多项式函数以其简单的结构和性质在数值逼近中起到重要的作用,多项式的定义是什么?以下是学习啦小编为大家整理的关于多项式的定义,欢迎大家前来阅读!

多项式的定义

多项式是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。例如X2 - 3X + 4就是一个多项式。多项式是整式的一种。不定元只有一个的多项式称为一元多项式;不定元不止一个的多项式称为多元多项式。多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。

多项式数学术语

多项式 polynomial

不含字母的项叫做常数项。如:5X+6,6就是常数项。

比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数为正无穷大。单项式和多项式统称为整式。

多项式几何特性

多项式是简单的连续函数,它是平滑的,它的微分也必定是多项式。

泰勒多项式的精神便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。

多项式定理

基本定理

代数基本定理是指所有一元 n 次(复数)多项式都有 n 个(复数)根。

高斯引理

两个本原多项式的乘积是本原多项式。

应用高斯引理可证,如果一个整系数多项式可以分解为两个次数较低的有理系数多项式的乘积,那么它一定可以分解为两个整系数多项式的乘积。这个结论可用来判断有理系数多项式的不可约性。关于Q[x]中多项式的不可约性的判断,还有艾森斯坦判别法:对于整系数多项式,如果有一个素数p能整除αn-1,αn-2,…,α1,α0,但不能整除αn,且p2不能整除常数项α0,那么ƒ(x)在Q上是不可约的。由此可知,对于任一自然数n,在有理数域上xn-2是不可约的。因而,对任一自然数n,都有n次不可约的有理系数多项式。

分解定理

F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。

当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。

当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс<0。

当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。关于本原多项式有下述重要性质。

多项式运算法则

加法与乘法

有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。

多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。

F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。

域上的多元多项式也有因式分解惟一性定理。

带余除法

若 ƒ(x)和g(x)是F[x]中的两个多项式,且 g(x)≠0,则在F[x]中有唯一的多项式 q(x)和r(x),满足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次数小于g(x)的次数。此时q(x) 称为g(x)除ƒ(x)的商式,r(x)称为余式。当g(x)=x-α时,则r(x)=ƒ(α)称为余元,式中的α是F的元素。此时带余除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),称为余元定理。g(x)是ƒ(x)的因式的充分必要条件是g(x)除ƒ(x)所得余式等于零。如果g(x)是ƒ(x)的因式,那么也称g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特别地,x-α是ƒ(x)的因式的充分必要条件是ƒ(α)=0,这时称α是ƒ(x)的一个根。

如果d(x)既是ƒ(x)的因式,又是g(x)的因式,那么称d(x)是ƒ(x)与g(x)的一个公因式。如果d(x)是ƒ(x)与g(x)的一个公因式,并且ƒ(x)与g(x)的任一个因式都是d(x)的因式,那么称d(x)是ƒ(x)与g(x)的一个最大公因式。如果ƒ(x)=0,那么g(x)就是ƒ(x)与g(x)的一个最大公因式。当ƒ(x)与g(x)全不为零时,可以应用辗转相除法来求它们的最大公因式。

辗转相除法

已知一元多项式环F[x] [1]中两个不等于零的多项式ƒ(x)与g(x),用g(x)除ƒ(x)得商式q1(x)、余式r1(x)。若r1(x)=0,则g(x)就是ƒ(x)与g(x)的一个最大公因式。若 r1(x)≠0,则用 r1(x)除 g(x)得商式q2(x)、余式r2(x)。若r2(x)=0,则r1就是ƒ(x)与g(x)的一个最大公因式。否则,如此辗转相除下去,余式的次数不断降低,经有限s次之后,必有余式为零次(即零次多项式)或余式为零(即零多项式)。若最终余式结果为零次多项式,则原来f(x)与g(x)互素;若最终余式结果为零多项式,则原来f(x)与g(x)的最大公因式是最后一次带余除法的是除式。

利用辗转相除法的算法,可将ƒ(x)与g(x)的最大公因式rs(x)表成ƒ(x)和g(x)的组合,而组合的系数是F上的多项式。

如果ƒ(x)与g(x)的最大公因式是零次多项式,那么称ƒ(x)与g(x)是互素的。最大公因式和互素概念都可以推广到几个多项式的情形。

如果F[x]中的一个次数不小于1的多项式ƒ(x),不能表成 F[x] 中的两个次数较低的多项式的乘积,那么称ƒ(x)是F上的一个不可约多项式。

任一多项式都可分解为不可约多项式的乘积。

多项式应用

函数及根

给出多项式 f∈R[x1,...,xn] 以及一个 R-代数 A。对 (a1...an)∈An,我们把 f 中的 xj 都换成 aj,得出一个 A 中的元素,记作 f(a1...an)。如此, f 可看作一个由 An 到 A 的函数。

若然 f(a1...an)=0,则 (a1...an) 称作 f 的根或零点。

例如 f=x^2+1。若然考虑 x 是实数、复数、或矩阵,则 f 会无根、有两个根、及有无限个根!

