原文:https://www.jianshu.com/p/05034a9c8cae

基于spark-1.5.0测试

在Spark Application Web UI的 Stages tag 上,我们可以看到这个的表格,描述的是某个 stage 的 tasks 的一些信息,其中 Locality Level 一栏的值可以有 PROCESS_LOCAL、NODE_LOCAL、NO_PREF、RACK_LOCAL、ANY 几个值。这篇文章将从这几个值入手,从源码角度分析 TaskSetManager 的 Locality Levels

这几个值在图中代表 task 的计算节点和 task 的输入数据的节点位置关系

  • PROCESS_LOCAL: 数据在同一个 JVM 中,即同一个 executor 上。这是最佳数据 locality。
  • NODE_LOCAL: 数据在同一个节点上。比如数据在同一个节点的另一个 executor上;或在 HDFS 上,恰好有 block 在同一个节点上。速度比 PROCESS_LOCAL 稍慢,因为数据需要在不同进程之间传递或从文件中读取
  • NO_PREF: 数据从哪里访问都一样快,不需要位置优先
  • RACK_LOCAL: 数据在同一机架的不同节点上。需要通过网络传输数据及文件 IO,比 NODE_LOCAL 慢
  • ANY: 数据在非同一机架的网络上,速度最慢

我们在上图中看到的其实是结果,即某个 task 计算节点与其输入数据的位置关系,下面将要挖掘Spark 的调度系统如何产生这个结果,这一过程涉及 RDD、DAGScheduler、TaskScheduler,搞懂了这一过程也就基本搞懂了 Spark 的 PreferredLocations(位置优先策略)

RDD 的 PreferredLocations

我们知道,根据输入数据源的不同,RDD 可能具有不同的优先位置,通过 RDD 的以下方法可以返回指定 partition 的最优先位置:

protected def getPreferredLocations(split: Partition): Seq[String]

返回类型为  Seq[String] ,其实对应的是  Seq[TaskLocation] ,在返回前都会执行  TaskLocation#toString  方法。TaskLocation 是一个 trait,共有以三种实现,分别代表数据存储在不同的位置:

/** * 代表数据存储在 executor 的内存中,也就是这个 partition 被 cache到内存了 */ private [spark] case class ExecutorCacheTaskLocation(override val host: String, executorId: String) extends TaskLocation { override def toString: String = s"${TaskLocation.executorLocationTag}${host}_$executorId" } /** * 代表数据存储在 host 这个节点的磁盘上 */ private [spark] case class HostTaskLocation(override val host: String) extends TaskLocation { override def toString: String = host } /** * 代表数据存储在 hdfs 上 */ private [spark] case class HDFSCacheTaskLocation(override val host: String) extends TaskLocation { override def toString: String = TaskLocation.inMemoryLocationTag + host }
  • ExecutorCacheTaskLocation: 代表 partition 数据已经被 cache 到内存,比如 KafkaRDD 会将 partitions 都 cache 到内存,其 toString 方法返回的格式如 executor_$host_$executorId
  • HostTaskLocation:代表 partition 数据存储在某个节点的磁盘上(且不在 hdfs 上),其 toString 方法直接返回 host
  • HDFSCacheTaskLocation:代表 partition 数据存储在 hdfs 上,比如从 hdfs 上加载而来的 HadoopRDD 的 partition,其 toString 方法返回的格式如 hdfs_cache_$host

这样,我们就知道不同的 RDD 会有不同的优先位置,并且存储在不同位置的优先位置的字符串的格式是不同的,这在之后 TaskSetManager 计算 tasks 的最优本地性起了关键作用。

DAGScheduler 生成 taskSet

DAGScheduler 通过调用 submitStage 来提交一个 stage 对应的 tasks,submitStage 会调用submitMissingTasks,submitMissingTasks 会以下代码来确定每个需要计算的 task 的preferredLocations,这里调用到了 RDD#getPreferredLocs,getPreferredLocs返回的 partition 的优先位置,就是这个 partition 对应的 task 的优先位置

val taskIdToLocations = try { stage match { case s: ShuffleMapStage => partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap case s: ResultStage => val job = s.resultOfJob.get partitionsToCompute.map { id => val p = job.partitions(id) (id, getPreferredLocs(stage.rdd, p)) }.toMap } } catch { ... }

