP2020]儒略日
  13. CF1463F Max Correct Set(取小样法+状压 DP)
  14. mysql在触发器中调用存储过程_mysql 触发器中调用存储过程
  15. 在word文档中从第3页开始编页码的方法
  16. 物联网应用平台开发——项目总结报告
  17. Cocos2d-x2.1.1-ClippingNodeTest 深入分析
  18. 如何才能提高自己未来的竞争力?
  19. 百度搜索资源平台链接提交通道
  20. 数据中心机柜水冷系统中一次泵和二次泵哪个更好?

热门文章

  1. python doc转换成docx以及读取docx
  2. Mybatis——主子表查询的Mapper
  3. gorm Preload主子表查询 学习笔记
  4. JavaScript获取月份最后一天
  5. 【问题小结】CH340驱动安装——端口无法识别
  6. 无锡室内设计培训——室内的十种设计手法
  7. 知识点记录--x86与arm
  8. 量子计算机淘汰了吗,量子计算机将淘汰目前的所有计算机
  9. Vue标准后台界面及登录功能流程(2)
  10. pktgen自动化测试网卡速率和包率