例如 f=x-y。若然考虑 x 是实数或复数,则 f 的零点集是所有 (x,x) 的集合,是一个代数曲线。事实上所有代数曲线由此而来。

另外,若所有系数为实数多项式 P(x)有复数根Z,则Z的共轨复数也是根。

若P(x)有n个重叠的根,则 P‘(x) 有n-1个重叠根。即若 P(x)=(x-a)^nQ(x),则有 a 是 P’(x)的重叠根且有n-1个。

插值多项式

在实际问题中,往往通过实验或观测得出表示某种规律的数量关系y=F(x),通常只给出了F(x)在某些点xi上的函数值yi=F(xi),j=1,2,…,n+1。即使有时给出了函数F(x)的解析表达式,倘若较为复杂,也不便于计算。因此,需要根据给定点 xi 上的函数值F(xi),求出一个既能反映F(x)的特性,又便于计算的简单函数ƒ(x)来近似地代替F(x),此时ƒ(x)称为F(x)的插值函数;x1,x2,…,xn+1,称为插值节点。求插值函数的方法,称为插值法。

多项式是一类简单的初等函数,而且任给两组数:b1,b2,…,bn+1和各不相同的 с1,с2,…,сn+1,总有唯一的次数不超过n的多项式ƒ(x)满足ƒ(сi)=bi,i=1,2,…,n+1。因此在实际应用中常常取多项式作为插值函数。作为插值函数的多项式,称为插值多项式。插值多项式在计算数学插值中最常用。

看过"多项式的定义"的人还喜欢看:

计算机网络多项式的定义,多项式的定义是什么相关推荐

  1. 计算机网络多项式的定义,多项式

    [duō xiàng shì] 多项式 语音 编辑 锁定 讨论 上传视频 在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数).多项式中的每个单项式叫做多项式的项 ...

  2. 计算机网络多项式的定义,多项式的定义与概念

    多项式看起来像这样: 多项式例子 这个多项式有 3 项 多项式英语是 "Polynomial".这字源自 poly-(意思是 "很多")和-nomial(在这里 ...

  3. 线性与齐次在多项式、函数中的定义

    多项式 什么是多项式 满足如下条件的表达式才是多项式: 1 包含变量或者变量与常量 2 涉及的运算只有加运行,减运算,乘法运算与指数运算(指数必须>=0,不可以是负数),不包含除法运算 线性多项 ...

  4. 解题报告(二)多项式问题(多项式乘法及其各种运算)(ACM/ OI)超高质量题解

    整理的算法模板合集: ACM模板 点我看算法全家桶系列!!! 实际上是一个全新的精炼模板整合计划 繁凡出品的全新系列:解题报告系列 -- 超高质量算法题单,配套我写的超高质量的题解和代码,题目难度不一 ...

  5. 递归系统卷积码译码_编码器使用RSC递归系统卷积码. RSC码由前馈多项式和反馈多项式确定....

    编码器使用RSC递归系统卷积码. RSC码由前馈多项式和反馈多项式确定. 反馈变量检查输出是编码器输入位. 该主题的编码框图如图22所示. 交织器的使用是实现Turbo码的近似随机编码的关键. 交织器 ...

  6. Go 学习笔记(27)— type 关键字(类型定义、类型别名、类型查询、定义接口、定义结构体)

    1. 类型别名定义 定义类型别名的写法为: type TypeAlias = Type 类型别名规定: TypeAlias 只是 Type 的别名,本质上 TypeAlias 与 Type 是同一个类 ...

  7. CF438E The Child and Binary Tree(有意思的生成函数 + 多项式求逆 + 多项式开方)

    整理的算法模板合集: ACM模板 点我看多项式全家桶(●^◡_◡◡​^●) CF438E The Child and Binary Tree 简单的黑题 首先我们发现模数为99824435399824 ...

  8. 枚举的定义枚举类型定义

    枚举的定义枚举类型定义的一般形式为: enum 枚举名 { 枚举值表 }; 在枚举值表中应罗列出所有可用值.这些值也称为枚举元素. 例如: enum weekday { sun,mou,tue,wed ...

  9. 【Groovy】字符串 ( 字符串类型变量定义 | 字符类型变量定义 )

    文章目录 一.字符串类型变量 二.字符类型变量 三.完整代码示例 一.字符串类型变量 使用 def 关键字声明 Groovy 中的 变量 : 声明字符串 , 可以使用以下方式 : // 字符串 // ...

最新文章

  1. .net和java互操作
  2. netty源码分析系列——EventLoop
  3. ovs-ofctl: s1 is not a bridge or a socket 解决方法
  4. c语言贪心算法合并箭,LeetCode刷题题库:贪心算法
  5. 满帮如何将机器学习应用于车货匹配和公路干线价格预测?
  6. php验证码切换不刷新页面,Yii2解决验证码点击、刷新页面不刷新问题
  7. 《Linux From Scratch》第三部分:构建LFS系统 第六章:安装基本的系统软件- 6.12. File-5.22...
  8. 信息学奥赛一本通(1236:区间合并)
  9. multism中ui和uo应该怎么表示_吐血整理!这篇带你彻底理解主存中存储单元地址的分配...
  10. Android/Linux立即从缓冲区写入磁盘
  11. 华为发布IdeaHub S2系列,与华为云会议结合更强大
  12. 三层交换机和vrrp协议
  13. 学习mysql比较好一些书籍
  14. 设定窗体显示状态(ShowWindow)
  15. 视频播放(iOS开发)
  16. 修改conda环境和缓存默认路径/修改Python 的 pip install 默认安装依赖路径
  17. 短网址系统设计与实战
  18. 电子战基本概念 (01)
  19. android之禁用Appt2
  20. c语言中按姓名查询成绩,求助 C语言学生系统中按照姓名进行查找学生的问题...

热门文章

  1. SPA项目开发(首页导航左侧菜单)
  2. MySQL生成自增的流水号
  3. 各国家 MCC 和 MNC 列表3
  4. 单周期CPU实验之学习之旅
  5. 技校毕业是什么学历_技校毕业后是什么学历什么文凭?
  6. 5G核心网技术基础自学系列 | 消息业务
  7. 小白学习图像处理——分水岭算法
  8. wincc7.4安装授权 全(文件分享)
  9. 车牌识别技术栈研究报告
  10. 机器学习实战教程(三):决策树实战篇