这段调用返回的 taskIdToLocations: Seq[ taskId -> Seq[hosts] ] 会在submitMissingTasks生成要提交给 TaskScheduler 调度的 taskSet: Seq[Task[_]]时用到,如下,注意看注释:

val tasks: Seq[Task[_]] = try { stage match { case stage: ShuffleMapStage => partitionsToCompute.map { id => val locs = taskIdToLocations(id) val part = stage.rdd.partitions(id) //< 使用上述获得的 task 对应的优先位置,即 locs 来构造ShuffleMapTask new ShuffleMapTask(stage.id, stage.latestInfo.attemptId, taskBinary, part, locs, stage.internalAccumulators) } case stage: ResultStage => val job = stage.resultOfJob.get partitionsToCompute.map { id => val p: Int = job.partitions(id) val part = stage.rdd.partitions(p) val locs = taskIdToLocations(id) //< 使用上述获得的 task 对应的优先位置,即 locs 来构造ResultTask new ResultTask(stage.id, stage.latestInfo.attemptId, taskBinary, part, locs, id, stage.internalAccumulators) } } } catch { ... }

简而言之,在 DAGScheduler 为 stage 创建要提交给 TaskScheduler 调度执行的 taskSet 时,对于 taskSet 中的每一个 task,其优先位置与其对应的 partition 对应的优先位置一致

构造 TaskSetManager,确定 locality levels

在 DAGScheduler 向 TaskScheduler 提交了 taskSet 之后,TaskSchedulerImpl 会为每个 taskSet 创建一个 TaskSetManager 对象,该对象包含taskSet 所有 tasks,并管理这些 tasks 的执行,其中就包括计算 taskSetManager 中的 tasks 都有哪些locality levels,以便在调度和延迟调度 tasks 时发挥作用。

在构造 TaskSetManager 对象时,会调用var myLocalityLevels = computeValidLocalityLevels()来确定locality levels

private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = { import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY} val levels = new ArrayBuffer[TaskLocality.TaskLocality] if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 && pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) { levels += PROCESS_LOCAL } if (!pendingTasksForHost.isEmpty && getLocalityWait(NODE_LOCAL) != 0 && pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) { levels += NODE_LOCAL } if (!pendingTasksWithNoPrefs.isEmpty) { levels += NO_PREF } if (!pendingTasksForRack.isEmpty && getLocalityWait(RACK_LOCAL) != 0 && pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) { levels += RACK_LOCAL } levels += ANY logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", ")) levels.toArray }

这个函数是在解决4个问题:

  1. taskSetManager 的 locality levels是否包含 PROCESS_LOCAL
  2. taskSetManager 的 locality levels是否包含 NODE_LOCAL
  3. taskSetManager 的 locality levels是否包含 NO_PREF
  4. taskSetManager 的 locality levels是否包含 RACK_LOCAL

让我们来各个击破

taskSetManager 的 locality levels是否包含 PROCESS_LOCAL

关键代码:

if (!pendingTasksForExecutor.isEmpty && getLocalityWait(PROCESS_LOCAL) != 0 && pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) { levels += PROCESS_LOCAL }

真正关键的其实是这段代码,其他两个判断都很简单

pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))

要搞懂这段代码,首先要搞明白下面两个问题

  1. pendingTasksForExecutor是怎么来的,什么含义?
  2. sched.isExecutorAlive(_)干了什么?

pendingTasksForExecutor是怎么来的,什么含义?

pendingTasksForExecutor 在 TaskSetManager 构造函数中被创建,如下 private val pendingTasksForExecutor = new HashMap[String, ArrayBuffer[Int]]其中,key 为executoroId,value 为task index 数组。在 TaskSetManager 的构造函数中如下调用

  for (i <- (0 until numTasks).reverse) {addPendingTask(i)}

这段调用为 taskSetManager 中的优先位置类型为 ExecutorCacheTaskLocation(这里通过 toString 返回的格式进行匹配) 的 tasks 调用 addPendingTask,addPendingTask 获取 task 的优先位置,即一个 Seq[String];再获得这组优先位置对应的 executors,从来反过来获得了 executor 对应 partition 缓存在其上内存的 tasks,即pendingTasksForExecutor

简单的说,pendingTasksForExecutor保存着当前可用的 executor 对应的 partition 缓存在在其上内存中的 tasks 的映射关系

sched.isExecutorAlive(_)干了什么?

sched.isExecutorAlive的实现为:

def TaskSchedulerImpl#isExecutorAlive(execId: String): Boolean = synchronized {activeExecutorIds.contains(execId)}

activeExecutorIds: HashSet[String]保存集群当前所有可用的 executor id(这里对 executor 的 free cores 个数并没有要求,可为0),每当 DAGScheduler 提交 taskSet 会触发 TaskScheduler 调用 resourceOffers 方法,该方法会更新当前可用的 executors 至 activeExecutorIds;当有 executor lost 的时候,TaskSchedulerImpl 也会调用 removeExecutor 来将 lost 的executor 从 activeExecutorIds 中去除

所有isExecutorAlive就是判断参数中的 executor id 当前是否 active

结合以上两段代码的分析,可以知道这行代码pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))的含义: taskSetManager 的所有对应 partition 数据缓存在 executor 内存中的 tasks 对应的所有 executor,是否有任一 active,若有则返回 true;否则返回 false

这样,也就知道了如何去判断一个 taskSetManager 对象的 locality levels 是否包含 PROCESS_LOCAL

taskSetManager 的 locality levels是否包含 NODE_LOCAL

有了上面对 PROCESS_LOCAL 的详细分析,这里对是否包含 NODE_LOCAL 只做简要分析。最关键代码

pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_)),其中

  • pendingTasksForHost: HashMap[String, ArrayBuffer[Int]]类型,key 为 host,value 为 preferredLocations 包含该 host 的 tasks indexs 数组
  • sched.hasExecutorsAliveOnHost(_): 源码如下,其中executorsByHost为 HashMap[String, HashSet[String]] 类型,key 为 host,value 为该 host 上的 active executors
  def hasExecutorsAliveOnHost(host: String): Boolean = synchronized {executorsByHost.contains(host)}

这样,也就知道如何判断 taskSetManager 的 locality levels:taskSetManager 的所有 tasks 对应的所有 hosts,是否有任一是 tasks 的优先位置 hosts,若有返回 true;否则返回 false

taskSetManager 的 locality levels是否包含 RACK_LOCAL

关键代码:pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_)),其中

  • pendingTasksForRack:HashMap[String, ArrayBuffer[Int]]类型,key为 rack,value 为优先位置所在的 host 属于该机架的 tasks
  • sched.hasHostAliveOnRack(_):源码如下,其中hostsByRack: HashMap[String, HashSet[String]]的 key 为 rack,value 为该 rack 上所有作为 taskSetManager 优先位置的 hosts
  def hasHostAliveOnRack(rack: String): Boolean = synchronized {hostsByRack.contains(rack)}
所以,判断 taskSetManager 的 locality levels 是否包含RACK_LOCAL的规则为:taskSetManager 的所有 tasks 的优先位置 host 所在的所有 racks 与当前 active executors 所在的机架是否有交集,若有则返回 true,否则返回 false

taskSetManager 的 locality levels是否包含 NO_PREF

关键代码如下:

 if (!pendingTasksWithNoPrefs.isEmpty) {levels += NO_PREF}

如果一个 RDD 的某些 partitions 没有优先位置(如是以内存集合作为数据源且 executors 和 driver不在同一个节点),那么这个 RDD action 产生的 taskSetManagers 的 locality levels 就包含 NO_PREF

对于所有的 taskSetManager 均包含 ANY

作者:牛肉圆粉不加葱 链接:https://www.jianshu.com/p/05034a9c8cae 來源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

参考:

https://spark.apache.org/docs/1.6.1/tuning.html#garbage-collection-tuning

http://www.jianshu.com/p/05034a9c8cae

http://blog.csdn.net/pelick/article/details/41866845

http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.rdd.RDD

[Spark调优]--TaskSetManager的有效Locality Levels相关推荐

  1. rdd数据存内存 数据量_大数据开发-Spark调优常用手段

    Spark调优 spark调优常见手段,在生产中常常会遇到各种各样的问题,有事前原因,有事中原因,也有不规范原因,spark调优总结下来可以从下面几个点来调优. 1. 分配更多的资源 分配更多的资源: ...

  2. Spark学习之Spark调优与调试(7)

    Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. ...

  3. 跟我一起学【Spark】之——Spark调优与调试

    第8章 Spark调优与调试 1.总结Spark的配置机制 2.理解Spark应用性能表现的基础知识.设置相关配置项.编写高性能应用设计模式 3.探讨Spark的用户界面.执行的组成部分.日志机制 8 ...

  4. 【Spark调优】大表join大表,少数key导致数据倾斜解决方案

    [Spark调优]大表join大表,少数key导致数据倾斜解决方案 参考文章: (1)[Spark调优]大表join大表,少数key导致数据倾斜解决方案 (2)https://www.cnblogs. ...

  5. 【Spark调优】小表join大表数据倾斜解决方案

    [Spark调优]小表join大表数据倾斜解决方案 参考文章: (1)[Spark调优]小表join大表数据倾斜解决方案 (2)https://www.cnblogs.com/wwcom123/p/1 ...

  6. spark调优(一)-开发调优,数据倾斜,shuffle调优

    主要分为开发调优.资源调优.数据倾斜调优.shuffle调优几个部分. 开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础:数据倾斜调优,主要讲解了一套 ...

  7. 【Spark篇】---Spark调优之代码调优,数据本地化调优,内存调优,SparkShuffle调优,Executor的堆外内存调优...

    一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体    1.代码调优 1.避免创建重复的RDD,尽 ...

  8. Spark 调优技巧总结

    Spark 是大数据处理必备技术之一,在开发工作中必然会面对性能调优和各种问题故障的处理,那么面试官也最爱在这些方面进行机关枪式的提问,本 Chat 就针对当前实际开发工作中常遇到的热门和冷门问题进行 ...

  9. spark调优面试专题

    1.1.介绍一下join操作优化经验? 需要尚硅谷 八斗学院 奈学教育完整大数据资料和多家机构面试题的加威: Y17744650906 资料来之不易,不能接受小额有偿的勿扰,谢谢 答:join其实常见 ...

  10. spark 写本地文件_(纯干货建议收藏)一次GC引发的Spark调优大全

    上一篇Tungsten On Spark-内存模型设计总结了Spark内存设计相关的知识点,本篇会快速为读者复习一下JVM相关的知识点,然后基于线上的GC调优对spark整体的调优做一个汇总,希望能让 ...

最新文章

  1. HTML, CSS, Javascript, jQuery之间的关系
  2. 【问链财经-区块链基础知识系列】 第二十六课 隐私保护方法:多方安全计算和区块链
  3. 【Linux系统编程】进程间通信概述
  4. 为DEV C++/CodeBlock配置gdb调试遇到的问题
  5. 【iOS】利用CocoaPods创建私有库进行组件化开发
  6. Greenplum元数据信息
  7. python requests库 response_Pytest 如何模拟 requests库中的Response对象?
  8. 移动**21*设置无法接通_手机通话质量不好?你可能只差一步设置!
  9. 为什么使用php工厂模式,PHP 工厂模式使用方法
  10. 安装rvm的时候提示curl证书的问题..
  11. 浏览器页面渲染的过程
  12. 如何用getevent查看C-TouchPanel上报数据?
  13. 如何转换图片格式?建议收藏这两个方法
  14. (瑞萨,norti系统,partner-jet2) 实时系统下DMAC使用的注意事项
  15. 巨头集体跨界,老玩家悄然出圈,谁在争夺6亿电竞用户?
  16. 力扣 167. 两数之和 II - 输入有序数组
  17. 免费PDF转JPG的开源软件
  18. 云呼HTML自适应官网源码
  19. python正则检验_Python 检测生僻字
  20. Pygame详解(八):locals 模块

热门文章

  1. 云计算教程:小型云计算平台怎么搭建?
  2. Tiled游戏地图编辑器
  3. Docker容器时间与宿主机时间不一致
  4. 爬取智联招聘岗位描述并根据描述生成词云
  5. 组织的目的是使平凡的人做出不平凡的事 --- 彼得.德鲁克 《卓有成效的管理者》
  6. 100部5星国外经典电影
  7. Python 随机漫步
  8. nim语言编译后的c语言,Nim的编译方法
  9. NXP IMX8系列应用处理器介绍
  10. 魔兽世界开服架设服务器搭建教程